Package ‘magic’

February 20, 2015

Version 1.5-6
Date 3 July 2012
Title create and investigate magic squares
Author Robin K. S. Hankin
Depends R (>= 2.10), abind
Description a collection of efficient, vectorized algorithms for the creation and investigation of magic squares and hypercubes, including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodiment of all magic square knowledge, including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares). Some antimagic functionality is included. The package also serves as a rebuttal to the often-heard comment "I thought R was just for statistics".
Maintainer "Robin K. S. Hankin" <hankin.robin@gmail.com>
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2013-11-20 00:55:43

R topics documented:
magic-package ... 3
adiag ... 3
allsubhypercubes 5
allsums .. 6
apad ... 8
apl .. 9
aplus .. 10
R topics documented:

arev .. 11
arot .. 12
arow .. 13
as.standard .. 14
cilleruelo .. 16
circulant ... 17
cube2 .. 18
diag.off ... 19
do.index .. 20
eq ... 21
fnsd .. 22
force.integer ... 23
Frankenstein .. 24
hadamard ... 24
hendricks ... 25
hudson .. 25
is.magic ... 26
is.magichypercube .. 29
is.ok ... 32
is.square.palindromic 33
latin .. 35
lozenge .. 37
magic .. 37
magic.2np1 ... 38
magic.4n ... 39
magic.4np2 ... 40
magic.8 .. 41
magic.constant ... 41
magic.prime ... 42
magic.product ... 43
magiccube.2np1 .. 44
magiccubes ... 45
magichypercube.4n ... 46
magicplot ... 46
minmax .. 47
notmagic.2n .. 48
nqueens .. 48
Ollerenshaw ... 50
panmagic.4 ... 50
panmagic.6npm1 ... 51
panmagic.8 ... 52
perfectcube5 ... 53
perfectcube6 ... 53
process .. 54
recurse .. 54
sam ... 55
shift ... 56
strachey ... 57
Description

A collection of efficient, vectorized algorithms for the creation and investigation of magic squares and hypercubes, including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays.

The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodiment all magic square knowledge, including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares).

Author(s)

Robin K. S. Hankin <rksh1@cam.ac.uk>

Examples

magic(5)

a <- magiccube.2np1(1)
adig(1,a)
apad(a,2,1)
allsubhypercubes(a)
arev(a)
apltake(a,c(2,2))
aro(a)
aro(a,1)

adiag

Binds arrays corner-to-corner

Description

Array generalization of blockdiag()

Usage

adiag(..., pad=as.integer(0), do.dimnames=TRUE)
Arguments

... Arrays to be binded together
pad Value to pad array with; note default keeps integer status of arrays
do.dimnames Boolean, with default TRUE meaning to return dimnames if possible. Set to FALSE if performance is an issue

Details

Binds any number of arrays together, corner-to-corner. Because the function is associative provided pad is of length 1, this page discusses the two array case.

If \(x = \text{adiag}(a, b) \) and \(\text{dim}(a) = \text{rep}(1, \text{length}(\text{dim}(a))) \) and \(\text{dim}(b) = \text{rep}(1, \text{length}(\text{dim}(b))) \); then all(\(\text{dim}(x) = \text{dim}(a) + \text{dim}(b) \)) and \(x[1:a_1, \ldots, 1:a_d] = a \) and \(x[(a_1+1): (a_1+b_1), \ldots, (a_d+1): (a_d+b_d)] = b. \)

Dimnames are preserved, if both arrays have non-null dimnames, and do.dimnames is TRUE.

Argument pad is usually a length-one vector, but any vector is acceptable; standard recycling is used. Be aware that the output array (of dimension \(\text{dim}(a) + \text{dim}(b) \)) is filled with (copies of) pad before \(a \) and \(b \) are copied. This can be confusing.

Value

Returns an array of dimensions \(\text{dim}(a) + \text{dim}(b) \) as described above.

Note

In \(\text{adiag}(a, b) \), if \(a \) is a length-one vector, it is coerced to an array of dimensions \(\text{rep}(1, \text{length}(\text{dim}(b))) \); likewise \(b \). If both \(a \) and \(b \) are length-one vectors, return \(\text{diag}(c(a, b)) \).

If \(a \) and \(b \) are arrays, function \(\text{adiag()} \) requires \(\text{length}(\text{dim}(a)) = \text{length}(\text{dim}(b)) \) (the function does not guess which dimensions have been dropped; see examples section). In particular, note that vectors are not coerced except if of length one.

\(\text{adiag()} \) is used when padding magic hypercubes in the context of evaluating subarray sums.

Author(s)

Peter Wolf with some additions by Robin Hankin

See Also

\text{subsums}, \text{apad}

Examples

\begin{verbatim}
a <- array(1,c(2,2))
b <- array(-1,c(2,2))
adiag(a,b)

dropped dimensions can count:

b2 <- b1 <- b
dim(a) <- c(2,1,2)
\end{verbatim}
allsubhypercubes

Subhypercubes of magic hypercubes

Description

Extracts all subhypercubes from an n-dimensional hypercube.

Usage

allsubhypercubes(a)

Arguments

a The magic hypercube whose subhypercubes are computed
Value

Returns a list, each element of which is a subhypercube. Note that major diagonals are also returned (as n-by-1 arrays).

The names of the list are the extracted subhypercubes. Consider a <- magichypercube.4n(1, d=4) (so n=4) and if jj <- allsubhypercubes(a), consider jj[9]. The name of jj[9] is "n-i+1, i, i,"; its value is a square matrix. The columns of jj[9] may be recovered by a[n-i+1, i, i,] with i = 1...n (NB: that is, jj[[9]] == cbind(a[n-1+1,1,1,1], a[n-2+1,2,2,1], a[n-3+1,3,3,1], a[n-4+1,4,4,1]) where n=4).

The list does not include the whole array.

Note

This function is a dog's dinner. It's complicated, convoluted, and needs an absurd use of the eval(parse(text=...)) construction. Basically it sucks big time.

BUT...I cannot for the life of me see a better way that gives the same results, without loops, on hypercubes of arbitrary dimension.

On my 256MB Linuxbox, allsubhypercubes() cannot cope with d as high as 5, for n=4. Heigh ho.

The term "subhypercube" does not include diagonally oriented entities at is.magichypercube. But it does here.

Author(s)

Robin K. S. Hankin

See Also

is.perfect

Examples

a <- magichypercube.4n(1, d=4)
allsubhypercubes(a)

allsums Row, column, and two diagonal sums of arrays

Description

Returns all rowsums, all columnsums, and all (broken) diagonal sums of a putative magic square.

Usage

allsums(m, func=NULL, ...)
allsums

Arguments

- **m**: The square to be tested
- **func**: Function, with default NULL interpreted as `sum()`, to be applied to the square rowwise, columnwise, and diagonalwise
- **...**: Further arguments passed to `func()`

Value

Returns a list of four elements. In the following, “sums” means “the result of applying `func()`”.

- **rowsums**: All `n` row sums
- **colsums**: All `n` column sums
- **majors**: All `n` broken major diagonals (northwest-southeast). First element is the long (unbroken) major diagonal, tested by `is.magic()`
- **minors**: All `n` broken minor diagonals (northeast-southwest). First element is the long (unbroken) minor diagonal.

Note

If `func()` returns a vector, then the `allsums()` returns a list whose columns are the result of applying `func()`. See third and fourth examples below.

Used by `is.magic()` et seq.

The major and minor diagonals would benefit from being recoded in C.

Author(s)

Robin K. S. Hankin

See Also

`is.magic`, `is.semimagic`, `is.panmagic`

Examples

```r
allsums(magic(7))
allsums(magic(7), func=max)

allsums(magic(7), func=range)
allsums(magic(7), func=function(x){x[1:2]})

allsums(magic(7), sort)
  # beware! compare apply(magic(7),1,sort) and apply(magic(7),2,sort)
```
Pad arrays

Description
Generalized padding for arrays of arbitrary dimension

Usage
apad(a, 1, e = NULL, method = "ext", post = TRUE)

Arguments
- **a**: Array to be padded
- **1**: Amount of padding to add. If a vector of length greater than one, it is interpreted as the extra extent of a along each of its dimensions (standard recycling is used). If of length one, interpret as the dimension to be padded, in which case the amount is given by argument 1.
- **e**: If 1 is of length one, the amount of padding to add to dimension 1
- **method**: String specifying the values of the padded elements. See details section.
- **post**: Boolean, with default TRUE meaning to append to a and FALSE meaning to prepend.

Details
Argument method specifies the values of the padded elements. It can be either “ext”, “mirror”, or “rep”.

Specifying ext (the default) uses a padding value given by the “nearest” element of a, as measured by the Manhattan metric.

Specifying mirror fills the array with alternate mirror images of a; while rep fills it with unreflected copies of a.

Note
Function apad() does not work with arrays with dimensions of zero extent: what to pad it with? To pad with a particular value, use adiag().

The function works as expected with vectors, which are treated as one-dimensional arrays. See examples section.

Function apad() is distinct from adiag(), which takes two arrays and binds them together. Both functions create an array of the same dimensionality as their array arguments but with possibly larger extents. However, the functions differ in the values of the new array elements. Function adiag() uses a second array; function apad() takes the values from its primary array argument.

Author(s)
Robin K. S. Hankin
Replacements for APL functions take and drop

Description

Replacements for APL functions take and drop

Usage

apldrop(a, b, give.indices=FALSE)
apldrop(a, b) <- value
apltake(a, b, give.indices=FALSE)
apltake(a, b) <- value

Arguments

a
Array
b
Vector of number of indices to take/drop. Length of b should not exceed length(dim(a)); if it does, an error is returned
give.indices
Boolean, with default FALSE meaning to return the appropriate subset of array a, and TRUE meaning to return the list of the selected elements in each of the dimensions. Setting to TRUE is not really intended for the end-user, but is used in the code of apltake<-() and apldrop<-()
value
elements to replace

Examples

apl(1:10,4,method="mirror")

a <- matrix(1:30,5,6)
apl(a,c(4,4))
apl(a,c(4,4),post=FALSE)
apl(a,1,5)
apl(a,c(5,6),method="mirror")
apl(a,c(5,6),method="mirror",post=FALSE)
Details

apltake(a, b) returns an array of the same dimensionality as a. Along dimension i, if b[i] > 0, the first b[i] elements are retained; if b[i] < 0, the last b[i] elements are retained.

apldrop(a, b) returns an array of the same dimensionality as a. Along dimension i, if b[i] > 0, the first b[i] elements are dropped if b[i] < 0, the last b[i] elements are dropped.

These functions do not drop singleton dimensions. Use drop() if this is desired.

Author(s)

Robin K. S. Hankin

Examples

```r
a <- magichypercube.4n(m=1)
apltake(a,c(2,3,2))
apldrop(a,c(1,1,2))

b <- matrix(1:30,5,6)
apldrop(b,c(1,-2)) <- -1

b <- matrix(1:110,10,11)
apltake(b,2) <- -1
apldrop(b,c(5,-7)) <- -2
b
```

aplus

Generalized array addition

Description

Given two arrays a and b with length(dim(a)) == length(dim(b)), return a matrix with dimensions pmax(dim(a),dim(b)) where “overlap” elements are a+b, and the other elements are either 0, a, or b according to location. See details section.

Usage

aplus(...)

Arguments

... numeric or complex arrays
Details

The function takes any number of arguments (the binary operation is associative). The operation of `aplus()` is understandable by examining the following `pseudo` code:

- `outa <- array(0, pmax(a, b))`
- `outb <- array(0, pmax(a, b))`
- `outa[1:dim(a)] <- a`
- `outb[1:dim(a)] <- b`
- `return(outa+outb)`

See how `outa` and `outb` are the correct size and the appropriate elements of each are populated with `a` and `b` respectively. Then the sum is returned.

Author(s)

Robin K. S. Hankin

See Also

`apad`

Examples

```r
a <- matrix(1:10, 2, 5)
b <- matrix(1:9, 3, 3)
aplus(a, b, b)
```

`arev`
Reverses some dimensions; a generalization of `rev`

Description

A multidimensional generalization of `rev()`: given an array `a`, and a Boolean vector `swap`, return an array of the same shape as `a` but with dimensions corresponding to `TRUE` elements of `swap` reversed. If `swap` is not Boolean, it is interpreted as the dimensions along which to swap.

Usage

```r
arev(a, swap = TRUE)
```

Arguments

- `a`
 Array to be reversed
- `swap`
 Vector of Boolean variables. If `swap[i]` is `TRUE`, then dimension `i` of array `a` is reversed. If `swap` is of length one, recycle to `length(dim(a))`
Details

If swap is not Boolean, it is equivalent to `1:n %in% swap` (where \(n\) is the number of dimensions). Thus multiple entries are ignored, as are entries greater than \(n\).

If \(a\) is a vector, \(\text{rev}(a)\) is returned.

Function \(\text{arev}()\) handles zero-extent dimensions as expected.

Function \(\text{arev}()\) does not treat singleton dimensions specially, and is thus different from Octave’s \(\text{flipdim}()\), which (if supplied with no second argument) flips the first nonsingleton dimension. To reproduce this, use \(\text{arev}(a, \text{fnsd}(a))\).

Author(s)

Robin K. S. Hankin

See Also

\(\text{ashift}\)

Examples

\[
\begin{align*}
 a & \leftarrow \text{matrix}(1:42,6,7) \\
 \text{arev}(a) & \quad \# \text{Note swap defaults to TRUE} \\
 b & \leftarrow \text{magichypercube}(4n(1, d=4)) \\
 \text{arev}(b, c(\text{TRUE, FALSE, TRUE, FALSE}))
\end{align*}
\]

aro

Rotates an array about two specified dimensions

Description

Rotates an array about two specified dimensions by any number of 90 degree turns

Usage

\[
\text{arot}(a, \text{rights} = 1, \text{pair} = 1:2)
\]

Arguments

- **a**
 - The array to be rotated

- **rights**
 - Integer; number of right angles to turn

- **pair**
 - A two-element vector containing the dimensions to rotate with default meaning to rotate about the first two dimensions
Note

Function `arot()` is not exactly equivalent to octave’s `rotdim()`; in `arot()` the order of the elements of `pair` matters because the rotation is clockwise when viewed in the `(pair[1], pair[2])` direction. Compare octave’s `rotdim()` in which `pair` is replaced with `sort(pair)`.

Note also that the rotation is about the first two dimensions specified by `pair` but if `pair` has more than two elements then these dimensions are also permuted.

Also note that function `arot()` does not treat singleton dimensions specially.

Author(s)

Robin K. S. Hankin

See Also

`arev`

Examples

```r
a <- array(1:16, rep(2,4))
arot(a)
arot(a, c(1, 3))
```

arow
Generalized row and col

Description

Given an array, returns an array of the same size whose elements are sequentially numbered along the ith dimension.

Usage

`arow(a, i)`

Arguments

- `a`: array to be converted
- `i`: Number of the dimension

Value

An integer matrix with the same dimensions as `a`, with element (n_1, n_2, \ldots, n_d) being n_i.

Note

This function is equivalent to, but faster than, `function(a, i)({do.index(a, function(x){x[i]}))}. However, it is much more complicated.
Author(s)

Robin K. S. Hankin

Examples

```r
a <- array(0, c(3,3,2,2))
arrow(a,2)
(arrow(a,1)+arrow(a,2)+arrow(a,3)+arrow(a,4))%%2
```

as.standard

Standard form for magic squares

Description

Transforms a magic square or magic hypercube into Frenicle’s standard form

Usage

```r
as.standard(a, toroidal = FALSE, one_minus=FALSE)
is.standard(a, toroidal = FALSE, one_minus=FALSE)
```

Arguments

- `a` Magic square or hypercube (array) to be tested or transformed
- `toroidal` Boolean, with default `FALSE` meaning to use Frenicle’s method, and `TRUE` meaning to use additional transformations appropriate to toroidal connectivity
- `one_minus` Boolean, with `TRUE` meaning to use the transformation \(x \rightarrow n^2 + 1 - x \) if appropriate, and default `FALSE` meaning not to use this

Details

For a square, `as.standard()` transforms a magic square into Frenicle’s standard form. The four numbers at each of the four corners are determined. First, the square is rotated so the smallest of the four is at the upper left. Then, element \([1,2]\) is compared with element\([2,1]\) and, if it is larger, the transpose is taken.

Thus all eight rotated and transposed versions of a magic square have the same standard form.

The square returned by `magic()` is in standard form.

For hypercubes, the algorithm is generalized. First, the hypercube is reflected so that \(a_{QLQLNNNLQLQ}\) is the smallest of the \(2^d\) corner elements (eg \(a_{QLnLQLNNNLQLQ}\)).

Next, `aperm()` is called so that
\[
a_{[1,1,\ldots,1,2]} < a_{[1,1,\ldots,2,1]} < \ldots < a_{[2,1,\ldots,1,1]}.
\]

Note that the inequalities are strict as hypercubes are assumed to be normal. As of version 1.3-1, `as.standard()` will accept arrays of any dimension (ie arrays \(a\) with `minmax(dim(a))==FALSE` will be handled sensibly).
An array with any dimension of extent zero is in standard form by definition; dimensions of length one are dropped.

If argument **toroidal** is TRUE, then the array `a` is translated using `ashift()` so that `a[1,1,...,1] == min(a)`. Such translations preserve the properties of semimagicness and pandiagonalness (but not magicness or associativity).

It is easier (for me at least) to visualise this by considering two-dimensional arrays, tiling the plane with copies of `a`.

Next, the array is shifted so that `a[2,1,...,1] < a[dim(a)[1],1,...,1]` and `a[1,2,...,1] < a[1,dim(a)[2],...,1]` and so on.

Then `aperm()` is called as per the non-toroidal case above.

`is.standard()` returns TRUE if the magic square or hypercube is in standard form. `is.standard()` and `as.standard()` check for neither magicness nor normality (use `is.magic` and `is.normal` for this).

Note

There does not appear to be a way to make the third letter of “Frenicle” have an acute accent, as it should do.

Author(s)

Robin K. S. Hankin

See Also

`magic`, `eq`

Examples

```r
is.standard(magic.2np1(4))
as.standard(magic.4n(3))

as.standard(magichypercube.4n(1,5))

# Non-square arrays:
as.standard(magic(7)[1:3,])

# Toroidal transforms preserve pandiagonalness:
is.pandiagonal(as.standard(hudson(11)))

# But not magicness:
is.magic(as.standard(magic(10),TRUE))
```
A class of multiplicative magic squares due to Cilleruelo and Luca

Description

Cilleruelo and Luca give a class of multiplicative magic squares whose behaviour is interesting.

Usage

cilleruelo(n, m)

Arguments

\(n, m \)

Arguments: usually integers

Details

\[
\begin{pmatrix}
(n+2)(m+0) & (n+3)(m+3) & (n+1)(m+2) & (n+0)(m+1) \\
(n+1)(m+1) & (n+0)(m+2) & (n+2)(m+3) & (n+3)(m+0) \\
(n+0)(m+3) & (n+1)(m+0) & (n+3)(m+1) & (n+2)(m+2) \\
(n+3)(m+2) & (n+2)(m+1) & (n+0)(m+0) & (n+1)(m+3)
\end{pmatrix}
\]

Value

Returns a \(4 \times 4 \) matrix.

Author(s)

Robin K. S. Hankin

References

Examples

```r
is.magic(cilleruelo(5,6))
is.magic(cilleruelo(5,6), func=prod)
```

```r
f <- function(n){
  jj <-
    sapply(
      seq(from=5, len=n),
      function(i)(cilleruelo(i,i-4))
    )
  xM <- apply(jj, 2, max)
}
circulant -> Circulant matrices of any order

Description

Creates and tests for circulant matrices of any order

Usage

circulant(vec)
is.circulant(m, dir=rep(1, length(dim(m))))

Arguments

vec
m
dir

In circulant(), vector of elements of the first row. If of length one, interpret as the order of the matrix and use 1:vec.

In is.circulant(), matrix to be tested for circulantism

In is.circulant(), the direction to test for circulantism. For a matrix, the default value (c(1,1)) traces the major diagonals

Details

A matrix \( a \) is circulant if all major diagonals, including broken diagonals, are uniform; i.e., if \( a_{ij} = a_{kl} \) when \( i - j = k - l \) (modulo \( n \)). The standard values to use give 1:vec for the top row.

In function is.circulant(), for arbitrary dimensional arrays, the default value for \( \text{dir} \) checks that \( a[v] = a[v+\text{rep}(1,d)] = \ldots = a[v+\text{rep}((n-1),d)] \) for all \( v \) (that is, following lines parallel to the major diagonal); indices are passed through process().

For general \( \text{dir} \), function is.circulant() checks that \( a[v] = a[v+\text{dir}] = a[v+2\times\text{dir}] = \ldots = a[v+(n-1)\times\text{dir}] \) for all \( v \).

A Toeplitz matrix is one in which \( a[i,j] = a[i',j'] \) whenever \( |i-j| = |i'-j'| \). See function toeplitz() of the stats package for details.

Author(s)

Robin K. S. Hankin
References

Examples

circulant(5)
circulant(2^(0:4))
is.circulant(circulant(5))

a <- outer(1:3,1:3,"+")%%3
is.circulant(a)
is.circulant(a,c(1,2))
is.circulant(array(c(1:4,4:1),rep(2,3)))
is.circulant(magic(5)%%5,c(1,-2))

cube2  A pantriagonal magic cube

Description
A pantriagonal magic cube of order 4 originally due to Hendricks

Usage
data(cube2)

Details
Meaning of "pantriagonal" currently unclear

Source
Hendricks

Examples
data(cube2)
is.magichypercube(cube2)
is.perfect(cube2)
Description

Returns broken diagonals of a magic square

Usage

\[
\text{diag.off}(a, \text{offset} = 0, \text{nw.se} = \text{TRUE})
\]

Arguments

- \(a\)  
  Square matrix
- \(\text{offset}\)  
  vertical offset
- \(\text{nw.se}\)  
  Boolean variable with TRUE meaning trace diagonals along the northwest-southeast direction (point [1, 1] to [n, n]) if \(\text{nw.se}\) is TRUE and [1, n] to [n, 1] if \(\text{nw.se}\) is FALSE.

Details

Useful when testing for panmagic squares. The first element is always the unbroken one (ie [1, 1] to [n, n]) if \(\text{nw.se}\) is TRUE and [1, n] to [n, 1] if \(\text{nw.se}\) is FALSE.

Author(s)

Robin K. S. Hankin

See Also

- \text{is.panmagic}

Examples

\[
\text{diag.off}(\text{magic}(10), \text{nw.se}=\text{FALSE}, \text{offset}=0) \\
\text{diag.off}(\text{magic}(10), \text{nw.se}=\text{FALSE}, \text{offset}=1)
\]
do.index

Apply a function to array element indices

Description
Given a function \( f() \) that takes a vector of indices, and an array of arbitrary dimensions, apply \( f() \) to the elements of \( a \).

Usage
\[
do.index(a, f, \ldots)
\]

Arguments
- \( a \): Array
- \( f \): Function that takes a vector argument of the same length as \( \text{dim}(a) \)
- \( \ldots \): Further arguments supplied to \( f() \)

Value
Returns a matrix of the same dimensions as \( a \).

Note
Tamas Papp suggests the one-liner
\[
\text{function}(a, f, \ldots) \{ \quad \text{array(apply(as.matrix(expand.grid(lapply(dim(a), seq_len)), length = length(a))), 1, paste, collapse = "\n"))}
\]
which is functionally identical to \( \text{do.index()} \); but it is no faster than the version implemented in the package, and (IMO) is harder to read.

Further note that function \( \text{arow()} \) is much much faster than \( \text{do.index()} \); it is often possible to rephrase a call to \( \text{do.index()} \) as a call to \( \text{arow()} \); do this where possible unless the additional code opacity outweighs the speed savings.

Author(s)
Robin K. S. Hankin, with improvements by Gabor Grothendieck and Martin Maechler, via the R help list

See Also
\( \text{arow} \)

Examples
\[
a <- \text{array}(0, c(2,3,4))
b <- \text{array}(\text{rpois}(60,1), c(3,4,5))
f1 <- \text{function}(x)\{\text{sum}(x)\}
f2 <- \text{function}(x)\{\text{sum}(x-1)^2\}
f3 <- \text{function}(x)\{b[t(x)]\}
\]
Comparison of two magic squares

Description

Compares two magic squares according to Frenicle’s method. Mnemonic is the old Fortran “.GT.” (for “Greater Than”) comparison et seq.

To compare magic square a with magic square b, their elements are compared in rowwise order: a[1,1] is compared with b[1,1], then a[1,2] with b[1,2], up to a[n,n]. Consider the first element that is different, say [i,j]. Then a<b if a[i,j]<b[i,j].

The generalization to hypercubes is straightforward: comparisons are carried out natural order.

Usage

eq(m1, m2)
ne(m1, m2)
gt(m1, m2)
lt(m1, m2)
ge(m1, m2)
le(m1, m2)
m1 %eq% m2
m1 %ne% m2
m1 %gt% m2
m1 %lt% m2
m1 %ge% m2
m1 %le% m2

Arguments

m1 First magic square
m2 Second magic square

Note

Rather clumsy function definition due to the degenerate case of testing two identical matrices (min(NULL) is undefined).

The two arguments are assumed to be matrices of the same size. If not, an error is given.
Author(s)
Robin K. S. Hankin

See Also
as.standard

Examples

magic(4) %eq% magic.4n(1)
eq(magic(4), magic.4n(1))

---

fnsd  
First non-singleton dimension

Description
Given an array, returns the first non-singleton dimension. Useful for emulating some of Matlab / Octave’s multidimensional functions.
If \( n \) is supplied, return the first \( n \) nonsingleton dimensions.

Usage

fnsd(a, n)

Arguments

- \( a \)  An array
- \( n \)  Integer. Return the first \( n \) nonsingleton dimensions

Value

Returns an integer vector with elements in the range 1 to \( \text{length}(\text{dim}(a)) \).

Note
Treats zero-extent dimensions as singletons.
Case \( n=0 \) now treated sensibly (returns a zero-length vector).

Author(s)
Robin K. S. Hankin

See Also
arev
Examples

```r
a <- array(1:24, c(1,1,1,2,1,3,4))
fn5d(a)
fn5d(a, 2)
```

Description

Returns an elementwise as.integer-ed array. All magic squares should have integer elements.

Usage

```r
force.integer(x)
```

Arguments

- `x` Array to be converted

Note

Function `force.integer()` differs from `as.integer()` as the latter returns an integer vector, and the former returns an array whose elements are integer versions of `x`; see examples section below.

Author(s)

Robin K. S. Hankin

Examples

```r
a <- matrix(rep(1:4,2,2))
force.integer(a)
as.integer(a)
```
Frankenstein

A perfect magic cube due to Frankenstein

Description
A perfect magic cube due to Frankenstein

Usage
data(Frankenstein)

Examples
data(Frankenstein)
is.perfect(Frankenstein)

hadamard

Hadamard matrices

Description
Various functionality for Hadamard matrices

Usage
sylvester(k)
is.hadamard(m)

Arguments
k Function sylvester() gives the k-th Sylvester matrix
m matrix

Details
A Hadamard matrix is a square matrix whose entries are either +1 or -1 and whose rows are mutually orthogonal.

Author(s)
Robin K. S. Hankin

References
**Examples**

```r
is.hadamard(sylvester(4))
image(sylvester(5))
```

---

**hendricks**

_A perfect magic cube due to Hendricks_

**Description**

A perfect $8 \times 8 \times 8$ magic cube due to Hendricks

**Usage**

```r
data(hendricks)
```

**Source**

[http://members.shaw.ca/hdhcubes/cube_perfect.htm#Definitions](http://members.shaw.ca/hdhcubes/cube_perfect.htm#Definitions)

**Examples**

```r
data(hendricks)
is.perfect(hendricks)
```

---

**hudson**

_Pandiagonal magic squares due to Hudson_

**Description**

Returns a regular pandiagonal magic square of order $6m \pm 1$ using a method developed by Hudson.

**Usage**

```r
hudson(n = NULL, a = NULL, b = NULL)
```

**Arguments**

- `n` Order of the square, $n = 6m \pm 1$. If NULL, use the length of `a`
- `a` The first line of Hudson’s $A$ matrix. If NULL, use Hudson’s value of $c(n-1, 0: (n-2))$
- `b` The first line of Hudson’s $B$ matrix. If NULL, use Hudson’s value of $c(2: (n-1), n, 1)$. Using default values for `a` and `b` gives an associative square
Details

Returns one member of a set of regular magic squares of order $n = 6m \pm 1$. The set is of size $(n!)^2$. Note that $n$ is not checked for being in the form $6n \pm 1$. If it is not the correct form, the square is magic but not necessarily normal.

Author(s)

Robin K. S. Hankin

References

C. B. Hudson, On pandiagonal squares of order $6t \pm 1$, Mathematics magazine, March 1972, pp94-96

See Also

recurse

Examples

hudson(n=11)
magicplot(hudson(n=11))
is.associative(hudson(n=13))
hudson(a=(2*1:13)%%13, b=(8*1:13)%%13)
all(replicate(10, is.magic(hudson(a=sample(13), b=sample(13)))))

is.magic Various tests for the magicness of a square

Description

Returns TRUE if the square is magic, semimagic, panmagic, associative, normal. If argument give.answers is TRUE, also returns additional information about the sums.

Usage

is.magic(m, give.answers = FALSE, func=sum, boolean=FALSE)
is.panmagic(m, give.answers = FALSE, func=sum, boolean=FALSE)
is.pandiagonal(m, give.answers = FALSE, func=sum, boolean=FALSE)
is.semmagic(m, give.answers = FALSE, func=sum, boolean=FALSE)
is.semmagic.default(m)
is.associative(m)
is.normal(m)
is.sparse(m)
is.mostperfect(m,give.answers=FALSE)
is.2x2.correct(m,give.answers=FALSE)
is.bree.correct(m,give.answers=FALSE)
is.magic

is.latin(m, give.answers=FALSE)
is.antimagic(m, give.answers = FALSE, func=sum)
is.totally.antimagic(m, give.answers = FALSE, func=sum)
is.heterosquare(m, func=sum)
is.totally.heterosquare(m, func=sum)
is.sam(m)
is.stam(m)

Arguments

m The square to be tested
give.answers Boolean, with TRUE meaning return additional information about the sums (see details)
func A function that is evaluated for each row, column, and unbroken diagonal
boolean Boolean, with TRUE meaning that the square is deemed magic, semimagic, etc, if all applications of func evaluate to TRUE. If boolean is FALSE, square m is magic etc if all applications of func are identical

Details

• A semimagic square is one all of whose row sums equal all its columnwise sums (ie the magic constant).
• A magic square is a semimagic square with the sum of both unbroken diagonals equal to the magic constant.
• A panmagic square is a magic square all of whose broken diagonals sum to the magic constant. Ollerenshaw calls this a “pandiagonal” square.
• A most-perfect square has all 2-by-2 arrays anywhere within the square summing to 2S where \( S = n^2 + 1 \); and all pairs of integers \( n/2 \) distant along the same major (NW-SE) diagonal sum to \( S \) (note that the \( S \) used here differs from Ollerenshaw’s because her squares are numbered starting at zero). The first condition is tested by is.2x2.correct() and the second by is.bree.correct(). All most-perfect squares are panmagic.
• A normal square is one that contains \( n^2 \) consecutive integers (typically starting at 0 or 1).
• A sparse matrix is one whose nonzero entries are consecutive integers, starting at 1.
• An associative square (also regular square) is a magic square in which \( a_{i,j} + a_{n+1-i,n+1-j} = n^2+1 \). Note that an associative semimagic square is magic; see also is.square.palindromic(). The definition extends to magic hypercubes: a hypercube a is associative if a+arev(a) is constant.
• An ultramagic square is pandiagonal and associative.
• A latin square of size \( n \times n \) is one in which each column and each row comprises the integers 1 to \( n \) (not necessarily in that order). Function is.latin() is a wrapper for is.latinhypercube() because there is no natural way to present the extra information given when give.answers is TRUE in a manner consistent with the other functions documented here.
• An antimagic square is one whose row sums and column sums are consecutive integers; a totally antimagic square is one whose row sums, column sums, and two unbroken diagonals are consecutive integers. Observe that an antimagic square is not necessarily totally antimagic, and vice-versa.

• A heterosquare has all rowsums and column sums distinct; a totally heterosquare [NB non-standard terminology] has all rowsums, columnsums, and two long diagonals distinct.

• A square is sam (or SAM) if it is sparse and antimagic; it is stam (or STAM) if it is sparse and totally antimagic. See documentation at SAM.

Value

Returns TRUE if the square is semimagic, etc. and FALSE if not.

If give.answers is taken as an argument and is TRUE, return a list of at least five elements. The first element of the list is the answer: it is TRUE if the square is (semimagic, magic, panmagic) and FALSE otherwise. Elements 2-5 give the result of a call to allsums(), viz: rowwise and columnwise sums; and broken major (ie NW-SE) and minor (ie NE-SW) diagonal sums.

Function is.bree.correct() also returns the sums of elements distant n/2 along a major diagonal (diag.sums); and function is.2x2.correct() returns the sum of each 2×2 submatrix (tbt.sums); for other size windows use subsums() directly. Function is.mostperfect() returns both of these.

Function is.semimagic.default() returns TRUE if the argument is semimagic [with respect to sum()] using a faster method than is.semimagic().

Note

Functions that take a func argument apply that function to each row, column, and diagonal as necessary. If func takes its default value of sum(), the sum will be returned; if prod(), the product will be returned, and so on. There are many choices for this argument that produce interesting tests; consider func=max, for example. With this, a “magic” square is one whose row, sum and (unbroken) diagonals have identical maxima. Thus diag(5) is magic with respect to max(), but diag(6) isn’t.

Argument boolean is designed for use with non-default values for the func argument; for example, a latin square is semimagic with respect to func=function(x){all(diff(sort(x))==1)}.

Function is.magic() is vectorized; if a list is supplied, the defaults are assumed.

Author(s)

Robin K. S. Hankin

References

http://mathworld.wolfram.com/MagicSquare.html

See Also

minmax,is.perfect,is.semimagic,hypercube,sam
is.magichypercube

Examples

```r
is.magic(magic(4))
is.magic(diag(7), func=max) # TRUE
is.magic(diag(8), func=max) # FALSE

stopifnot(is.magic(magic(3:8)))
is.pannmagic(panmagic.4())
is.pannmagic(panmagic.8())
data(Ollerenshaw)
is.mostperfect(Ollerenshaw)

proper.magic <- function(m) (is.magic(m) & is.normal(m))
proper.magic(magic(20))
```

is.magichypercube  magic hypercubes

Description

Returns TRUE if a hypercube is semimagic, magic, perfect

Usage

```r
is.semimagichypercube(a, give.answers=FALSE, func=sum, boolean=FALSE, ...)
is.diagonally.correct(a, give.answers = FALSE, func=sum, boolean=FALSE, ...)
is.magichypercube(a, give.answers = FALSE, func=sum, boolean=FALSE, ...)
is.perfect(a, give.answers = FALSE, func=sum, boolean=FALSE)
is.latinhypercube(a, give.answers=FALSE)
is.alicehypercube(a, ndim, give.answers=FALSE, func=sum, boolean=FALSE)
```

Arguments

- `a` The hypercube (array) to be tested
- `give.answers` Boolean, with TRUE meaning to also return the sums
- `func` Function to be applied across each dimension
- `ndim` In is.alicehypercube(), dimensionality of subhypercube to take sums over. See the details section
- `boolean` Boolean, with TRUE meaning that the hypercube is deemed magic, semimagic, etc, if all applications of `func` evaluate to TRUE. If `boolean` is FALSE, the hypercube is magic etc if all applications of `func` are identical
- `...` Further arguments passed to `func()`
Details

(Although apparently non-standard, here a hypercube is defined to have dimension \(d\) and order \(n\)—and thus has \(n^d\) elements).

- A semimagic hypercube has all “rook’s move” sums equal to the magic constant (that is, each \(\sum a[i_1, i_2, \ldots, i_{r-1}, i_{r+1}, \ldots, i_d]\) with \(1 \leq r \leq d\) is equal to the magic constant for all values of the \(i\)’s). In \texttt{is.semimagichypercube()}, if \texttt{give.answers} is \texttt{TRUE}, the sums returned are in the form of an array of dimension \(c(rep(n, d-1), d)\). The first \(d-1\) dimensions are the coordinates of the projection of the summed elements onto the surface hypercube. The last dimension indicates the dimension along which the sum was taken over.

Optional argument \texttt{func}, defaulting to \texttt{sum()}, indicates the function to be taken over each of the \(d\) dimensions. Currently requires \texttt{func} to return a scalar.

- A Latin hypercube is one in which each line of elements whose coordinates differ in only one dimension comprises the numbers 1 to \(n\) (or 0 to \(n-1\)), not necessarily in that order. Each integer thus appears \(n^{d-1}\) times.

- A magic hypercube is a semimagic hypercube with the additional requirement that all \(2^{d-1}\) long (ie extreme point-to-extreme point) diagonals sum correctly. Correct diagonal summation is tested by \texttt{is.diagonally.correct()}; by specifying a function other than \texttt{sum()}, criteria other than the diagonals returning the correct sum may be tested.

- An Alice hypercube is a different generalization of a semimagic square to higher dimensions. It is named for A. M. Hankin who originally suggested it.

A semimagic hypercube has all one-dimensional subhypercubes (ie lines) summing correctly. An Alice hypercube has all \(ndim\)-dimensional subhypercubes summing correctly, where \(ndim\) is a fixed integer.

For example, if \(a\) is four-dimensional with dimension \(5 \times 5 \times 5 \times 5\) then \texttt{is.alicehypercube(a,1)} corresponds to a regular semimagic hypercube; \texttt{is.alicehypercube(a,2)} corresponds to all 2d subhypercubes (ie all \(6 \times 25 = 150\) of the \(5 \times 5\) squares, for example \(a[,2,4,\ldots]\) and \(a[1,1,\ldots]\)) having the same sum; and \texttt{is.alicehypercube(a,3)} means that all 3d subhypercubes (ie all \(4 \times 5 = 20\) of the \(5 \times 5 \times 5\) cubes, for example \(a[,1,\ldots]\) and \(a[4,\ldots,\ldots]\)) having the same sum.

A semimagic hypercube is an Alice hypercube for any value of \(ndim\).

- A perfect magic hypercube (use \texttt{is.perfect()}) is a magic hypercube with all nonbroken diagonals summing correctly. This is a seriously restrictive requirement for high dimensional hypercubes. As yet, this function does not take a \texttt{give.answers} argument.

- A pandiagonal magic hypercube, also Nasik hypercube (or sometimes just a perfect hypercube) is a semimagic hypercube with all diagonals, including broken diagonals, summing correctly. This is not implemented.

The terminology in this area is pretty confusing.

In \texttt{is.magichypercube()}, if argument \texttt{give.answers=TRUE} then a list is returned. The first element of this list is Boolean with \texttt{TRUE} if the array is a magic hypercube. The second element and third elements are answers from \texttt{is.semimagichypercube()} and \texttt{is.diagonally.correct()} respectively.

In \texttt{is.diagonally.correct()}, if argument \texttt{give.answers=TRUE}, the function also returns an array of dimension \(c(q, rep(2, d))\) (that is, \(q \times 2^d\) elements), where \(q\) is the length of \texttt{func()} applied to a long diagonal of \(a\) (if \(q = 1\), the first dimension is dropped). If \(q = 1\), then in dimension \(d\)
having index 1 means \( \text{func()} \) is applied to elements of \( a \) with the \( d \)th dimension running over \( 1:n \); index 2 means to run over \( n:1 \). If \( q > 1 \), the index of the first dimension gives the index of \( \text{func()} \), and subsequent dimensions have indices of 1 or 2 as above and are interpreted in the same way.

An example of a function for which these two are not identical is given below.

If \( \text{func}=f \) where \( f \) is a function returning a vector of length \( i \), \( \text{is\ diagonally\ correct()} \) returns an array \( \text{out} \), of dimension \( c(i,\text{rep}(2,d)) \), with \( \text{out}[,i_1,i_2,...,i_d] \) being \( f(x) \) where \( x \) is the appropriate long diagonal. Thus the \( 2^d \) equalities \( \text{out}[,i_1,i_2,...,i_d]=\text{out}[,3-i_1,3-i_2,...,3-i_d] \) hold if and only if \( \text{identical}(f(x),f(\text{rev}(x))) \) is TRUE for each long diagonal (a condition met, for example, by \( \text{sum()} \) but not by the identity function or \( \text{function}(x)(x[1]) \)).

**Note**

On this page, “subhypercube” is restricted to rectangularly-oriented subarrays; see the note at subhypercubes.

Not all subhypercubes of a magic hypercube are necessarily magic! (for example, consider a 5-dimensional magic hypercube \( a \). The square \( b \) defined by \( a[1,1,1,] \) might not be magic: the diagonals of \( b \) are not covered by the definition of a magic hypercube). Some subhypercubes of a magic hypercube are not even semimagic: see below for an example.

Even in three dimensions, being perfect is pretty bad. Consider a \( 5 \times 5 \times 5 \) (ie three dimensional), cube. Say \( a=\text{magiccube.2np1}(2) \). Then the square defined by \( \text{sapply}(1:n,\text{function}(i)(a[i,i,6-i]), \text{simplify=TRUE}) \), which is a subhypercube of \( a \), is not even semimagic: the rowsums are incorrect (the colsums must sum correctly because \( a \) is magic). Note that the diagonals of this square are two of the “extreme point-to-point” diagonals of \( a \).

A pandiagonal magic hypercube (or sometimes just a perfect hypercube) is semimagic and in addition the sums of all diagonals, including broken diagonals, are correct. This is one seriously bad-ass requirement. I reckon that is a total of \( \frac{1}{2} (3^d - 1) \cdot n^{d-1} \) correct summations. This is not coded up yet; I can’t see how to do it in anything like a vectorized manner.

**Author(s)**

Robin K. S. Hankin

**References**


**See Also**

is.magic, allsubhypercubes, hendricks

**Examples**

library(abind)

\( \text{is.seminimagichypercube(magiccube.2np1(1))} \)

\( \text{is.seminimagichypercube(magichypercube.4n(1,d=4))} \)
is.perfect(magichypercube.4n(1,d=4))

# Now try an array with minmax(dim(a))==FALSE:
a <- abind(magiccube.2np1(1),magiccube.2np1(1),along=2)
is.semimagichypercube(a,g=TRUE)$rook.sums

# is.semimagichypercube() takes further arguments:
mymax <- function(x,UP){max(c(x,UP))}
not_mag  <- array(1:81,rep(3,4))
is.semimagichypercube(not_mag,func=mymax,UP=80)  # FALSE
is.semimagichypercube(not_mag,func=mymax,UP=81)  # TRUE

a2 <- magichypercube.4n(m=1,d=4)
is.diagonally.correct(a2)
is.diagonally.correct(a2,g=TRUE)$diag.sums

## To extract corner elements (note func(1:n) != func(n:1)):
is.diagonally.correct(a2,func=function(x)(x[1]),g=TRUE)$diag.sums

# Now for a subhypercube of a magic hypercube that is not semimagic:
is.magic(allsubhypercubes(magiccube.2np1(1))[[10]])
data(hendricks)
is.perfect(hendricks)

# note that Hendrick's magic cube also has many broken diagonals summing correctly:
a <- allsubhypercubes(hendricks)
ld <- function(a)(length(dim(a)))
jj <- unlist(lapply(a,ld))
f <- function(ij)(is.perfect(a[[which(jj==2)[i]]])
all(sapply(1:sum(jj==2),f))

# but this is NOT enough to ensure that it is pandiagonal (but I think hendricks is pandiagonal).

is.alicehypercube(magichypercube.4n(1,d=5),4,give.answers=TRUE)

does a vector have the sum required to be a row or column of a magic square?
**is.square.palindromic**

**Description**

Returns TRUE if and only if \( \text{sum} (\text{vec}) == \text{magic.constant}(n, d=d) \)

**Usage**

\[ \text{is.ok} (\text{vec}, n=\text{length} (\text{vec}), d=2) \]

**Arguments**

- vec: Vector to be tested
- n: Order of square or hypercube. Default assumes order is equal to length of vec
- d: Dimension of square or hypercube. Default of 2 corresponds to a square

**Author(s)**

Robin K. S. Hankin

**Examples**

\[ \text{is.ok} (\text{magic} (5) [1,]) \]

---

**is.square.palindromic  Is a square matrix square palindromic?**

**Description**

Implementation of various properties presented in a paper by Arthur T. Benjamin and K. Yasuda

**Usage**

\[ \text{is.square.palindromic}(m, \text{base}=10, \text{give.answers}=\text{FALSE}) \]
\[ \text{is.centrosymmetric}(m) \]
\[ \text{is.persymmetric}(m) \]

**Arguments**

- m: The square to be tested
- base: Base of number expansion, defaulting to 10; not relevant for the “sufficient” part of the test
- give.answers: Boolean, with TRUE meaning to return additional information
Details

The following tests apply to a general square matrix \( m \) of size \( n \times n \).

- A centrosymmetric square is one in which \( a[i,j] = a[n+1-i,n+1-j] \); use `is.centrosymmetric()` to test for this (compare an associative square). Note that this definition extends naturally to hypercubes: a hypercube \( a \) is centrosymmetric if \( \forall a \) \( a == \text{arev}(a) \).
- A persymmetric square is one in which \( a[i,j] = a[n+1-j,n+1-i] \); use `is.persymmetric()` to test for this.
- A matrix is square palindromic if it satisfies the rather complicated conditions set out by Benjamin and Yasuda (see refs).

Value

These functions return a list of Boolean variables whose value depends on whether or not \( m \) has the property in question.

If argument `give.answers` takes the default value of `FALSE`, a Boolean value is returned that shows whether the sufficient conditions are met.

If argument `give.answers` is `TRUE`, a detailed list is given that shows the status of each individual test, both for the necessary and sufficient conditions. The value of the second element (named `necessary`) is the status of their Theorem 1 on page 154.

Note that the necessary conditions do not depend on the base \( b \) (technically, neither do the sufficient conditions, for being a square palindrome requires the sums to match for every base \( b \). In this implementation, “sufficient” is defined only with respect to a particular base).

Note

Every associative square is square palindromic, according to Benjamin and Yasuda.

Function `is.square.palindromic()` does not yet take a `give.answers` argument as does, say, `is.magic()`.

Author(s)

Robin K. S. Hankin

References


Examples

```r
is.square.palindromic(magic(3))
is.persymmetric(matrix(c(1,0,0,1),2,2))
```

```r
now try a circulant:
a <- matrix(0,5,5)
is.square.palindromic(circulant(10)) # should be TRUE
```
Description

Various functionality for generating random latin squares

Usage

incidence(a)
is.incidence(a, include.improper)
is.incidence.improper(a)
unincidence(a)
inc_to_inc(a)
another_latin(a)
another.incidence(i)
rlatin(n, size=NULL, start=NULL, burnin=NULL)

Arguments

a          A latin square
i          An incidence array
n, include.improper, size, start, burnin
            Various control arguments; see details section

Details

• Function incidence() takes an integer array (specifically, a latin square) and returns the
  incidence array as per Jacobson and Matthew 1996
• Function is.incidence() tests for an array being an incidence array; if argument include.improper
  is TRUE, admit an improper array
• Function is.incidence.improper() tests for an array being an improper array
• Function unincidence() converts an incidence array to a latin square
• Function another_latin() takes a latin square and returns a different latin square
• Function another.incidence() takes an incidence array and returns a different incidence array
• Function rlatin() generates a (Markov) sequence of random latin squares, arranged in a 3D
  array. Argument n specifies how many to generate; argument size gives the size of latin
  squares generated; argument start gives the start latin square (it must be latin and is checked
  with is.latin()); argument burnin gives the burn-in value (number of Markov steps to
discard).

Default value of NULL for argument size means to take the size of argument start; default
value of NULL for argument start means to use circulant(size)

As a special case, if argument size and start both take the default value of NULL, then
argument n is interpreted as the size of a single random latin square to be returned; the other
arguments take their default values. This ensures that “rlatin(n)” returns a single random $n \times n$ latin square.

From Jacobson and Matthew 1996, an $n \times n$ latin square LS is equivalent to an $n \times n \times n$ array $A$ with entries 0 or 1; the dimensions of $A$ are identified with the rows, columns and symbols of LS; a 1 appears in cell $(r, c, s)$ of $A$ if the symbol $s$ appears in row $r$, column $s$ of LS. Jacobson and Matthew call this an incidence cube.

The notation is readily generalized to latin hypercubes and incidence() is dimensionally vectorized.

An improper incidence cube is an incidence cube that includes a single $-1$ entry; all other entries must be 0 or 1; and all line sums must equal 1.

Author(s)

Robin K. S. Hankin

References


See Also

is.magic

Examples

rlatin(5)
rlatin(n=2, size=4, burnin=10)

# An example that allows one to optimize an objective function
# [here f()] over latin squares:
gr <- function(x){ another_latin(matrix(x,7,7)) }
set.seed(0)
index <- sample(49,20)
f <- function(x){ sum(x[index])}
jj <- optim(par=as.vector(latin(7)), fn=f, gr=gr, method="SANN", control=list(maxit=10))
best_latin <- matrix(jj$par,7,7)
print(best_latin)
print(f(best_latin))

#compare starting value:
f(circulant(7))
**lozenge**

*Conway's lozenge algorithm for magic squares*

**Description**

Uses John Conway's lozenge algorithm to produce magic squares of odd order.

**Usage**

lozenge(m)

**Arguments**

- m: magic square returned is of order n=2m+1

**Author(s)**

Robin Hankin

**See Also**

magic

**Examples**

lozenge(4)

all(sapply(1:10,function(n){is.magic(lozenge(n))}))

---

**magic**

*Creates magic squares*

**Description**

Creates normal magic squares of any order > 2. Uses the appropriate method depending on n modulo 4.

**Usage**

magic(n)

**Arguments**

- n: Order of magic square. If a vector, return a list whose i-th element is a magic square of order n[i]
Details

Calls either `magic.2np1()`, `magic.4n()`, or `magic.4np2()` depending on the value of n. Returns a magic square in standard format (compare the `magic.2np1()` et seq, which return the square as generated by the direct algorithm).

Author(s)

Robin K. S. Hankin

References


See Also

`magic.2np1,magic.prime,magic.4np2,magic.4n,lozenge,as.standard,force.integer`

Examples

```r
magic(6)
all(is.magic(magic(3:10)))

The first eigenvalue of a magic square is equal to the magic constant:
eigen(magic(10),FALSE,TRUE)$values[1] - magic.constant(10)

The sum of the eigenvalues of a magic square after the first is zero:
sum(eigen(magic(10),FALSE,TRUE)$values[2:10])
```

---

### magic.2np1  
*Magic squares of odd order*

Description

Function to create magic squares of odd order

Usage

`magic.2np1(m, ord.vec = c(-1, 1), break.vec = c(1, 0), start.point=NULL)`
magic.4n

Arguments

- **m**: Order of the square is given by $n = 4m$
- **ord.vec**: ordinary vector. Default value of c(-1,1) corresponds to the usual northeast direction
- **break.vec**: break vector. Default of c(1,0) corresponds to the usual south direction
- **start.point**: Starting position for the method (ie coordinates of unity). Default value of NULL corresponds to row 1, column m

Author(s)

Robin K. S. Hankin

References

Written up in loads of places. The method (at least with the default ordinary and break vectors) seems to have been known since at least the Renaissance.

Benson and Jacoby, and the Mathematica website, discuss the problem with nondefault ordinary and break vectors.

See Also

- magic, magic.prime

Examples

```r
magic.2npl(1)
f <- function(n){is.magic(magic.2npl(n))}
all(sapply(1:20,f))
is.panmagic(magic.2npl(5,ord.vec=c(2,1),break.vec=c(1,3)))
```

---

**Description**

 Produces an associative magic square of order $4n$ using the delta-x method.

**Usage**

```r
magic.4n(m)
```

**Arguments**

- **m**: Order $n$ of the square is given by $n = 4m$
Author(s)
Robin K. S. Hankin

See Also
magic

Examples
magic.4n(4)
is.magic(magic.4n(5))

---

Description

Produces a magic square of order $4n + 2$ using Conway’s “LUX” method

Usage

magic.4np2(m)

Arguments

m returns a magic square of order $n = 4m + 2$ for $m \geq 1$, using Conway’s “LUX” construction

Note

I am not entirely happy with the method used: it’s too complicated

Author(s)
Robin K. S. Hankin

References

http://mathworld.wolfram.com/MagicSquare.html

See Also

magic

Examples

magic.4np2(1)
is.magic(magic.4np2(3))
**magic.8**

*Regular magic squares of order 8*

**Description**

Retruns all 90 regular magic squares of order 8

**Usage**

```r
magic.8(...)
```

**Arguments**

```r
... ignored
```

**Value**

Returns an array of dimensions c(8, 8, 90) of which each slice is an 8-by-8 magic square.

**Author(s)**

Robin K. S. Hankin

**References**


**Examples**

```r
Not run:
h <- magic.8()
h[,,1]
is.magic(h[,,4])
End(Not run)
```

**magic.constant**

*Magic constant of a magic square or hypercube*

**Description**

Returns the magic constant: that is, the common sum for all rows, columns and (broken) diagonals of a magic square or hypercube
Usage

magic.constant(n,d=2,start=1)

Arguments

n  Order of the square or hypercube

Arguments

Arguments

d  Dimension of hypercube, defaulting to d=2 (a square)

Arguments

start  Start value. Common values are 0 and 1

Details

If n is an integer, interpret this as the order of the square or hypercube; return \(n(start + n^d - 1)/2\).

If n is a square or hypercube, return the magic constant for a normal array (starting at 1) of the same dimensions as n.

Author(s)

Robin K. S. Hankin

See Also

magic

Examples

magic.constant(4)

---

Description

Magic squares prime order

Produce magic squares of prime order using the standard method

Usage

magic.prime(n,i=2,j=3)

Arguments

n  The order of the square

Arguments

Arguments

i  row number of increment

Arguments

Arguments

j  column number of increment
Details

Claimed to work for prime order, but I’ve tried it (with the defaults for i and j) for many composite integers of the form $6n + 1$ and $6n - 1$ and found no exceptions; indeed, they all seem to be panmagic. It is not clear to me when the process works and when it doesn’t.

Author(s)

Robin K. S. Hankin

References

http://www.magic-squares.de/general/general.html

Examples

```r
magic.prime(7)
f <- function(n){is.magic(magic.prime(n))}
all(sapply(6*1:30+1,f))
all(sapply(6*1:30-1,f))

is.magic(magic.prime(9,i=2,j=4),give.answers=TRUE)
magic.prime(7,i=2,j=4)
```

---

### magic.product

**Product of two magic squares**

**Description**

Gives a magic square that is a product of two magic squares.

**Usage**

```
magic.product(a, b, mat=NULL)
magic.product.fast(a, b)
```

**Arguments**

- **a**: First magic square; if a is an integer, use `magic(a)`.
- **b**: as above
- **mat**: Matrix, of same size as a, of integers treated as modulo 8. Default value of NULL equivalent to passing a*∅. Each number from 0-7 corresponds to one of the 8 squares which have the same Frenicle’s standard form, as generated by `transfH()`). Then subsquares of the product square (ie tiles of the same size as b) are rotated and transposed appropriately according to their corresponding entry in mat. This is a lot easier to see than to describe (see examples section).
Details

Function `magic.product.fast()` does not take a `mat` argument, and is equivalent to `magic.product()` with `mat` taking the default value of NULL. The improvement in speed is doubtful unless `order(a) \gg order(b)`, in which case there appears to be a substantial saving.

Author(s)

Robin K. S. Hankin

References

William H. Benson and Oswald Jacoby. New recreations with magic squares, Dover 1976 (and that paper in JRM)

Examples

```r
magic.product(magic(3),magic(4))
magic.product(3,4)

mat <- matrix(0,3,3)
a <- magic.product(3,4,mat=mat)
mat[1,1] <- 1
b <- magic.product(3,4,mat=mat)

da==b
```

---

**magiccube.2np1**

*Magic cubes of order 2n+1*

Description

Creates odd-order magic cubes

Usage

`magiccube.2np1(m)`

Arguments

- `m`: `n=2m+1`  

Author(s)

Robin K. S. Hankin

References

website
**magiccubes**

**See Also**

`magic`

**Examples**

```r
#try with m=3, n=2*3+1=7:

m <- 7
n <- 2*m+1

apply(magiccube.2np1(m),c(1,2),sum)
apply(magiccube.2np1(m),c(1,3),sum)
apply(magiccube.2np1(m),c(2,3),sum)

#major diagonal checks out:
sum(magiccube.2np1(m)[matrix(1:n,n,3)])

#now other diagonals:
b <- c(-1,1)
f <- function(dir,v){if(dir>0){return(v) else{return(rev(v))}}
g <- function(jj){sum(magiccube.2np1(m)[sapply(jj,f,v=1:n)])}apply(expand.grid(b,b,b,1,g) #each diagonal twice, once per direction.
```

---

**magiccubes**

*Magic cubes of order 3*

**Description**

A list of four elements listing each fundamentally different magic cube of order 3

**Usage**

`data(magiccubes)`

**Source**

Originally discovered by Hendricks

**References**

[http://members.shaw.ca/hdhcubes/cube_perfect.htm](http://members.shaw.ca/hdhcubes/cube_perfect.htm)

**Examples**

```r
data(magiccubes)
magiccubes$A
sapply(magiccubes, is.magichypercube)
```
magichypercube.4n  

Magic hypercubes of order 4n

Description

Returns magic hypercubes of order 4n and any dimension.

Usage

magichypercube.4n(m, d = 3)

Arguments

m  Magic hypercube produced of order n = 4m
d  Dimensionality of cube

Details

Uses a rather kludgy (but vectorized) method. I am not 100% sure that the method does in fact produce magic squares for all orders and dimensions.

Author(s)

Robin K. S. Hankin

Examples

magichypercube.4n(1,d=4)
magichypercube.4n(2,d=3)

magicplot

Joins consecutive numbers of a magic square.

Description

A nice way to graphically represent normal magic squares. Lines are plotted to join successive numbers from 1 to $n^2$. Many magic squares have attractive such plots.

Usage

magicplot(m, number = TRUE, do.circuit = FALSE, ...)

Arguments

- `m`: Magic square to be plotted.
- `number`: Boolean variable with TRUE meaning to include the numbers on the plot.
- `do.circuit`: Boolean variable with TRUE meaning to include the line joining $n^2$ to 1.
- `...`: Extra parameters passed to `plot()`.

Author(s)

Robin K. S. Hankin

Examples

```r
magicplot(magic.4m(2))
```

---

**minmax**

*Are all elements of a vector identical?*

Description

Returns TRUE if and only if all elements of a vector are identical.

Usage

`minmax(x, tol=1e-6)`

Arguments

- `x`: Vector to be tested.
- `tol`: Relative tolerance allowed.

Details

If `x` is an integer, exact equality is required. If real or complex, a relative tolerance of `tol` is required. Note that functions such as `is.magic()` and `is.semmagic.hypercube()` use the default value for `tol`. To change this, define a new Boolean function that tests the sum to the required tolerance, and set `boolean` to TRUE.

Author(s)

Robin K. S. Hankin

See Also

- `is.magic()`

Examples

```r
data(Ollerenshaw)
minmax(subsums(Ollerenshaw,2)) # should be TRUE, as per is.2x2.correct()
```
An unmagic square

Description

Returns a square of order \( n = 2m \) that has been claimed to be magic, but isn’t.

Usage

\[ \text{notmagic.}2n(m) \]

Arguments

- \( m \) Order of square is \( n = 2m \)

Note

This took me a whole evening to code up. And I was quite pleased with the final vectorized form: it matches Andrews’s (8 by 8) example square exactly. What a crock.

Author(s)

Robin K. S. Hankin

References


Examples

\[ \text{notmagic.}2n(4) \]
\[ \text{is.magic(notmagic.}2n(4)) \]
\[ \text{is.semimagic(notmagic.}2n(4)) \]

N queens problem

Description

Solves the N queens problem for any n-by-n board.

Usage

\[ \text{bernhardsson}(n) \]
\[ \text{bernhardssonA}(n) \]
\[ \text{bernhardssonB}(n) \]
Arguments

n Size of the chessboard

Details

Uses a direct transcript of Bo Bernhardsson’s method.
All solutions (up to reflection and translation) for the 8-by-8 case given in the examples.

Author(s)

Robin K. S. Hankin

References


Examples

bernhardsson(7)

a <- matrix(
  c(3,6,2,7,1,4,8,5,
   2,6,8,3,1,4,7,5,
   6,3,7,2,4,8,1,5,
   3,6,8,2,4,1,7,5,
   4,8,1,3,6,2,7,5,
   7,2,6,3,1,4,8,5,
   2,6,1,7,4,8,3,5,
   1,6,8,3,7,4,2,5,
   1,5,8,6,3,7,2,4,
   2,4,6,8,3,1,7,5,
   6,3,1,8,4,2,7,5,
   4,6,8,2,7,1,3,5)
,8,12)

out <- array(0L,c(8,8,12))
for(i in 1:12){
  out[cbind(seq_len(8),a[,i],i)] <- 1L
}

Ollerenshaw

A most perfect square due to Ollerenshaw

Description

A 12-by-12 most perfect square due to Ollerenshaw

Usage

data(Ollerenshaw)

Source

“Most perfect pandiagonal magic squares”, K. Ollerenshaw and D. Bree, 1998, Institute of Mathematics and its applications

Examples

data(Ollerenshaw)

is.mostperfect(Ollerenshaw)

Panmagic squares of order 4

Description

Creates all fundamentally different panmagic squares of order 4.

Usage

panmagic.4(vals = 2^(0:3))

Arguments

vals

a length four vector giving the values which are combined in each of the $2^4$ possible ways. Thus vals=2^sample(0:3) always gives a normal square (0-15 in binary).

Author(s)

Robin K. S. Hankin

References

See Also

panmagic.6npm1

Examples

```r
panmagic.4()
panmagic.4(2*c(1,3,2,0))
panmagic.4(10*(0:3))
```

---

**Description**

Produce a panmagic square of order 4n or 6n ± 1 using a classical method

**Usage**

```r
panmagic.6npm1(n)
panmagic.6np1(m)
panmagic.6nm1(m)
panmagic.4n(m)
```

**Arguments**

- `m` Function `panmagic.6np1(m)` returns a panmagic square of order 6m + 1 for m ≥ 1, and function `panmagic.6nm1(m)` returns a panmagic square of order 6m − 1 for m ≥ 1, using a classical method.
  - Function `panmagic.4n(m)` returns a magic square of order n = 4m
- `n` Function `panmagic.6npm1(n)` returns a panmagic square of order n where n = 6m ± 1

**Details**

Function `panmagic.6npm1(n)` will return a square if n is not of the form 6m ± 1, but it is not necessarily magic.

**Author(s)**

Robin K. S. Hankin

**References**

See Also

magic

Examples

panmagic.6np1(1)
panmagic.6npm1(13)

all(sapply(panmagic.6np1(1:3),is.panmagic))

---

panmagic.8  Panmagic squares of order 8

Description

Produces each of a wide class of order 8 panmagic squares

Usage

panmagic.8(chosen = 1:6, vals = 2^(0:5))

Arguments

chosen  Which of the magic carpets are used in combination
vals    The values combined to produce the magic square. Choosing 0:5 gives a normal magic square.

Note

Not all choices for chosen give normal magic squares. There seems to be no clear pattern. See website in references for details.

Author(s)

Robin K. S. Hankin

References


See Also

panmagic.4
**Examples**

```
is.panmagic(panmagic.8(chosen=2:7))
is.normal(panmagic.8(chosen=2:7))
is.normal(panmagic.8(chosen=c(1,2,3,6,7,8)))
```

# to see the twelve basis magic carpets, set argument 'chosen' to each
# integer from 1 to 12 in turn, with vals=1:

```
panmagic.8(chosen=1,vals=1)-1
image(panmagic.8(chosen=12,vals=1))
```

---

**perfectcube5**  
* A perfect magic cube of order 5

**Description**

A perfect cube of order 5, due to Trump and Boyer

**Usage**

```
data(perfectcube5)
```

**Examples**

```
data(perfectcube5)
is.perfect(perfectcube5)
```

---

**perfectcube6**  
* A perfect cube of order 6

**Description**

A perfect cube of order 6 originally due to Trump

**Usage**

```
data(perfectcube6)
```

**Examples**

```
data(perfectcube6)
is.perfect(perfectcube6)
is.magichypercube(perfectcube6[2:5,2:5,2:5])
```
process  

*Force index arrays into range*

**Description**

Forces an (integer) array to have entries in the range 1-n, by (i) taking the entries modulo n, then (ii) setting zero elements to n. Useful for modifying index arrays into a form suitable for use with magic squares.

**Usage**

```r
process(x, n)
```

**Arguments**

- `x`: Index array to be processed
- `n`: Modulo of arithmetic to be used

**Author(s)**

Robin K. S. Hankin

**Examples**

```r
extract the broken diagonal of magic(2, np1(4)) that passes through element [1,5]:

a <- magic(2, np1(4))
index <- t(c(1,5)+rbind(1:9,1:9))
a[process(index,9)]
```

---

**recurse**  

*Recursively apply a permutation*

**Description**

Recursively apply a permutation to a vector an arbitrary number of times. Negative times mean apply the inverse permutation.

**Usage**

```r
recurse(perm, i, start = seq_along(perm))
```
Arguments

\texttt{perm}  
Permutation (integers 1 to \texttt{length(start)} in some order)

\texttt{start}  
Start vector to be permuted

\texttt{i}  
Number of times to apply the permutation. \texttt{i=0} gives \texttt{start} by definition and negative values use the inverse permutation

Author(s)

Robin K. S. Hankin

See Also

\texttt{hudson}

Examples

\begin{verbatim}
  n <- 15
  noquote(recurse(start=letters[1:n], perm=shift(1:n), i=0))
  noquote(recurse(start=letters[1:n], perm=shift(1:n), i=1))
  noquote(recurse(start=letters[1:n], perm=shift(1:n), i=2))
  noquote(recurse(start=letters[1:n], perm=sample(n), i=1))
  noquote(recurse(start=letters[1:n], perm=sample(n), i=2))
\end{verbatim}

\newpage

\textbf{sam} 

\textit{Sparse antimagic squares}

Description

Produces an antimagic square of order \( m \) using Gray and MacDougall’s method.

Usage

\begin{verbatim}
  sam(m, u, A=NULL, B=A)
\end{verbatim}

Arguments

\texttt{m}  
Order of the magic square (not “\( n \)”: the terminology follows Gray and MacDougall)

\texttt{u}  
See details section

\texttt{A,B}  
Start latin squares, with default NULL meaning to use \texttt{circulant(m)}
Details

In Gray's terminology, sam(m,n) produces a \( SAM(2m, 2u + 1, 0) \).

The method is not vectorized.

To test for these properties, use functions such as \( \text{is antimagic()} \), documented under \( \text{is magic.Rd} \).

Author(s)

Robin K. S. Hankin

References


See Also

\( \text{magic, is magic} \)

Examples

sam(6,2)

\[
\begin{bmatrix}
5 & 2 & 3 & 4 & 1 \\
3 & 5 & 4 & 1 & 2 \\
2 & 3 & 1 & 5 & 4 \\
4 & 1 & 2 & 3 & 5 \\
1 & 4 & 5 & 2 & 3 \\
\end{bmatrix}
\]

is.sam(sam(5,2,B=jj))

---

**shift**

*Shift origin of arrays and vectors*

Description

Shift origin of arrays and vectors.

Usage

\[
\text{shift}(x, i=1) \\
\text{ashift}(a, v=\text{rep}(1, \text{length}(\text{dim}(a))))
\]
Arguments

x    Vector to be shifted
i    Number of places elements to be shifted, with default value of 1 meaning to put
      the last element first, followed by the first element, then the second, etc
a    Array to be shifted
v    Vector of numbers to be shifted in each dimension, with default value corre-
      sponding to shifting each dimension by 1 unit. If the length of v is less than
      length(dim(a)), it is padded with zeroes (thus a scalar value of i indicates that
      the first dimension is to be shifted by i units)

Details

Function \textit{shift}(x, n) returns \( P^n(x) \) where \( P \) is the permutation \((n, 1, 2, \ldots, n - 1)\).

Function \textit{ashift} is the array generalization of this: the \( n \)th dimension is shifted by \( v[n] \). In other
words, \textit{ashift}(a, v) = \textit{ashift}(1:(dim(a)[1], v[1]), \ldots, shift(1:(dim(a)[n], v[n])). It
is named by analogy with \textit{abind()} and \textit{aperm()}.

This function is here because a shifted semimagic square or hypercube is semimagic and a shifted
pandiagonal square or hypercube is pandiagonal (note that a shifted magic square is not necessarily
magic, and a shifted perfect hypercube is not necessarily perfect).

Author(s)

Robin K. S. Hankin

Examples

\begin{verbatim}
shift(1:10,3)
m <- matrix(1:100,10,10)
ashift(m,c(1,1))
ashift(m,c(0,1))  #note columns shifted by 1, rows unchanged.
ashift(m,dim(m))  #m unchanged (Mnemonic).
\end{verbatim}

\begin{verbatim}
strachey  Strachey’s algorithm for magic squares
\end{verbatim}

Description

Uses Strachey’s algorithm to produce magic squares of singly-even order.

Usage

\begin{verbatim}
strachey(m, square=magic.2np1(m))
\end{verbatim}
**Arguments**

- `m` magic square produced of order \(n=2m+1\)
- `square` magic square of order \(2m+1\) needed for Strachey’s method. Default value gives the standard construction, but the method will work with any odd order magic square

**Details**

Strachey’s method essentially places four identical magic squares of order \(2m + 1\) together to form one of \(n = 4m + 2\). Then \(0, n^2/4, n^2/2, 3n^2/4\) is added to each square; and finally, certain squares are swapped from the top subsquare to the bottom subsquare.

See the final example for an illustration of how this works, using a zero matrix as the submatrix. Observe how some 75s are swapped with some 0s, and some 50s with some 25s.

**Author(s)**

Robin K. S. Hankin

**See Also**

- `magic.4np2`, `lozenge`

**Examples**

```r
strachey(3)
strachey(2, square=magic(5))

strachey(2, square=magic(5)) %eq% strachey(2, square=t(magic(5)))
should be FALSE

Show which numbers have been swapped:
strachey(2, square=matrix(0,5,5))

It's still magic, but not normal:
is.magic(strachey(2, square=matrix(0,5,5)))
```

---

**subsums**

**Sums of submatrices**

**Description**

Returns the sums of submatrices of an array; multidimensional moving window averaging

**Usage**

```r
subsums(a,p,func="sum",wrap=TRUE, pad=0)
```
subsums

Arguments

a : Array to be analysed
p : Argument specifying the subarrays to be summed. If a vector of length greater than one, it is assumed to be of length \( d = \text{length} (\text{dim}(a)) \), and is interpreted to be the dimensions of the subarrays, with the size of the window's \( n \)th dimension being \( a[n] \). If the length of \( p \) is one, recycling is used.
If not a vector, is assumed to be a matrix with \( d \) columns, each row representing the coordinates of the elements to be summed. See examples.

func : Function to be applied over the elements of the moving window. Default value of sum gives the sum as used in is.2x2.correct(); other choices might be mean, prod, or max.
If sum="", return the array of dimension \( c(\text{dim}(a), \text{prod}(p)) \) where each hyperplane is a shifted version of \( a \).

wrap : Boolean, with default value of TRUE meaning to view array \( a \) as a \( n \)-dimensional torus. Thus, if \( x = \text{subsums}(a, p, \text{wrap=TRUE}) \), and if \( \text{dim}(a) = c(a_1, \ldots, a_d) \) then \( x[a_1, \ldots, a_d] \) is the sum of all corner elements of \( a \).
If FALSE, do not wrap \( a \) and return an array of dimension \( \text{dim}(a) + p - 1 \).

pad : If \( \text{wrap} \) is TRUE, pad is the value used to pad the array with. Use a “neutral” value here; for example, if \( \text{func} = \text{sum} \), then use 0; if max, use \(-\infty\).

Details

The offset is specified so that allsums(a,v)[1,1,\ldots,1]= \( \text{sum}(a[1:v[1],1:v[2],\ldots,1:v[n]]) \), where \( n = \text{length} (\text{dim}(a)) \).

Function \( \text{subsums()} \) is used in is.2x2.correct() and is.diagonally.correct().

Author(s)

Robin K. S. Hankin

Examples

data(Ollerenshaw)
\text{subsums(Ollerenshaw,c(2,2))}
\text{subsums(Ollerenshaw[,1:10],c(2,2))}
\text{subsums(Ollerenshaw, matrix(c(0,6),2,2))} \# effectively, is.bree.correct()

# multidimensional example.
a <- array(1,c(3,4,2))
\text{subsums(a,2)} \# note that \( p=2 \) is equivalent to \( p=c(2,2,2) \);
\# all elements should be identical

\text{subsums(a,2,wrap=FALSE)} \#note "middle" elements > "outer" elements

#Example of nondefault function:
x <- matrix(1:42,6,7)
\text{subsums(x,z,func="max",pad=Inf,wrap=TRUE)}
\text{subsums(x,z,func="max",pad=Inf,wrap=FALSE)}
transf  

Frenicle's equivalent magic squares

Description
For a given magic square, returns one of the eight squares whose Frenicle's standard form is the same.

Usage
transf(a, i)

Arguments
a    Magic square
i    Integer, considered modulo 8. Specifying 0-7 gives a different magic square

Author(s)
Robin K. S. Hankin

See Also

is.standard

Examples
a <- magic(3)
identical(transf(a,0),a)

transf(a,1)
transf(a,2)

transf(a,1) %eq% transf(a,7)
Index

*Topic array
  adiag, 3
  allsubhypercubes, 5
  allsums, 6
  apad, 8
  apl, 9
  aplus, 10
  arev, 11
  arot, 12
  arow, 13
  as.standard, 14
  circulant, 17
  diag.off, 19
  eq, 21
  fnsd, 22
  force.integer, 23
  hadamard, 24
  hendricks, 25
  hudson, 25
  is.magic, 26
  is.magichypercube, 29
  is.ok, 32
  is.square.palindromic, 33
  latin, 35
  lozenge, 37
  magic, 37
  magic.2np1, 38
  magic.4n, 39
  magic.4np2, 40
  magic.8, 41
  magic.constant, 41
  magic.prime, 42
  magic.product, 43
  magiccube.2np1, 44
  magichypercube.4n, 46
  magicplot, 46
  minmax, 47
  notmagic.2n, 48
  nqueens, 48

  panmagic.4, 50
  panmagic.6npm1, 51
  panmagic.8, 52
  process, 54
  recurse, 54
  sam, 55
  shift, 56
  strachey, 57
  subsums, 58
  transf, 60

*Topic datasets
  cube2, 18
  Frankenstein, 24
  hendricks, 25
  magiccubes, 45
  Ollerenshaw, 50
  perfectcube5, 53
  perfectcube6, 53

*Topic math
  do.index, 20

*Topic package
  magic.package, 3

  %eq%(eq), 21
  %ge%(eq), 21
  %gt%(eq), 21
  %le%(eq), 21
  %lt%(eq), 21
  %ne%(eq), 21

  adiag, 3, 9
  allsubhypercubes, 5, 31
  allsums, 6
  another_incidence(latin), 35
  another_latin(latin), 35
  apad, 4, 8, 11
  apl, 9
  apldrop(apl), 9
  apldrop<- (apl), 9
  aplus<- (apl), 9
  aplus<- (apl), 9
aplus, 10
arev, 11, 13, 22
arot, 12
arrow, 13, 20
as.standard, 14, 22, 38
ashift, 12
ashift (shift), 56
bernhardsson (nqueens), 48
bernhardssonA (nqueens), 48
bernhardssonB (nqueens), 48
cilleruelo, 16
circulant, 17
cube2, 18
diag.off, 19
do.index, 20
eq, 15, 21
fnsd, 22
force.integer, 23, 38
Frankenstein, 24
ge (eq), 21
gt (eq), 21
hadamard, 24
hendricks, 25, 31
hudson, 25, 55
inc_to_inc (latin), 35
incidence (latin), 35
is.2x2.correct (is.magic), 26
is.alicehypercube (is.magichypercube),
29
is.antimagic (is.magic), 26
is.associative (is.magic), 26
is.bree.correct (is.magic), 26
is.centrosymmetric
(is.square.palindromic), 33
is.circulant (circulant), 17
is.diagonally.correct
(is.magichypercube), 29
is.hadamard (hadamard), 24
is.heterosquare (is.magic), 26
is.incidence (latin), 35
is.latin (is.magic), 26
is.latinhypercube (is.magichypercube),
29
is.magic, 7, 15, 26, 31, 36, 56
is.magichypercube, 29
is.mostperfect (is.magic), 26
is.nasik (is.magichypercube), 29
is.normal, 15
is.normal (is.magic), 26
is.ok, 32
is.pandiagonal (is.magic), 26
is.panmagic, 7, 29
is.panmagic (is.magic), 26
is.perfect, 6, 28
is.perfect (is.magichypercube), 29
is.persymmetric
(is.square.palindromic), 33
is.regular (is.magic), 26
is.sam (is.magic), 26
is.semimagic, 7
is.semimagic (is.magic), 26
is.semimagichypercube, 28
is.semmagichypercube
(is.magichypercube), 29
is.sparse (is.magic), 26
is.spare (is.magic), 26
is.square.palindromic, 33
is.stam (is.magic), 26
is.standard, 60
is.standard (as.standard), 14
is.totally.antimagic (is.magic), 26
is.totally.heterosquare (is.magic), 26
is.ultramagic (is.magic), 26
latin, 35
le (eq), 21
lozenge, 37, 38, 58
lt (eq), 21
magic, 15, 37, 39, 40, 42, 45, 52, 56
magic-package, 3
magic.2np1, 38, 39
magic.4n, 38, 39
magic.4np2, 37, 38, 40, 58
magic.8, 41
magic.constant, 41
magic.prime, 38, 39, 42
magic.product, 43
magiccube.2np1, 44
magiccubes, 45
magichypercube.4n, 46
INDEX

magicplot, 46
minmax, 28, 47

ne (eq), 21
notmagic.2n, 48
nqueens, 48

Ollerenshaw, 50

panmagic.4, 50, 52
panmagic.4n (panmagic.6npm1), 51
panmagic.6nm1 (panmagic.6npm1), 51
panmagic.6np1 (panmagic.6npm1), 51
panmagic.6npm1, 51, 51
panmagic.8, 52
perfectcube5, 53
perfectcube6, 53
process, 54

recurse, 26, 54
rlatin (latin), 35

sam, 28, 55
shift, 56
strachey, 57
subsums, 4, 58
sylvester (hadamard), 24

take (apl), 9
transf, 60

unincidence (latin), 35