Package ‘maptree’

February 20, 2015

Version 1.4-7
Date 2012-11-24
Title Mapping, pruning, and graphing tree models
Author Denis White, Robert B. Gramacy <rbgramacy@chicagobooth.edu>
Maintainer Robert B. Gramacy <rbgramacy@chicagobooth.edu>
Depends R (>= 2.14), cluster, rpart
Description Functions with example data for graphing, pruning, and
mapping models from hierarchical clustering, and classification
and regression trees.
License Unlimited
Repository CRAN
Date/Publication 2012-11-26 07:28:04
NeedsCompilation no

R topics documented:

clip.clust 2
clip.rpart 3
draw.clust 4
draw.tree 5
group.clust 6
group.tree 7
kgs 8
map.groups 9
map.key 10
ngon 12
oregon.bird.dist 13
oregon.bird.names 14
oregon.border 15
oregon.env.vars 15
oregon.grid 16
twins.to.hclust 17

Index 19
clip.clust

Prunes a Hierarchical Cluster Tree

Description

Reduces a hierarchical cluster tree to a smaller tree either by pruning until a given number of observation groups remain, or by pruning tree splits below a given height.

Usage

```
clip.clust (cluster, data=NULL, k=NULL, h=NULL)
```

Arguments

- `cluster` object of class `hclust` or `twins`.
- `data` clustered dataset for `hclust` application.
- `k` desired number of groups.
- `h` height at which to prune for grouping.

At least one of `k` or `h` must be specified; `k` takes precedence if both are given.

Details

Used with `draw.clust`. See example.

Value

Pruned cluster object of class `hclust`.

Author(s)

Denis White

See Also

`hclust`, `twins.object`, `cutree`, `draw.clust`

Examples

```r
library (cluster)
data (oregon.bird.dist)

draw.clust (clip.clust (agnes (oregon.bird.dist), k=6))
```
Prunes an Rpart Classification or Regression Tree

Description

Reduces a prediction tree produced by \texttt{rpart} to a smaller tree by specifying either a cost-complexity parameter, or a number of nodes to which to prune.

Usage

\begin{verbatim}
clip.rpart (tree, cp=NULL, best=NULL)
\end{verbatim}

Arguments

- \texttt{tree} object of class \texttt{rpart}.
- \texttt{cp} cost-complexity parameter.
- \texttt{best} number of nodes to which to prune.

If both \texttt{cp} and \texttt{best} are not \texttt{NULL}, then \texttt{cp} is used.

Details

A minor enhancement of the existing \texttt{prune.rpart} to incorporate the parameter \texttt{best} as it is used in the (now defunct) \texttt{prune.tree} function in the old \texttt{tree} package. See example.

Value

Pruned tree object of class \texttt{rpart}.

Author(s)

Denis White

See Also

\texttt{rpart}, \texttt{prune.rpart}

Examples

\begin{verbatim}
library (rpart)
data (oregon.env.vars, oregon.border, oregon.grid)

draw.tree (clip.rpart (rpart (oregon.env.vars), best=7),
 nodeinfo=TRUE, units="species", cases="cells", digits=0)

group <- group.tree (clip.rpart (rpart (oregon.env.vars), best=7))
names(group) <- row.names(oregon.env.vars)
map.groups (oregon.grid, group)
lines (oregon.border)
\end{verbatim}
map.key (0.05, 0.65, labels=as.character(seq(6)),
 size=1, new=FALSE, sep=0.5, pch=19, head="node")

draw.clust

Graph a Hierarchical Cluster Tree

Description

Graph a hierarchical cluster tree of class twins or hclust using colored symbols at observations.

Usage

draw.clust (cluster, data=NULL, cex=par("cex"), pch=par("pch"), size=2.5*cex,
 col=NULL, nodeinfo=FALSE, cases="obs", new=TRUE)

Arguments

cluster object of class hclust or twins.
data clustered dataset for hclust application.
cex size of text, par parameter.
pch shape of symbol at leaves, par parameter.
size size in cex units of symbol at leaves.
col vector of colors from hsv, rgb, etc, or if NULL, then use rainbow.
nodeinfo if TRUE, add a line at each node with number of observations included in each leaf.
cases label for type of observations.
new if TRUE, call plot.new.

Details

An alternative to pltree and plot.hclust.

Value

The vector of colors supplied or generated.

Author(s)

Denis White

See Also

agnes, diana, hclust, draw.tree, map.groups
Examples

```r
library (cluster)
data (oregon.bird.dist)

draw.clust (clip.clust (agnes (oregon.bird.dist), k=6))
```

draw.tree
Graph a Classification or Regression Tree

Description

Graph a classification or regression tree with a hierarchical tree diagram, optionally including colored symbols at leaves and additional info at intermediate nodes.

Usage

```r
draw.tree (tree, cex=par("cex"), pch=par("pch"), size=2.5*cex, 
col=NULL, nodeinfo=FALSE, units="", cases="obs", 
digits=getOption("digits"), print.levels=TRUE, 
new=TRUE)
```

Arguments

- `tree`: object of class `rpart` or `tree`.
- `cex`: size of text, `par` parameter.
- `pch`: shape of symbol at leaves, `par` parameter.
- `size`: if `size=0`, draw terminal symbol at leaves else a symbol of size in `cex` units.
- `col`: vector of colors from `hsv`, `rgb`, etc, or if `NULL`, then use `rainbow`.
- `nodeinfo`: if `TRUE`, add a line at each node with mean value of response, number of observations, and percent deviance explained (or classified correct).
- `units`: label for units of mean value of response, if regression tree.
- `cases`: label for type of observations.
- `digits`: number of digits to round mean value of response, if regression tree.
- `print.levels`: if `TRUE`, print levels of factors at splits, otherwise only the factor name.
- `new`: if `TRUE`, call `plot.new`.

Details

As in `plot.rpart`, each level has constant depth. Specifying `nodeinfo=TRUE`, shows the deviance explained or the classification rate at each node.

A split is shown, for numerical variables, as variable `<> value when the cases with lower values go left, or as variable `><` value when the cases with lower values go right. When the splitting variable is a factor, and `print.levels=TRUE`, the split is shown as `levels = factor = levels` with the cases on the left having factor levels equal to those on the left of the factor name, and correspondingly for the right.
group.clust

Observation Groups for a Hierarchical Cluster Tree

Description

Alternative to cutree that orders pruned groups from left to right in draw order.

Usage

group.clust (cluster, k=NULL, h=NULL)

Arguments

cluster object of class hclust or twins.
k desired number of groups.
h height at which to prune for grouping.

At least one of k or h must be specified; k takes precedence if both are given.

Details

Normally used with map.groups. See example.

Value

Vector of pruned cluster membership

Author(s)

Denis White
group.tree

See Also

- `hclust`, `twins.object`, `cutree`, `map.groups`

Examples

```r
data (oregon.bird.dist, oregon.grid)

group <- group.clust (hclust (dist (oregon.bird.dist)), k=6)
names(group) <- row.names(oregon.bird.dist)
map.groups (oregon.grid, group)
```

group.tree

Observation Groups for Classification or Regression Tree

Description

Alternative to `tree["where"]` that orders groups from left to right in draw order.

Usage

```r
group.tree (tree)
```

Arguments

- `tree` object of class `rpart` or `tree`.

Details

Normally used with `map.groups`. See example.

Value

Vector of rearranged `tree["where"]`

Author(s)

Denis White

See Also

- `rpart`, `map.groups`

Examples

```r
library (rpart)
data (oregon.env.vars, oregon.grid)

group <- group.tree (clip.rpart (rpart (oregon.env.vars), best=7))
names(group) <- row.names(oregon.env.vars)
map.groups (oregon.grid, group=group)
```
kgs

KGS Measure for Pruning Hierarchical Clusters

Description
Computes the Kelley-Gardner-Sutcliffe penalty function for a hierarchical cluster tree.

Usage
kgs (cluster, diss, alpha=1, maxclust=NULL)

Arguments
- `cluster`: object of class `hclust` or `twins`.
- `diss`: object of class `dissimilarity` or `dist`.
- `alpha`: weight for number of clusters.
- `maxclust`: maximum number of clusters for which to compute measure.

Details
Kelley et al. (see reference) proposed a method that can help decide where to prune a hierarchical cluster tree. At any level of the tree the mean across all clusters of the mean within clusters of the dissimilarity measure is calculated. After normalizing, the number of clusters times alpha is added. The minimum of this function corresponds to the suggested pruning size.

The current implementation has complexity O(n^2*n*maxclust), thus very slow with large n. For improvements, at least it should only calculate the spread for clusters that are split at each level, rather than over again for all.

Value
Vector of the penalty function for trees of size 2:maxclust. The names of vector elements are the respective numbers of clusters.

Author(s)
Denis White

References

See Also
twins.object, dissimilarity.object, hclust, dist, clip.clust,
Examples

```r
library (cluster)
data (votes.rep)
a <- agnes (votes.rep, method="ward")
b <- kgs (a, a$diss, maxclust=20)
plot (names (b), b, xlab="# clusters", ylab="penalty")
```

map.groups

Map Groups of Observations

Description

Draws maps of groups of observations created by clustering, classification or regression trees, or some other type of classification.

Usage

```r
map.groups (pts, group, pch=par("pch"), size=2, col=NULL, border=NULL, new=TRUE)
```

Arguments

- **pts**: matrix or data frame with components "x", and "y" for each observation (see details).
- **group**: vector of integer class numbers corresponding to pts (see details), and indexing colors in col.
- **pch**: symbol number from par("pch") if < 100, otherwise parameter n for ngon.
- **size**: size in cex units of point symbol.
- **col**: vector of fill colors from hsv, rgb, etc, or if NULL, then use rainbow.
- **border**: vector of border colors from hsv, rgb, etc, or if NULL, then use rainbow.
- **new**: if TRUE, call plot.new.

Details

If the number of rows of pts is not equal to the length of group, then (1) pts are assumed to represent polygons and polygon is used, (2) the identifiers in group are matched to the polygons in pts through names(group) and pts$x[is.na(pts$y)], and (3) these identifiers are mapped to dense integers to reference colours. Otherwise, group is assumed to parallel pts, and, if pch < 100, then points is used, otherwise ngon, to draw shaded polygon symbols for each observation in pts.

Value

The vector of fill colors supplied or generated.
Author(s)

Denis White

See Also

ngon, polygon, group.clust, group.tree, map.key

Examples

data (oregon.bird.names, oregon.env.vars, oregon.bird.dist)
data (oregon.border, oregon.grid)

range map for American Avocet
spp <- match("American avocet", oregon.bird.names["common.name"])
group <- oregon.bird.dist[,spp] + 1
names(group) <- row.names(oregon.bird.dist)
kol <- gray(seq(0.8,0.2,length.out=length(table(group))))
map.groups (oregon.grid, group=group, col=kol)
lines (oregon.border)

distribution of January temperatures
cuts <- quantile (oregon.env.vars["jan.temp"], probs=seq(0,1,1/5))
group <- cut (oregon.env.vars["jan.temp"], cuts, labels=FALSE,
include.lowest=TRUE)
names(group) <- row.names (oregon.env.vars)
kol <- gray(seq(0.8,0.2,length.out=length(table(group))))
map.groups (oregon.grid, group=group, col=kol)
lines (oregon.border)

January temperatures using point symbols rather than polygons
map.groups (oregon.env.vars, group, col=kol, pch=19)
lines (oregon.border)

map.key

Draw Key to accompany Map of Groups

Description

Draws legends for maps of groups of observations.

Usage

map.key (x, y, labels=NULL, cex=par("cex"), pch=par("pch"),
size=2.5*cex, col=NULL, head="", sep=0.25*cex, new=FALSE)
Arguments

- **x, y** coordinates of lower left position of key in proportional units (0-1) of plot.
- **labels** vector of labels for classes, or if NULL, then integers 1:length(col), or 1.
- **size** size in cex units of shaded key symbol.
- **pch** symbol number for *par* if < 100, otherwise parameter *n* for *ngon*.
- **cex** pointsize of text, *par* parameter.
- **head** text heading for key.
- **sep** separation in cex units between adjacent symbols in key. If sep=0, assume a continuous scale, use square symbols, and put labels at breaks between squares.
- **col** vector of colors from *hsv*, *rgb*, etc, or if NULL, then use *rainbow*.
- **new** if TRUE, call *plot*.

Details

Uses *points* or *ngon*, depending on value of *pch*, to draw shaded polygon symbols for key.

Value

The vector of colors supplied or generated.

Author(s)

Denis White

See Also

ngon, *map.groups*

Examples

data (oregon.env.vars)

key for examples in help(map.groups)
range map for American Avocet
kol <- gray (seq(0.8,0.2,length.out=2))
map.key (0.2, 0.2, labels=c("absent","present"), pch=106,
 col=kol, head="key", new=TRUE)

distribution of January temperatures
cuts <- quantile (oregon.env.vars[["jan.temp"]], probs=seq(0,1,1/5))
kol <- gray (seq(0.8,0.2,length.out=5))
map.key (0.2, 0.2, labels=as.character(round(cuts,0)),
 col=kol, sep=0, head="key", new=TRUE)

key for example in help file for group.tree
map.key (0.2, 0.2, labels=as.character(seq(6)),
 pch=19, head="node", new=TRUE)
Outline or Fill a Regular Polygon

Description
Draws a regular polygon at specified coordinates as an outline or shaded.

Usage
ngon (xydcL n\]TL angle\]0L type\]1)

Arguments
xydc four element vector with x and y coordinates of center, d diameter in mm, and c color.
n number of sides for polygon (>8 => circle).
angle rotation angle of figure, in degrees.
type type\]1 => interior filled, type=2 => edge, type=3 => both.

Details
Uses polygon to draw shaded polygons and lines for outline. If n is odd, there is a vertex at (0, d/2), otherwise the midpoint of a side is at (0, d/2).

Value
Invisible.

Author(s)
Denis White

See Also
polygon, lines, map.key, map.groups

Examples
plot (c(0,1), c(0,1), type="n")
ngon (c(.5, .5, 10, "blue"), angle=30, n=3)
apply (cbind (runif(8), runif(8), 6, 2), 1, ngon)
oregon.bird.dist

Presence/Absence of Bird Species in Oregon, USA

Description
Binary matrix (1 = present) for distributions of 248 native breeding bird species for 389 grid cells in Oregon, USA.

Usage
data (oregon.bird.dist)

Format
A data frame with 389 rows and 248 columns.

Details
Row names are hexagon identifiers from White et al. (1992). Column names are species element codes developed by The Nature Conservancy (TNC), the Oregon Natural Heritage Program (ONHP), and NatureServe.

Source
Denis White

References
TNC, http://nature.org/
ONHP, http://natureserve.org/nhp/us/or/

See Also
oregon.env.vars, oregon.bird.names, oregon.grid, oregon.border
oregon.bird.names

Names of Bird Species in Oregon, USA

Description

Scientific and common names for 248 native breeding bird species in Oregon, USA.

Usage

data (oregon.bird.names)

Format

A data frame with 248 rows and 2 columns.

Details

Row names are species element codes. Columns are "scientific.name" and "common.name". Data are provided by The Nature Conservancy (TNC), the Oregon Natural Heritage Program (ONHP), and NatureServe.

Source

Denis White

References

TNC, http://nature.org/

ONHP, http://natureserve.org/nhp/us/or/

See Also

oregon.bird.dist
oregon.border

Description

The boundary of the state of Oregon, USA, in `lines` format.

Usage

```r
data (oregon.border)
```

Format

A data frame with 485 rows and 2 columns (the components "x" and "y").

Details

The map projection for this boundary, as well as the point coordinates in `oregon.env.vars`, is the Lambert Conformal Conic with standard parallels at 33 and 45 degrees North latitude, with the longitude of the central meridian at 120 degrees, 30 minutes West longitude, and with the projection origin latitude at 41 degrees, 45 minutes North latitude.

Source

Denis White

oregon.env.vars

Description

Distributions of 10 environmental variables for 389 grid cells in Oregon, USA.

Usage

```r
data (oregon.env.vars)
```

Format

A data frame with 389 rows and 10 columns.
Details

Row names are hexagon identifiers from White et al. (1992). Variables (columns) are

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bird.spp</td>
<td>number of native breeding bird species</td>
</tr>
<tr>
<td>x</td>
<td>x coordinate of center of grid cell</td>
</tr>
<tr>
<td>y</td>
<td>y coordinate of center of grid cell</td>
</tr>
<tr>
<td>jan.temp</td>
<td>mean minimum January temperature (C)</td>
</tr>
<tr>
<td>jul.temp</td>
<td>mean maximum July temperature (C)</td>
</tr>
<tr>
<td>rng.temp</td>
<td>mean difference between July and January temperatures (C)</td>
</tr>
<tr>
<td>ann.ppt</td>
<td>mean annual precipitation (mm)</td>
</tr>
<tr>
<td>min.elev</td>
<td>minimum elevation (m)</td>
</tr>
<tr>
<td>rng.elev</td>
<td>range of elevation (m)</td>
</tr>
<tr>
<td>max.slope</td>
<td>maximum slope (percent)</td>
</tr>
</tbody>
</table>

Source

Denis White

References

See Also

[oregon.bird.dist](#), [oregon.grid](#), [oregon.border](#)

oregon.grid | Hexagonal Grid Cell Polygons covering Oregon, USA

Description

Polygon borders for 389 hexagonal grid cells covering Oregon, USA, in *polygon* format.

Usage

data (oregon.grid)

Format

A data frame with 3112 rows and 2 columns (the components "x" and "y").
Details

The polygon format used for these grid cell boundaries is a slight variation from the standard R/S format. Each cell polygon is described by seven coordinate pairs, the last repeating the first. Prior to the first coordinate pair of each cell is a row containing NA in the "y" column and, in the "x" column, an identifier for the cell. The identifiers are the same as the row names in `oregon.bird.dist` and `oregon.env.vars`. See `map.groups` for how the linkage is made in mapping.

These grid cells are extracted from a larger set covering the conterminous United States and adjacent parts of Canada and Mexico, as described in White et al. (1992). Only cells with at least 50 percent of their area contained within the state of Oregon are included.

The map projection for the coordinates, as well as the point coordinates in `oregon.env.vars`, is the Lambert Conformal Conic with standard parallels at 33 and 45 degrees North latitude, with the longitude of the central meridian at 120 degrees, 30 minutes West longitude, and with the projection origin latitude at 41 degrees, 45 minutes North latitude.

Source

Denis White

References

twins.to.hclust
Converts agnes or diana object to hclust object

Description

Alternative to `as.hclust` that retains cluster data.

Usage

`twins.to.hclust (cluster)`

Arguments

- `cluster` object of class `twins`.

Details

Used internally in with `clip.clust` and `draw.clust`.

Value

`hclust` object
Author(s)
Denis White

See Also
hclust, twins.object
Index

*Topic **aplot**
 - map.key, 10
 - ngon, 12

*Topic **cluster**
 - clip.clust, 2
 - clip.rpart, 3
 - draw.clust, 4
 - group.clust, 6
 - kgs, 8
 - map.groups, 9
 - twins.to.hclust, 17

*Topic **datasets**
 - oregon.bird.dist, 13
 - oregon.bird.names, 14
 - oregon.border, 15
 - oregon.env.vars, 15
 - oregon.grid, 16

*Topic **hplot**
 - draw.clust, 4
 - draw.tree, 5
 - map.groups, 9
 - map.key, 10

*Topic **manip**
 - clip.clust, 2
 - clip.rpart, 3
 - group.clust, 6
 - group.tree, 7
 - kgs, 8
 - twins.to.hclust, 17

*Topic **tree**
 - draw.tree, 5
 - group.tree, 7
 - map.groups, 9

 agnes, 4
 as.hclust, 17

 clip.clust, 2, 8, 17
 clip.rpart, 3
 cutree, 2, 6, 7