Package ‘meteogRam’

February 20, 2015

Version 1.0
Depends ggplot2, RadioSonde
Date 2012-03-26
Title Tools for plotting meteograms
Author Bogdan Bochenek
Maintainer Bogdan Bochenek <bogdan.bochenek@uj.edu.pl>
Description meteogram is a collection of programs for plotting meteograms for meteorological data such as atmospheric cross section, temperatures plots.
License GPL-2
URL
Repository CRAN
Date/Publication 2013-03-27 11:04:37
NeedsCompilation no

R topics documented:

crosssection ... 1
temperatures .. 3

Index

crosssection Atmospheric cross section

Description

Visualisation of atmospheric cross section.
crosssection

crosssection(humi, wind, temperature, plot.temp=TRUE, plot.wind=TRUE, colors=c("brown", "yellow", "green"), ylab_tics, ylab, h_limit, h_step, p_nr)

Arguments

humi R dataframe with humidity values for different pressure levels and different time steps. Data must be organized in following way: in rows time steps, from the first time step in the first line, to the last time step in the last line, in columns pressure levels, from the highest pressure level in the first column (e.g. 1000 hPa) to the lowest pressure level in the last column (e.g. 100 hPa)

wind R dataframe with wind u and v components for different pressure levels and different time steps. Data must be organized in following way: in rows time steps, from the first time step in the first line, to the last time step in the last line, in columns pressure levels, first all u components of wind, than v components, from the highest pressure level in the first column (e.g. 1000 hPa) to the lowest pressure level in the last column (e.g. 100 hPa)

temperature R dataframe with temperature values for different pressure levels and different time steps. Data must be organized in following way: in rows time steps, from the first time step in the first line, to the last time step in the last line, in columns pressure levels, from the highest pressure level in the first column (e.g. 1000 hPa) to the lowest pressure level in the last column (e.g. 100 hPa)

plot.temp Logical, if TRUE plot temperature

plot.wind Logical, if TRUE plot wind

colors Colors for humidity contours, must define 3 colors like in: colors=c("brown", "yellow", "green")

ylab_tics Position of y ticks, from 0 to 1. 0 - the highest pressure, 1 - the lowest one.

ylab y label names, for example ylab=c(1000,800,600,400,200,100)

h_limit length of forecast in hours, for example h_limit=54

h_step time step of forecast in hours, for example h_step=3

p_nr number of pressure levels = number of columns in indata

Author(s)

Bogdan Bochenek

Examples

data(example_humi)
data(example_wind)
data(example_temperature)
crosssection(humi, wind, temperature, plot.temp=TRUE, plot.wind=TRUE, colors=c("brown", "yellow", "green"), ylab_tics=c(0,0.2,0.4,0.6,0.8,0.9), ylab=c(1000,800,600,400,200,100), h_limit=54, h_step=3, p_nr=10)
temperatures

Temperature meteogram

Description
Visualisation of temperatures.

Usage
temperatures(temperature.data, plot.dewt=TRUE, plot.surf=TRUE, plot.min_max=TRUE)

Arguments

temperature.data
R dataframe with 6 columns: time in hours, temperature at 2 meters, minimal temperature at 2 meters, maximal temperature at 2 meters, surface temperature, dew point temperature. temperature.data should have at least Temperature and time columns. Dataframe should have names as follow: time, Temperature, minT, maxT, Tdew, surf.temp

plot.dewt
Logical, if TRUE plot dew point temperature

plot.surf
Logical, if TRUE plot surface temperature

plot.min_max
Logical, if TRUE plot min and max temperatures

Author(s)
Bogdan Bochenek

Examples

data(example_temperature.data)
temperatures(temperature.data, plot.dewt=TRUE, plot.surf=TRUE, plot.min_max=TRUE)
Index

*Topic cross section
 crosssection, 1

*Topic temperatures
 temperatures, 3

crosssection, 1

temperatures, 3