Package ‘metagen’
February 20, 2015

Version 1.0
Date 2014-05
Title Inference in Meta Analysis and Meta Regression
Description Provides methods for making inference in the random effects meta
regression model such as point estimates and confidence intervals for the
heterogeneity parameter and the regression coefficients vector. Inference
methods are based on different approaches to statistical inference.
Methods from three different schools are included: methods based on the
method of moments approach, methods based on likelihood, and methods based
on generalised inference. The package also includes tools to run extensive
simulation studies in parallel on high performance clusters in a modular
way. This allows extensive testing of custom inferential methods with all
implemented state-of-the-art methods in a standardised way. Tools for
evaluating the performance of both point and interval estimates are
provided. Also, a large collection of different pre-defined plotting
functions is implemented in a ready-to-use fashion.

Author Thomas W. D. Möbius <kontakt@thomasmoebius.de>
Maintainer Thomas W. D. Möbius <kontakt@thomasmoebius.de>
URL http://00tau.github.io/metagen/
License GPL-3
Imports MASS, lhs, plyr, BBmisc, ParamHelpers, BatchJobs,
 BatchExperiments, ggplot2, metafor
LazyData yes
ByteCompile yes
Encoding UTF-8
Collate 'example-bcg.R' 'methods-for-batch-distribution.R'
 'methods-for-data-generation.R' 'methods-for-experiments.R'
 'methods-for-inference.R' 'plot-functions.R'
 'plot-interval-estimates.R' 'plot-pivotal-distributions.R'
 'plot-point-estimates.R' 'zzz.R'

NeedsCompilation no
Repository CRAN
Date/Publication 2014-05-27 15:43:54
R topics documented:

bcgVaccineData .. 3
boxBias .. 4
boxByConfidence .. 4
boxByMethod ... 5
boxByType .. 5
boxMSE .. 6
boxSD ... 6
cbbPalette .. 7
cbgPalette ... 7
collectAllExperiments ... 8
collectExperiments .. 8
designB ... 9
designD ... 10
designY ... 11
dvec ... 12
experimentD ... 12
experimentY ... 13
formulaL ... 14
formulaR ... 15
hConfidence .. 17
hEstimates ... 17
intervalEstimates .. 18
joinPivotalCoefficients .. 19
joinPivotalHeterogeneity ... 20
lenBoxByMethod ... 21
lenBoxByType ... 21
lenDenByMethod .. 22
lenDenByType ... 22
makeConfInt .. 23
makeConfInts .. 23
metagen .. 24
metagenEmpty ... 25
metagenGeneralised ... 25
metareg .. 27
performance ... 28
performanceConfH .. 29
performanceConfR .. 29
performancePointH ... 30
performancePointR ... 30
pfunc ... 31
pivotalStream ... 32
plotCoefficientInterval ... 33
plotDensityH .. 33
plotDensityH2 .. 34
plotDensityIntercept ... 34
plotDensityIntercept2 ... 35
Example: Setting up the BCG-data set

Description
Exemplary data set of 14 clinical trials evaluating BCG vaccine efficacy.

Usage

```r
cbgVaccineData(sgnf = 0.05)
```

Arguments

- `sgnf`: significance level of the confidence intervals for the relative risks.
Details

Reads in the BCG vaccine efficacy data from the metafor package and adds some statistics to the data such as the log-relative risk, study size, measurements of balance, confidence intervals of the responses, and the like.

Value

Returns a data set of 13 clinical trials which evaluated the efficacy of the BCG vaccine. The data set is an exact copy of the data set found in the dat.bcg data frame provided by the metafor package.

Examples

bcgvaccineData()

Description

Box plots for the bias.

Usage

boxBias(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

Description

Plotting performance: Box plots for target value confidence-coverage

Usage

boxByConfidence(res)
boxByMethod

Arguments
- res: The collected results from a computer experiment.

Value
A plot object.

boxByMethod

Plotting performance: Box plots for target value confidence-coverage

Description
Plotting performance: Box plots for target value confidence-coverage

Usage
boxByMethod(res)

Arguments
- res: The collected results from a computer experiment.

Value
A plot object.

boxByType

Plotting performance: Box plots for target value confidence-coverage

Description
Plotting performance: Box plots for target value confidence-coverage

Usage
boxByType(res)

Arguments
- res: The collected results from a computer experiment.

Value
A plot object.
boxMSE
Plotting performance: Box plots for mean squared error

Description
Box plots for mean squared error.

Usage
boxMSE(res)

Arguments
res
The collected results from a computer experiment.

Value
A plot object.

boxSD
Plotting performance: Box plots for standard deviation

Description
Box plots for standard deviation.

Usage
boxSD(res)

Arguments
res
The collected results from a computer experiment.

Value
A plot object.
cbbPalette

Description

The palette with black.

Usage

```r
cbbPalette
```

Format

```r
chr [1:8] "#000000" "#E69F00" "#56B4E9" "#009E73" "#F0E442" ...
```

Details

This palette is directly taken from
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
Hence, I don’t take any credit for this.

Examples

```r
scale_fill_discrete <- function(...) scale_fill_manual(,..., 
  values=cbbPalette)  
scale_colour_discrete  <- function(...) scale_fill_manual(,..., 
  values=cbbPalette)
```

cbgPalette

Description

The palette with grey.

Usage

```r
cbgPalette
```

Format

```r
chr [1:8] "#999999" "#E69F00" "#56B4E9" "#009E73" "#F0E442" ...
```
collectExperiments

Details

This palette is directly taken from
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
Hence, I don’t take any credit for this.

Examples

```r
scale_fill_discrete <- function(...) scale_fill_manual(,
values=cbgPalette)
scale_colour_discrete <- function(...) scale_fill_manual(,
values=cbgPalette)
```

collectAllExperiments Running a computer experiment – Collect all the results

Description

Collects all the results of all finished experiments in the given registry for all predefined algorithms.

Usage

```r
collectAllExperiments(reg)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| reg | A valid registry generated by `makeExperimentRegistry`.

Value

List of data frames containing the performance measures of all point and interval estimates for the heterogeneity and the regression coefficients.

collectExperiments Running a computer experiment – Collect specific results

Description

Collects specific results of all finished experiments in the given registry for a given pattern.

Usage

```r
collectExperiments(reg, pattern)
```
Arguments

reg A valid registry generated by `makeExperimentRegistry`.
pattern string containing the algorithm pattern for which the collection shall be performed.

Value

List of data frames containing the performance measures of all point and interval estimates for the heterogeneity and the regression coefficients.

Description

Method for generating a sampling design for data generation following a binomial-Gaussian model.

Usage

designB(n, h_bounds, a_bounds, s_bounds, r, x)

Arguments

n resolution of the heterogeneity. n is the number of different heterogeneity parameters in the design.
h_bounds bounds of the heterogeneity.
a_bounds bounds of the balancing factor of group assignments.
s_bounds bounds of the study sizes.
r fixed risk in the control.
x design matrix.

Details

Generates a sampling design for the heterogeneity 'h', balancing factors 'a1', ..., 'ak' of group assignments, and study sizes 's1', ..., 'sk'. This design can be used for testing methods for inference for the random effects meta regression model since the logarithm of relative risks of each study is approximately Gaussian distributed. One may use methods that adjust for uncertainty in the heteroscedasticity estimates by additionally considering the size of the respected studies.

Points in the design are selected via a maxi-min hypercube sampling using the 'lhs' package in a predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function 'rB' which is used to sample data from such a design.
Examples

dB <- designD(n=15L, h_bounds=c(0,1), a_bounds=c(-.3,3),
 s_bounds=c(200L,2000L), r=0.03, x=cbind(1,1:5))

if(!all(dim(dB) == c(15,2*dim(cbind(1,1:5)))[1]+2)) {
 stop("Wrong dimension")
}

Description

Method for generating a sampling design for data generation following a random effects meta re-
gression model with unknown heteroscedasticity.

Usage

designD(n, h_bounds, d_bounds, s_bounds, x)

Arguments

n resolution of the heterogeneity and heteroscedasticity parameters, i.e., the num-
ber of of different (heterogeneity, heteroscedasticity, sizes) tuple in the design.

h_bounds bounds of the heterogeneity.

d_bounds bounds of the heteroscedasticity.

s_bounds bounds of the study sizes.

x design matrix.

Details

Generates a sampling design for the heterogeneity 'h', heteroscedasticity 'd1', ..., 'dk', and study
sizes 's1', ..., 'sk'. This design can be used for testing methods that adjust for uncertainty in the
heteroscedasticity estimates by additionally considering the size of the respected studies.

Points in the design are selected via a maxi-min hypercube sampling using the 'lhs' package in a
predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function 'rD'
which is used to sample data from such a design.
designY

Examples

dY <- designY(n=15L, h_bounds=c(0,1), d_bounds=c(0.01,2), s_bounds=c(200L,2000L), x=cbind(1,1:7))
if(!all(dim(dY) == c(15,2*dim(cbind(1,1:7))[1]+1))) {
 stop("Wrong dimension")
}

designY

Design: Gaussian responses (known heteroscedasticity)

Description

Method for generating a sampling design for data generation following a random effects meta regression model with known heteroscedasticity.

Usage

designY(n, h_bounds, d_bounds, x)

Arguments

n resolution of the heterogeneity and heteroscedasticity parameters, i.e. the number of of different (heterogeneity, heteroscedasticity) pairs in the design.

h_bounds bounds of the heterogeneity.

d_bounds bounds of the heteroscedasticity.

x design matrix.

Details

Generates a sampling design for the heterogeneity 'h' and a heteroscedasticity 'd1', ..., 'dk'. Points in the design are selected via a maxi-min hypercube sampling using the 'lhs' package in a predefined parameter cube.

Value

Function returns a data frame. Each line of this data frame can be an input to the function 'rY' which is used to sample data from such a design.

Examples

```r
dY <- designY(n=15L, h_bounds=c(0,1), d_bounds=c(0.01,2), s_bounds=c(200L,2000L), x=cbind(1,1:7))
if(!all(dim(dY) == c(15,2*dim(cbind(1,1:7))[1]+1))) {
  stop("Wrong dimension")
}
```
dvec

Data generation: Sampling data of clinical trials

Description

Calculates the variance estimate of log risk ratios from a study in the right format. See the example below for details.

Usage

dvec(study)

Arguments

study Study data of a clinical trial with binomial outcomes.

Examples

h_test <- .03
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rbinomGauss(h=h_test, s=s_test, a=a_test, r=0.03
, x=x_test, b=b_test)$study -> test
yvec(test)
dvec(test)

experimentD

Running a computer experiment

Description

Runs a computer experiment that evaluates the performance of different inference methods for the random effects meta regression model with respect to heterogeneity and regression coefficients.

Usage

experimentD(n, h, d, s, x, b, sgnf, piv_draws)
Arguments

n number of draws.
h heterogeneity.
d heteroscedasticity.
s vector study sizes.
x design matrix.
b regression coefficients.
sgnf significance levels.
piv_draws privotal draws.

Details

This also includes methods adjusting for uncertainty in the heteroscedasticity vector. In particular, the study sizes need to be known, here.

Value

Data frame of accumulated performance measures.

Examples

h_test <- 0.03
x_test <- cbind(1,1:7)
b_test <- c(0.5, 0.25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)
s_test <- runif(7, min=200, max=2000)

In an actual computer experiment, use `piv_draws=1000` instead!!
experimentD(n=5, h=h_test, d=d_test, s=s_test, x=x_test, b=b_test, sgnf=sgnf_test, piv_draws=50)

Running a computer experiment

Description

Runs a computer experiment that evaluates the performance of different inference methods for the random effects meta regression model with respect to heterogeneity and regression coefficients.

Usage

experimentY(n, h, d, x, b, sgnf, piv_draws)
Arguments

<table>
<thead>
<tr>
<th>n</th>
<th>number of draws.</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>heterogeneity.</td>
</tr>
<tr>
<td>d</td>
<td>heteroscedasticity.</td>
</tr>
<tr>
<td>x</td>
<td>design matrix.</td>
</tr>
<tr>
<td>b</td>
<td>regression coefficients.</td>
</tr>
<tr>
<td>sgnf</td>
<td>significance levels.</td>
</tr>
<tr>
<td>piv_draws</td>
<td>pivotal draws.</td>
</tr>
</tbody>
</table>

Value

Data frame of accumulated performance results.

Examples

```r
h_test <- 0.03
dx_test <- cbind(1:7)
b_test <- c(.5, .25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)

# In an actual computer experiment, use 'piv_draws=1000' instead!!
experimentY(n=5, h=h_test, d=d_test, x=x_test, b=b_test,
              sgnf=sgnf_test, piv_draws=50)
```

```

<table>
<thead>
<tr>
<th>formulaL</th>
<th>Regression coefficients: formulaL</th>
</tr>
</thead>
</table>

Description

Calculate pivotal quantities for the regression coefficients using the method: formulaL form the dissertation.

Usage

```
formulaL(y, d, h, g, x)
```

Arguments

<table>
<thead>
<tr>
<th>y</th>
<th>k-vector of responses.</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>k-vector of heteroscedasticity.</td>
</tr>
<tr>
<td>h</td>
<td>scalar of heterogeneity.</td>
</tr>
<tr>
<td>g</td>
<td>p-vector of some p-variate Gaussian draw.</td>
</tr>
<tr>
<td>x</td>
<td>design k-p-matrix.</td>
</tr>
</tbody>
</table>
**Details**

Algorithm for calculating a single generalised pivotal quantity for the regression coefficients for given generalised pivotal quantities for the heterogeneity using the univariate version of the pivotal formula.

**Value**

A \( p \)-vector.

**Examples**

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_x <- cbind(1, bcg$x)

When for example using the Mandel-Paule estimate:
bcg_h <- pfunc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] - dim(bcg_x)[2])

set.seed(51351) # for reproducibility
random_g <- rnorm(dim(bcg_x)[2])
formular(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg_x)

The function can also be used when planning to perform
a meta regression with no intercept, and only a single
covariate (i.e. \(\text{dim}(x) = 1 \)). In this case,
the design matrix can simply be provided by a vector.
set.seed(51351) # for reproducibility
random_g <- rnorm(1)
formular(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg$x)

When performing a meta analysis, provide the function
with a vector of 1s.
formular(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=rep(1, length(bcg_y)))
```
Arguments

y  k-vector of responses.
d  k-vector of heteroscedasticity.
h  scalar of heterogeneity.
g  p-vector of some p-variate Gaussian draw.
x  design k-p-matrix.

Details

Algorithm for calculating a single generalised pivotal quantity for the regression coefficients for given generalised pivotal quantities for the heterogeneity using the multivariate version of the pivotal formula.

Value

A p-vector.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1, bcg$x)

When, for example, using the Mandel-Paule estimate:
bcg_h <- pfuc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] -
 dim(bcg_x)[2])

set.seed(51351) # for reproducibility
random_g <- rnorm(dim(bcg_x)[2])
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg_x)

The function can also be used when planing to perform
a meta regression with no intercept, and only a singel
covariate (i.e. dim(x) = 1). In this case,
the design matrix can simply be provided by a vector.
set.seed(51351) # for reproducibility
random_g <- rnorm(1)
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=bcg$x)

When performing a meta analysis, provide the function
with a vector of 1s.
formulaR(y=bcg_y, d=bcg_d, h=bcg_h, g=random_g, x=rep(1, length(bcg_y)))
```
**Description**

Calculates the so-called Q-profiling confidence interval for the heterogeneity for data following a random effects meta-regression model.

**Usage**

```r
hConfidence(y, d, x, sgnf)
```

**Arguments**

- `y`: k-vector of study responses.
- `d`: k-vector of heteroscedasticity.
- `x`: design k-p-matrix.
- `sgnf`: significance levels.

**Value**

A data frame containing the bounds of the interval estimate.

**Examples**

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg=size
bcg_x <- cbind(1,bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

hConfidence(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025)
hConfidence(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev)
```

---

**hEstimates**

**Point estimates: For the heterogeneity parameter**

**Description**

Returns a list of tau estimates based on different approximative methods. Different point estimates for the heterogeneity parameter are calculated: HD (Hedges), SL (DerSimonian-Laird), SJ (Sidik-Jonkman), MP (Mandel-Paule), ML (maximum likelihood), REML (restricted maximum-likelihood). Since any of these methods may fail to converge, there result may be ‘NA’ in this case.
Usage

```
hEstimates(y, d, x)
```

Arguments

- **y**: study responses
- **d**: heteroscedasticity
- **x**: design matrix

Value

A data frame containing point estimates. Variables are 'type' and 'h'.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdif
bcg_x <- cbind(1, bcg$x)
hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)

The implementation can also handle the case in which
a meta regression is planned with no intercept and only a
single covariate (i.e. dim(x) = 1). In this case,
the design matrix can simply be provided by a vector.
(This makes no sense in this example and shall only prove
feasibility)
hEstimates(y=bcg_y, d=bcg_d, x=bcg$x)

When performing a meta analysis, provide the function
with a vector of 1s.
hEstimates(y=bcg_y, d=bcg_d, x=rep(1, length(bcg_y)))
```

---

**intervalEstimates**

*Interval estimates: For the regression coefficients*

Description

Interval estimates: For the regression coefficients

Usage

```
intervalEstimates(y, d, h_dat, x, sgnf)
```
Arguments

- **y**: study responses.
- **d**: heteroscedasticity.
- **h.dat**: data frame of tau estimates.
- **x**: design matrix.
- **sgnf**: significance levels.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)
bcg_h <- hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)

intervalEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x, sgnf=0.025)
intervalEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x, sgnf=sgnf_lev)
```

---

joinPivotalCoefficients

*Pivotal distributions: Extract pivots for regression coefficients*

Description

Pivotal distributions: Extract pivots for regression coefficients

Usage

```r
joinPivotalCoefficients(p0, p1)
```

Arguments

- **p0**: pivotal stream without adjustment.
- **p1**: pivotal stream with adjustment.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(p0, y=bcg_y, d=bcg_d, x=bcg_x,
```
joinPivotalHeterogeneity

Pivotal distributions: Extract pivots for heterogeneity

Description

Pivotal distributions: Extract pivots for heterogeneity

Usage

joinPivotalHeterogeneity(p0 = NULL, p1 = NULL)

Arguments

p0  pivotal stream without adjustment.
p1  pivotal stream with adjustment.

Examples

bcg  <- bcgVaccineData()
bcg_y  <- bcg$logrisk
bcg_d  <- bcg$sd
bcg_s  <- bcg$size
bcg_x  <- cbind(1,bcg$x)

set.seed(865287113)
pivUn  <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
set.seed(865287113)
pivAd  <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s, adjusted=TRUE)
pivh  <- joinPivotalHeterogeneity(pivUn, pivAd)
### 1enBoxByMethod

Plotting performance: Box plot of mean width

**Description**

Plotting performance: Box plot of mean width

**Usage**

1enBoxByMethod(res)

**Arguments**

- `res` The collected results from a computer experiment.

**Value**

A plot object.

### 1enBoxByType

Plotting performance: Box plot of mean width

**Description**

Plotting performance: Box plot of mean width

**Usage**

1enBoxByType(res)

**Arguments**

- `res` The collected results from a computer experiment.

**Value**

A plot object.
### `lendDenByMethod`

**Plotting performance: Density estimate of mean width**

**Description**

By method.

**Usage**

```r
lendDenByMethod(res)
```

**Arguments**

- `res` The collected results from a computer experiment.

**Value**

A plot object.

### `lendDenByType`

**Plotting performance: Density estimate of mean width**

**Description**

By type.

**Usage**

```r
lendDenByType(res)
```

**Arguments**

- `res` The collected results from a computer experiment.

**Value**

A plot object.
Description
Generic function to produce interval estimates of univariate parameters based on first order limit theory.

Usage
makeConfInt(sgn, pst, fct, crt, name)

Arguments
- sgn: one significance level.
- pst: point estimate.
- fct: standard error.
- crt: function for critical value computation.
- name: string: name of the method.

Details
Function for symmetric confidence intervals based on standard deviations, point estimates, and quantile functions.
Can only handle a single significance level! See `makeConfInts` for a more flexible solution.
Details

Function for symmetric confidence intervals based on standard deviations, point estimates, and quantile functions.

**metagen**

Inference: Analysis of the data set

Description

Runs all implemented methods and combines them in a neat summary.

Usage

```r
metagen(y, d, x, sgnf, s = NULL, n,
method = list("univariate", "multivariate"),
adjusted = FALSE)
```

Arguments

- **y**: k-vector of responses.
- **d**: k-vector of heteroscedasticities.
- **x**: design k-p-matrix.
- **sgnf**: vector of significance levels.
- **s**: k-vector of study responses. Default is NULL. If `adjusted=TRUE`, this value needs to be given.
- **n**: draws from the pivotal distribution.
- **method**: Default is `list("univariate", "multivariate")`.
- **adjusted**: TRUE or FALSE

Value

The same return type as the skeleton `metagenEmpty()`.

Examples

```r
bcg <- bcgVaccineData()
b cg_y <- bcg$logrisk
c cg_d <- bcg$div
c cg_x <- cbind(1, bcg$x)
s gnf_lev <- c(0.01, 0.025, 0.05, 0.01)

set.seed(865287113) # for reproducibility

Runs a standard analysis, use n=1000 in an actual analysis instead!
ml <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, n=50)
```
m2 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, n=50)

# Runs the methods based on generalised principles via an
# adjustment for the unknown heteroscedasticity. Use
# n=1000 in an actual analysis instead!!
bcg_s <- bcg$s
m3 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, s=bcg_s, n=50, adj=TRUE)

m4 <- metagen(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, s=bcg_s, n=50, adj=TRUE)

if (!all(names(m1) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m2) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m3) == names(metagenEmpty()))) stop("Name clash")
if (!all(names(m4) == names(metagenEmpty()))) stop("Name clash")

---

**metagenEmpty**  

**Inference: Empty skeleton**

**Description**

Returns an empty skeleton that has the same return type as any other 'metagenSOMETHING' function.

**Usage**

metagenEmpty()

**Examples**

metagenEmpty()

---

**metagenGeneralised**  

**Inference: Based on generalised inference principles.**

**Description**

Inference: Based on generalised inference principles.

**Usage**

metagenGeneralised(y, d, x, sgnf, s = NULL, n,  
method = list("univariate", "multivariate"),
adjusted = FALSE)
Arguments

- `y`: k-vector of responses.
- `d`: k-vector of heteroscedasticities.
- `x`: design k-p-matrix.
- `sgnf`: vector of significance levels
- `s`: k-vector of study responses. No need to provide this, when `adjusted==FALSE`. Default is NULL.
- `n`: draws from the pivotal distribution.
- `method`: Default is `list("univariate", "multivariate")`.
- `adjusted`: TRUE or FALSE. Default is FALSE.

Examples

```r
bcg <- bcgVaccineData()
b cg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_x <- cbind(1, bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.10)
set.seed(865287113) # for reproducibility

Runs a standard analysis, use n=1000 in an actual
analysis instead!!
g1 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025, n=50)
g2 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev, n=50)

Runs the methods based on generalised principles via an
adjustment for the unknown heteroscedasticity. Use n=1000 in an
actual analysis instead!!
b cg_s <- bcg$size
g3 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025,
 s=bcg_s, n=50, adj=TRUE)
g4 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev,
 s=bcg_s, n=50, adj=TRUE)

The implementation can also handle the case in which
a meta regression is planed with no intercept and only a
single covariate (i.e. dim(x) = 1). In this case,
the design matrix can simply be provided by a vector.
(This makes no sense in this example and shall only proves
feasibility)
g5 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=bcg$x, sgnf=0.025, n=50)

When performing a meta analysis, provide the function
with a vector of 1s.
g6 <- metagenGeneralised(y=bcg_y, d=bcg_d, x=rep(1, length(bcg_y)),
 sgnf=0.025, n=50)
```
metareg

Inference: Based on methods of moments and maximum likelihood.

Description

Calculates common statistics for point and confidence interval estimates for the heterogeneity and
the regression coefficients of the random effects meta regression model based on the given data.

Usage

metareg(y, d, x, sgnf)

Arguments

y  k-vector of study responses.
d  k-vector of heteroscedasticity.
x  design k-p-matrix.
sgnf  significance levels.

Value

The same return type as the skeleton 'metagenEmpty()'.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_s <- bcg$size
bcg_x <- cbind(1, bcg$x)
sgnf_lev <- c(0.01, 0.025, 0.05, 0.01)
set.seed(865287113)  # for reproducibility
c1 <- metareg(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=0.025)
c2 <- metareg(y=bcg_y, d=bcg_d, x=bcg_x, sgnf=sgnf_lev)

# When performing a meta analysis, provide the function
# with a vector of 1s.
if (!all(names(c1) == names(metagenEmpty())))) stop("Name clash")
if (!all(names(c2) == names(metagenEmpty())))) stop("Name clash")
Description

Adding performance measures to the results

Usage

performance(results, b, h)

Arguments

results Needs to be of the same type as, for example, the return value of the computer experiments 'experimentY', 'experimentD'.
b true regression coefficients.
h true heterogeneity.

Details

Calculating performance measurements from a computer experiment.

Value

Data frame containing performance measurements of inference methods based on the results of the computer experiment given by 'results'.

Examples

h_test <- 0.03
x_test <- cbind(1, 1:7)
b_test <- c(0.5, 0.25)
sgnf_test <- c(0.025, 0.01)

set.seed(5133568) # for reproducibility
d_test <- rchisq(7, df=0.02)

# In an actual computer experiment, use 'piv_draws=1000' instead!!
eY <- experimentY(n=5, h=h_test, d=d_test, x=x_test, b=b_test,
    sgnf=sgnf_test, piv_draws=50)

performance(results=eY, b=b_test, h=h_test)
Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running multiple analysis of different simulated data following a random effects meta regression model.

Usage

performanceConfH(accum_int, true)

Arguments

accum_int accumulated interval estimates. At least the following columns need to be present: lower and upper.
true true parameter.

Details

Adds performance measurements to interval estimates of the heterogeneity.

Examples

# For an example, see the 'performance' function.

Running a computer experiment: Adding performance measures

Description

Adding performance measurements to accumulated results of a computer experiment running multiple analysis of different simulated data following a random effects meta regression model.

Usage

performanceConfR(accum_int, true)

Arguments

accum_int accumulated interval estimates. At least the following columns need to be present: lower and upper and parameter.
true true parameter.
Details

Adds performance measurements to interval estimates of the regression coefficients.

Examples

# For an example, see the 'performance' function.

---

**performancePointH**  
*Running a computer experiment: Adding performance measures*

Description

Adding performance measurements to accumulated results of a computer experiment running multiple analysis of different simulated data following a random effects meta regression model.

Usage

`performancePointH(point, h)`

Arguments

- `point`: accumulated point estimates.
- `h`: true parameter.

Details

Adds performance measurements to point estimates of the heterogeneity.

Examples

# For an example, see the 'performance' function.

---

**performancePointR**  
*Running a computer experiment: Adding performance measures*

Description

Adding performance measurements to accumulated results of a computer experiment running multiple analysis of different simulated data following a random effects meta regression model.

Usage

`performancePointR(point, b)`
Arguments

point  accumulated point estimates.
b  true parameter.

Details

Adds performance measurements to point estimates of the regression coefficients.

Examples

# For an example, see the 'performance' function.

```

pfunc

The p_delta(eta) function.

Description

Returns the p-function.

Usage

pfunc(y, d, x)

Arguments

y study responses.
d heteroscedasticity.
x design matrix.

Value

A vector valued function.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1, bcg$x)
pfunc(y=bcg_y, d=bcg_d, x=bcg_x)

Calculating the Mandel-Paule estimate:
pfunc(y=bcg_y, d=bcg_d, x=bcg_x)(dim(bcg_x)[1] - dim(bcg_x)[2])
```
pivotalStream

Steams of pivotal quantities of the regression coefficient

Description

Algorithm for generating a stream of generalised pivotal quantities for the regression coefficients. If adjusted=FALSE, then no adjustments are made for the uncertainty in the heteroscedasticity estimates d. If adjusted=TRUE, then adjustments are performed. In this case, 's' needs to be provided.

Usage

pivotalStream(n, y, d, x, s = NULL, method = list("univariate", "multivariate"), adjusted)

Arguments

n length of stream.
y k-vector of responses.
d k-vector of heteroscedasticity.
x design (k,p)-matrix.
s k-vector of study responses. No need to provide this, when adjusted=FALSE. Default is NULL.
method A list. Used to choose the methods for calculating the pivotal quantities of the regression coefficients. Default is 'method=list("univariate", "multivariate")'.
adjusted TRUE or FALSE. Default is FALSE.

Value

If method="univariate" or method="multivariate", then the return is a (p+1)-n-matrix. The first row contains pivotal quantities of the heterogeneity, the rest of the rows pivotal quantities of the regression coefficients. Each column is an independent draw.

If 'method=list("univariate", "multivariate")', then the return is a (2p+1)-n-matrix. Of each column, the first element is a pivotal for the heterogeneity, the next 'p' elements is a pivotal vector for the regression coefficients based on "univariate", the last 'p' elements are a pivotal vector for the regression coefficients based on "multivariate"
plotCoefficientInterval

Plot pivots: Interval estimates of the heterogeneity

Description

Plot pivots: Interval estimates of the heterogeneity

Usage

plotCoefficientInterval(cnfr)

Arguments

cnfr interval estimates of the heterogeneity.

plotDensityH

Pivotal distributions: Plot pivotal distribution of heterogeneity

Description

Pivotal distributions: Plot pivotal distribution of heterogeneity

Usage

plotDensityH(pivh)

Arguments

pivh pivotal stream with or without adjustment of independent draws of a pivotal quantity of the heterogeneity.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$logrisk
bcg_s <- bcg$sdiv
bcg_x <- cbind(1, bcg$x)
set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s, adjusted=TRUE)
pivh <- joinPivotalHeterogeneity(pivUn, pivAd)
plotDensityH(pivh)
plotDensityH2

Pivotal distributions: Plot pivot density of the heterogeneity

Description

Pivotal distributions: Plot pivot density of the heterogeneity

Usage

plotDensityH2(pivh)

Arguments

pivh  pivotal stream with or without adjustment of independent draws of a pivotal quantity of the heterogeneity.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
pivh <- joinPivotalHeterogeneity(pivUn)
plotDensityH2(pivh)
```

plotDensityIntercept

Pivotal distributions: Plot pivotal distribution of regression coefficients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensityIntercept(pivr)

Arguments

pivr  data frame of independent draws from of pivots.
Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_s <- bcg$size
bcg_x <- cbind(1, bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s, adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensityIntercept(pivr)
```

---

plotDensityIntercept2  Pivotal distributions: Plot pivotal distribution of regression coefficients

Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

```r
plotDensityIntercept2(pivr)
```

Arguments

- `pivr`  data frame of independent draws from of pivots.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_s <- bcg$size
bcg_x <- cbind(1, bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s, adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensityIntercept2(pivr)
```
Description

Pivotal distributions: Plot pivotal distribution of regression coefficients

Usage

plotDensitySlope(pivr)

Arguments

pivr data frame of independent draws from pivots.

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_s <- bcg$size
bcg_x <- cbind(1, bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s, adjusted=TRUE)
pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensitySlope(pivr)
plotHeterogeneityInterval

Arguments

pivr data frame of independent draws from of pivots.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$div
bcg_s <- bcg$size
bcg_x <- cbind(1,bcg$x)

set.seed(865287113)
pivUn <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x,
 adjusted=FALSE)
set.seed(865287113)
pivAd <- pivotalStream(50, y=bcg_y, d=bcg_d, x=bcg_x, s=bcg_s,
 adjusted=TRUE)

pivr <- joinPivotalCoefficients(pivUn, pivAd)
plotDensitySlope2(pivr)
```

plotHeterogeneityInterval

*Plot pivots: Interval estimates of the heterogeneity*

Description

Plot pivots: Interval estimates of the heterogeneity

Usage

`plotHeterogeneityInterval(cnfh)`

Arguments

`cnfh` interval estimates of the heterogeneity.

plotIntervalEstimates

*Example: Plotting interval estimates*

Description

Plots a graphical representation of interval estimates in the data frame `cnf` by type of method used for the estimation.
plotStudyForest

Usage

plotIntervalEstimates(cnf)

Arguments

cnf       data frame of interval estimates

Value

An object created by ggplot2.

Example: Plotting a forest plot of a data frame

plotStudyForest

Description

Example: Plotting a forest plot of a data frame

Usage

plotStudyForest(dat)

Arguments

dat       data frame of study responses of binomial type.

Value

An object created by ggplot2.

Examples

bcg <- bcgVaccineData()
plotStudyForest(bcg)
**plotStudyQfuncPfunc**

Example: Plotting the q- and p-function from the dissertation

**Description**

Example: Plotting the q- and p-function from the dissertation

**Usage**

```r
plotStudyQfuncPfunc(y, d, x, n)
```

**Arguments**

- `y`: a vector of responses.
- `d`: a vector of heteroscedasticity.
- `x`: a design matrix.
- `n`: number of points to interpolate along.

**Value**

A list of objects created by ggplot2.

**Examples**

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdv
bcg_s <- bcg,size
bcg_x <- cbind(1,bcg$x)
p <- plotStudyQfuncPfunc(y=bcg_y, d=bcg_d, x=bcg_x, n=500)
p[1] # plot of the q-function
p[2] # plot of the p-function
```

---

**plotStudySizes**

Example: Plotting study sizes

**Description**

Example: Plotting study sizes

**Usage**

```r
plotStudySizes(dat)
```
Arguments

  dat         data frame of study responses of binomial type.

Value

  An object created by ggplot2.

Examples

  bcg <- bcgVaccineData()
  plotStudySizes(bcg)

Example: Plotting study unbalances in group assignments

Description

Example: Plotting study unbalances in group assignments

Usage

  plotStudyUnbalance(dat)

Arguments

  dat         data frame of study responses of binomial type.

Value

  An object created by ggplot2.

qfunc

The q_delta(tau) function.

Description

  Returns the q-function.

Usage

  qfunc(y, d, x)

Arguments

  y         study responses.
  d         heteroscedasticity.
  x         design matrix.
Value

A vector valued function.

Examples

```r
bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdiv
bcg_x <- cbind(1, bcg$x)
qfunc(y=bcg_y, d=bcg_d, x=bcg_x)
```

Description

Random draws of log risk ratios from a hierarchical binomial Gaussian model.

Usage

```r
rB(n, h, s, a, r, x, b)
```

Arguments

- `n`: number of draws.
- `h`: heterogeneity.
- `s`: study sizes.
- `a`: balance of group assignments.
- `r`: fixed risk in the treatment group.
- `x`: design matrix.
- `b`: regression coefficients.

Details

It is always assumed that at least one response in a study has happened, i.e., a response of 0 in a treatment or control group is rounded up to 1. Note that this may lead to an overestimation of small risks. If possible, make sure your sample sizes are large enough to compensate for this effect.

Value

A `(2k,n)` matrix. Each column is an independent draw.
Examples

```r
h_test <- .03
x_test <- cbind(1,1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rB(n=10, h=h_test, s=s_test, a=a_test, r=.3, x=x_test, b=b_test)
```

Description

A random draw of a hierarchical binomial Gaussian model.

Usage

```r
rBinomGauss(h, s, a, r, x, b)
```

Arguments

- `h`: heterogeneity.
- `s`: study sizes.
- `a`: balance of group assignments.
- `r`: fixed risk in the control group.
- `x`: design matrix.
- `b`: regression coefficients.

Details

It is always assumed that at least one response in a study has happened, i.e., a response of 0 in a treatment or control group is rounded up to 1. Note that this may lead to an overestimation of small risks. If possible, make sure your sample sizes are large enough to compensate for this effect.

You may work around this by increasing study sizes.

Value

A list containing the risk and a data frame with the studies.
**Examples**

```r
d_test <- rchisq(13, df=0.02)
s_test <- rep(100, 13)
rD(n=10, d=d_test, s=s_test)
```

**Description**

Random draws of heteroscedasticity responses of studies, where each study in a random effects meta regression model follows a Gaussian response. Thus \( D = (d \times X) / (s-1) \) where \( X \) is chi-squared distributed.

**Usage**

```r
rD(n, d, s)
```

**Arguments**

- `n` number of draws.
- `d` heteroscedasticity.
- `s` study sizes.

**Value**

A (k,n)-matrix. Each column is an independent draw.

**Examples**

```r
d_test <- rchisq(13, df=0.02)
s_test <- rep(100, 13)
rD(n=10, d=d_test, s=s_test)
```
regressionEstimates  

Point estimates: For the regression coefficients

Description

Calculates point estimates for the regression coefficient for given point estimates of the variance components 'd' and a data frame of different estimates of the heterogeneity 'h'.

Usage

regressionEstimates(y, d, h_dat, x)

Arguments

y  
study responses, k-vector of responses.

_d  
heteroscedasticity, k-vector of heteroscedasticities.

h_dat  
Here, 'h_dat' should be a data frame with variables 'type' and 'h'. Thus, one may use h_dat = hEstimates(y, d, x).

x  
design matrix, k-p-matrix.

Value

A list of estimates for the regression coefficients.

Here, 'h_dat' should be a data frame with variables 'type' and 'h', thus, we may use h_dat = hEstimates(y, d, x)

Examples

bcg <- bcgVaccineData()
bcg_y <- bcg$logrisk
bcg_d <- bcg$sdv
bcg_x <- cbind(1, bcg$x)
b cg_h <- hEstimates(y=bcg_y, d=bcg_d, x=bcg_x)
regressionEstimates(y=bcg_y, d=bcg_d, h_dat=bcg_h, x=bcg_x)

render  

Render plot: To PDF

Description

Renders obj into a pdf-file of name: path++name. Neat feature is that the default size in A4. Simply use the 'scale' parameter to adjust the size of the plot to a fraction of a page.
renderSVG

Usage

render(name, plotObj, path, scale = 1, height = 11.6, width = 8.2)

Arguments

name Should be self explanatory.
plotObj Should be self explanatory.
path Should be self explanatory.
scale Should be self explanatory.
height Should be self explanatory.
width Should be self explanatory.

renderSVG Render plot: To SVG

Description

Renders obj into a svg-file of name: path++name. Neat feature is that the default size in A4. Simply use the ‘scale’ parameter to adjust the size of the plot to a fraction of a page.

Usage

renderSVG(name, plotObj, path, scale = 1, height = 11.6, width = 8.2)

Arguments

name Should be self explanatory.
plotObj Should be self explanatory.
path Should be self explanatory.
scale Should be self explanatory.
height Should be self explanatory.
width Should be self explanatory.
\textit{rY} \hspace{2cm} \textit{Data generation: Gaussian-Gaussian model}

**Description**

Random draws of response vectors $y$ following the distribution of a random effects meta regression model. Each column is an independent draw.

**Usage**

\[ rY(n, h, d, x, b) \]

**Arguments**

- \textit{n}: number of draws.
- \textit{h}: heterogeneity.
- \textit{d}: heteroscedasticity.
- \textit{x}: design matrix.
- \textit{b}: regression coefficients.

**Value**

A $(k, n)$-matrix. Each column is an independent draw.

**Examples**

```r
x_test = cbind(1,1:13)
h_test = .03
d_test = rchisq(13, df=0.02)
b_test = c(0.02, 0.03)
rY(n=10, h=h_test, d=d_test, x=x_test, b=b_test)
```

---

\textit{scBias} \hspace{2cm} \textit{Plotting performance: Scatter plots against heterogeneity}

**Description**

Scatter plots of heterogeneity and bias.

**Usage**

\[ \text{scBias}(\text{res, ...}) \]
**sctMSE**

**Arguments**
- **res**
  - The collected results from a computer experiment.
- ...
  - further arguments to scale_y_continuous

**Value**
- A plot object.

---

**sctMSE**

*Plotting performance: Scatter plots against heterogeneity*

**Description**
- Scatter plots of heterogeneity and mean squared error.

**Usage**
- `sctMSE(res, ...)`

**Arguments**
- **res**
  - The collected results from a computer experiment.
- ...
  - further arguments to scale_y_continuous

**Value**
- A plot object.

---

**sctSD**

*Plotting performance: Scatter plots against heterogeneity*

**Description**
- Scatter plots of heterogeneity and standard deviation.

**Usage**
- `sctSD(res, ...)`

**Arguments**
- **res**
  - The collected results from a computer experiment.
- ...
  - further arguments to scale_y_continuous

**Value**
- A plot object.
**sctVersusC**  
*Plotting performance: Scatter plot against heterogeneity*

**Description**  
Plotting performance: Scatter plot against heterogeneity

**Usage**  
`sctVersusC(res)`

**Arguments**  
- `res`: The collected results from a computer experiment.

**Value**  
A plot object.

---

**sctVersusH**  
*Plotting performance: Scatter plot against heterogeneity*

**Description**  
Plotting performance: Scatter plot against heterogeneity

**Usage**  
`sctVersusH(res)`

**Arguments**  
- `res`: The collected interval results from a computer experiment.

**Value**  
A plot object.
`sdmByMethod`  

**Description**  
Plotting performance: Scatter plot against heterogeneity

**Usage**  
```r
sdmByMethod(res)
```

**Arguments**  
- `res`  
The collected results from a computer experiment.

**Value**  
A plot object.

---

`sdmByType`  

**Description**  
Plotting performance: Scatter plot against heterogeneity

**Usage**  
```r
sdmByType(res)
```

**Arguments**  
- `res`  
The collected results from a computer experiment.

**Value**  
A plot object.
sdsByMethod

Plotting performance: Scatter plot against heteroscedasticity

Description

Plotting performance: Scatter plot against heteroscedasticity

Usage

sdsByMethod(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.

sdsByType

Plotting performance: Scatter plot against heteroscedasticity

Description

Plotting performance: Scatter plot against heteroscedasticity

Usage

sdsByType(res)

Arguments

res The collected results from a computer experiment.

Value

A plot object.
**setupExperiment**

*Running a computer experiment in batch mode*

---

**Description**

Sets up a computer experiment evaluating the performance of different inference methods in the random effects meta regression model.

**Usage**

```
setupExperiment(name, seed, n, resolution, bounds, x, b, sgnf, piv_draws, ...)
```

**Arguments**

- **name**
  - Reference name for the experiment.

- **seed**
  - Random seed for the experiment.

- **n**
  - Number of simulations at each parameter configuration.

- **resolution**
  - List of number of parameter configurations in each design, e.g., `resolution=list(h=5L, d=3L)`

- **bounds**
  - List of parameter bounds used for experimental design, e.g., `bounds=list(h=c(0.01, 2), d=c(0.001, 2), s=c(200L, 2000L))` where - `h`: bounds of the heterogeneity. - `d`: bounds of the heteroscedasticity. - `a`: bounds of the balancing factor of group assignments. - `s`: bounds of the study sizes. - `r`: fixed risk in the control.

- **x**
  - Design matrix.

- **b**
  - Regression coefficients.

- **sgnf**
  - Levels of significance.

- **piv_draws**
  - Number of pivotal draws.

- **...**
  - Further arguments to `makeExperimentRegistry`, e.g., `file.dir=tempfile()`.

**Value**

The registry.
Description

Calculates log risk ratios from a study in the right format.

Usage

\[ yvec(study) \]

Arguments

study  
Study data of a clinical trial with binomial outcomes.

Examples

```r
h_test <- .03
x_test <- cbind(1:13)
b_test <- c(0.02, 0.03)
s_test <- rep(2000, 13)
a_test <- rep(.3, 13)
rbinomGauss(h=h_test, s=s_test, a=a_test, r=0.03
, x=x_test, b=b_test)$study -> test
yvec(test)
dvec(test)
```
## Index

*Topic **datasets**
  - cbbPalette, 7
  - cbgPalette, 7

  - bcgVaccineData, 3
  - boxBias, 4
  - boxByConfidence, 4
  - boxByMethod, 5
  - boxByType, 5
  - boxMSE, 6
  - boxSD, 6

  - cbbPalette, 7
  - cbgPalette, 7
  - collectAllExperiments, 8
  - collectExperiments, 8

  - designB, 9
  - designD, 10
  - designY, 11
  - dvec, 12

  - experimentD, 12
  - experimentY, 13

  - formulaL, 14
  - formulaR, 15

  - hConfidence, 17
  - hEstimates, 17

  - intervalEstimates, 18

  - joinPivotalCoefficients, 19
  - joinPivotalHeterogeneity, 20

  - lenBoxByMethod, 21
  - lenBoxByType, 21
  - lenDenByMethod, 22
  - lenDenByType, 22

  - makeConfInt, 23

  - makeConfInts, 23
  - metagen, 24
  - metagenEmpty, 25
  - metagenGeneralised, 25
  - metareg, 27

  - performance, 28
  - performanceConfH, 29
  - performanceConfR, 29
  - performancePointH, 30
  - performancePointR, 30
  - pfunc, 31
  - pivotalStream, 32
  - plotCoefficientInterval, 33
  - plotDensityH, 33
  - plotDensityH2, 34
  - plotDensityIntercept, 34
  - plotDensityIntercept2, 35
  - plotDensitySlope, 36
  - plotDensitySlope2, 36
  - plotHeterogeneityInterval, 37
  - plotIntervalEstimates, 37
  - plotStudyForest, 38
  - plotStudyQfuncPfunc, 39
  - plotStudySizes, 39
  - plotStudyUnbalance, 40

  - qfunc, 40

  - rB, 41
  - rBinomGauss, 42
  - rD, 43
  - regressionEstimates, 44
  - render, 44
  - renderSVG, 45
  - rY, 46

  - sctBias, 46
  - sctMSE, 47
  - sctSD, 47
sctVersusC, 48
sctVersusH, 48
sdmByMethod, 49
sdmByType, 49
sdsByMethod, 50
sdsByType, 50
setupExperiment, 51

yvec, 52