Package ‘mht’
March 23, 2015

Type Package
Title Multiple Hypothesis Testing for Variable Selection in High-Dimensional Linear Models
Version 3.1.2
Author Florian Rohart
Maintainer Florian Rohart <florian.rohart@gmail.com>
Description Multiple Hypothesis Testing For Variable Selection in high dimensional linear models. This package performs variable selection with multiple hypothesis testing, either for ordered variable selection or non-ordered variable selection. In both cases, a sequential procedure is performed. It starts to test the null hypothesis "no variable is relevant"; if this hypothesis is rejected, it then tests "only the first variable is relevant", and so on until the null hypothesis is accepted.
License GPL-3
Depends glmnet, Matrix
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-03-23 07:33:03

R topics documented:

mht-package ... 2
bolasso .. 3
data.scale ... 4
decombaseortho .. 5
dyadiqueordre .. 6
mht ... 8
mht.order .. 10
order.variables ... 12
plot ... 13
plot.bolasso ... 14
predict ... 15
quantilemht .. 16
refit.mht .. 17
refit.mht.order .. 19
Description

Multiple hypothesis testing for variable selection in high dimensional linear models. This package performs variable selection with multiple hypothesis testing, either for ordered variable selection or non-ordered variable selection. In both cases, a sequential procedure is performed. It starts to test the null hypothesis "no variable is relevant"; if this hypothesis is rejected, it then tests "only the first variable is relevant", and so on until the null hypothesis is accepted. More details are available in the paper ‘Multiple hypothesis testing for variable selection’, Rohart F. (2011).

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>mht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>3.1.2</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
<tr>
<td>date:</td>
<td>20-03-2015</td>
</tr>
</tbody>
</table>

Two major functions: `mht.order` and `mht` (proc_ord and procbol in version <3.00, it was changed to give more clarity and flexibility). The first estimates the set of relevant variables for ordered variable selection, e.g. if an apriori of the importance of the variables is known; the last does the same for non-ordered variable selection.

Author(s)

Florian Rohart
Maintainer: florian.rohart@gmail.com

References

Multiple hypothesis testing for variable selection; F. Rohart 2011
Model-consistent sparse estimation through the bootstrap; F. Bach 2009
Adaptive tests of linear hypotheses by model selection; Baraud & al 2002

Examples

```r
## Not run:
x=matrix(rnorm(100*20),100,20)
beta=c(rep(2.5),rep(0,15))
y=x%*%beta+rnorm(100)
```
bolasso: Bootstrapped Lasso

Description

Perform a bootstrapped Lasso on some random subsamplings of the input data.

Usage

bolasso(data, y, mu, m, probaseuil, penalty.factor, random)

Arguments

data: Input matrix of dimension n * p; each of the n rows is an observation vector of p variables. The intercept should be included in the first column as (1,...,1). If not, it is added.
y: Response variable of length n.
mu: Positive regularization sequence to be used for the Lasso.
m: Number of bootstrap iteration of the Lasso. Default is m=100.
probaseuil: A frequency threshold for selecting the most stable variables over the m bootstrap iteration of the Lasso. Default is 1.
penalty.factor: Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables except the intercept.
random: optionnal parameter, matrix of size n*m. If random is provided, the m bootstrap samples are constructed from its m columns.

Details

The Lasso from the glmnet package is performed with the regularization parameter mu over m bootstrap samples. An appearance frequency is obtained which shows the predictive power of each variable. It is calculated as the number of times a variables has been selected by the Lasso over the m bootstrap iteration.
Value

A 'bolasso' object is returned for which the method plot is available.

```r
data
A list containing:

- `X` - The scaled matrix used in the algorithm, the first column being (1,...,1).
- `Y` - the input response vector
- `means.X` - Vector of means of the input data matrix.
- `sigma.X` - Vector of variances of the input data matrix.
```

```r
ind
Set of selected variables for the regularization mu and the threshold probaseuil.
```

```r
frequency
Appearance frequency of each variable; number of times each variables is selected over the m bootstrap iterations.
```

References

Model-consistent sparse estimation through the bootstrap; F. Bach 2009

See Also

- `plot.bolasso`, `dyadiqueordre`

Examples

```r
## not run:
x=matrix(rnorm(100*20),100,20)
beta=c(rep(1,5),rep(0,15))
y=x%*%beta+rnorm(100)

mod=bolasso(x,y,mu=seq(1.5,0.1,-0.1))
mod

## End(not run)
```

data.scale

Scale a matrix

Description

Scale the data so each column has mean 0 and variance 1. This function is used as a pre-processing step to prep the data for analysis in all functions of the mht package.

Usage

```r
data.scale(data,warning)
```
Arguments

data Input matrix of dimension n * p; each row is an observation vector. The intercept should be included in the first column as (1,...,1). If not, it is added.

warning Logical value. A warning message is printed if the intercept is added. Default is TRUE.

Details

Scale the data so each column has mean 0 and variance 1. If we note x a column of the output scaled matrix -except the first one which is the intercept, we have \(\sum(x) = 0 \) and \(\sum(x^2)/n = 1 \).

Value

data Scaled data.

intercept Logical value. TRUE if the intercept was already included in the input data.

means.data Vector of means of the input data matrix.

sigma.data Vector of variances of the input data matrix.

References

Multiple hypotheses testing for variable selection; F. Rohart 2011

Examples

```r
## Not run:
x = matrix(rnorm(100*20), 100, 20)
res = data.scale(x)
x.scaled = res$data
means.x = res$means.data
sigma.x = res$sigma.data

## End(Not run)
```

decompbaseortho Gram-Schmidt algorithm

Description

Orthonormalization of an input matrix with the Gram-Schmidt algorithm.

Usage

decompbaseortho(data)
Arguments

data Input matrix of dimension n * p; each column is a variable.

Details

Performs an orthonormalization of the input matrix, recording the columns that are linear combination of the previous ones.

Value

U The orthonormal basis obtained from data.
nonind Set of variables with no contribution.
trueind Set of variables with contribution.
rank Rank of the input matrix, calculated with the function rankMatrix.

Examples

```r
## Not run:
x1=rnorm(100)
x2=rnorm(100)
x3=cbind(x1,x2,x1+x2)

dec=decompbaseortho(x3)
dec$nonind
dec$trueind
dec$rank

## End(Not run)
```

dyadiqueordre Dyadic algorithm to order variables

Description

Dyadic algorithm using the Bolasso technique to order the variables

Usage

dyadiqueordre(data,Y,m,maxordre,var_nonselect,showtest,showordre,random)

Arguments

data Input matrix of dimension n * p; each of the n rows is an observation vector of p variables. The intercept should be included in the first column as (1,...,1). If not, it is added.
Y Response variable of length n.
m Number of bootstrap iteration of the Lasso. Default is m=100.
dyadiqueordre

- **maxordre**: Number of variables to order. Default is \(\min(n/2-1, p/2-1)\).
- **var_nonselect**: Number of variables that don’t undergo feature selection. They have to be in the first columns of data. Default is 1, the selection is not performed on the intercept.
- **showtest**: Logical value. If TRUE, show the number of regularization parameters tested to show the steps of the algorithm. Default is FALSE.
- **showordre**: Logical value. If TRUE, shows the ordered variables at each step of the algorithm. Default is TRUE.
- **random**: Optional parameter. Matrix of size \(n \times m\), the \(m\) bootstrap samples are constructed from the \(m\) columns.

Details

The algorithm starts from a large regularization parameter given by one run of Lasso. It proceeds by dyadic splitting until one variable is isolated; e.g one variable alone achieve a frequency of 1; it is the first ordered variable. And so on until **maxordre** variables are ordered.

Value

A 'bolasso' object is returned for which the method `plot` is available.

- **data**: A list containing:
 - **X**: The scaled matrix used in the algorithm, the first column being \((1,...,1)\).
 - **Y**: The input response vector.
 - **means.X**: Vector of means of the input data matrix.
 - **sigma.X**: Vector of variances of the input data matrix.
- **ordre**: The order obtained on the variables.
- **mu**: Vector of the positive regularization sequence that was used in the algorithm.
- **frequency**: Matrix of \(p\) rows. Appearance frequency of each variable for the regularization parameter in **mu**.

See Also

`bolasso`, `plot.bolasso`

Examples

```r
## Not run:
x=matrix(rnorm(100*20),100,20)
beta=c(rep(2.5),rep(0,15))
y=x%*%beta+rnorm(100)
mod=dyadiqueordre(x,y,maxordre=15)
## End(Not run)
```
Multiple testing procedure for non-ordered variable selection

Description
Performs multiple hypotheses testing in a linear model

Usage
mht(data, Y, var_nonselect, alpha, sigma, maxordre, ordre, m, show, IT, maxq)

Arguments
- **data**: Input matrix of dimension n * p; each of the n rows is an observation vector of p variables. The intercept should be included in the first column as (1,...,1). If not, it is added.
- **Y**: Response variable of length n.
- **var_nonselect**: Number of variables that don’t undergo feature selection. They have to be in the first columns of data. Default is 1, the selection is not performed on the intercept.
- **alpha**: A user supplied type I error sequence. Default is (0.1,0.05).
- **sigma**: Value of the variance if it is known; 0 otherwise. Default is 0.
- **maxordre**: Number of variables to be ordered. Default is min(n/2-1,p/2-1).
- **ordre**: Several possible algorithms to order the variables, ordre=c("bolasso","pval","pval_hd","FR"). "bolasso" uses the dyadic algorithm with the Bolasso technique dyadiqueordre, "pval" uses the p-values obtained with a regression on the full set of variables (only when p<n), "pval_hd" uses marginal regression, "FR" uses Forward Regression. Default is "bolasso".
- **m**: Number of bootstrap iteration of the Lasso. Only used if the algorithm is set to "bolasso". Default is m=100.
- **show**: Vector of logical values, show=(showordre,showtest,showresult). Default is (1,0,1). If showordre==TRUE, show the ordered variables at each step of the algorithm. If showtest==TRUE, show the number of regularization parameters tested to show the advancement of the dyadic algorithm. Only use if the algorithm is set to "bolasso". If showresult==TRUE, show the value of the statistics and the estimated quantile at each step of the procedure.
- **IT**: Number of simulations for the calculation of the quantile. Default is 1000.
- **maxq**: Number of maximum multiple hypotheses testing to perform. Default is log(min(n,p)-1,2).
Details

mht is a two-step procedure that performs variable selection in high dimensional linear model. The first step orders the variables taking into account the vector of observations \(y \). The second step finds a cut-off between the relevant variables (high rank) and the irrelevant ones (low rank) through multiple hypotheses testing.

The input maxordre is not to be forgotten: the more variables to order, the more difficult for the algorithm to distinguish which noisy variable is more important that another noisy variable. It is advised to limit maxordre to \(p/2 \) or \(n/2 \) if they are large. The parameter maxq can be useful for large value of \(n \), it is advised to limit it to 5-6 in order to minimize computational time (for the calculation of the quantile).

Value

A 'mht' object is returned for which the methods refit, predict and plot are available.

data

A list containing:
- \(X \) - The scaled matrix used in the algorithm, the first column being \((1,...,1)\).
- \(Y \) - the input response vector
- \(\text{means.X} \) - Vector of means of the input data matrix.
- \(\text{sigma.X} \) - Vector of variances of the input data matrix.

coefficients

Matrix of the estimated coefficients. Each row concerns a specific user level \(\alpha \).

residuals

Matrix of the residuals. Each row concerns a specific user level \(\alpha \).

relevant_var

Set of the relevant variables. Each row concerns a specific user level \(\alpha \).

fitted.values

Matrix of the fitted values, each column concerns a specific user level \(\alpha \).

ordre

Order obtained on the maxordre variables.

ordrebeta

The full order on all the variables.

kchap

Vector containing the length of the estimated set of relevant variables, for each values of \(\alpha \).

quantile

The estimated quantiles used in the second step of the procedure.

call

The call that produced this object.

References

Multiple hypotheses testing for variable selection; F. Rohart 2011

See Also

predict.mht, refit.mht, plot.mht
Examples

```r
## Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2,5), rep(0,15))
y = x %*% beta + rnorm(100)
mod = mht(x, y, alpha = c(0.1, 0.05), maxordre = 15)
mod

## End(Not run)
```

mht.order

Multiple testing procedure for ordered variable selection

Description
Performs multiple hypotheses testing for ordered variable selection.

Usage

```r
mht.order(data, y, ordre, var_nonselect, alpha, IT, sigma, showresult)
```

Arguments

- `data`: Input matrix of dimension $n \times p$; each of the n rows is an observation vector of p variables. The intercept should be included in the first column as $(1,...,1)$. If not, it is added.
- `y`: Response variable of length n.
- `ordre`: Vector from which the variables are to be ordered, it can be a partial order. If absent, data is considered to be already ordered; Default is $(1,2,...,p)$.
- `var_nonselect`: Number of variables that don’t undergo feature selection. They have to be in the first columns of `data`. Default is 1, the selection is not performed on the intercept.
- `alpha`: A user supplied type I error sequence. Default is `alpha=(0.1,0.05)`.
- `IT`: Number of simulations in the calculation of the quantile. Default is 10000.
- `sigma`: Value of the variance if it is known; 0 otherwise. Default is 0.
- `showresult`: Logical value. If TRUE, shows the value of the statistics and the estimated quantile at each step of the procedure. Default is TRUE.

Details
The details of the procedure are in ’Multiple hypotheses testing for variable selection; F. Rohart 2011’. If `showresult=TRUE`, the statistics and quantile are printed through the algorithm. If the statistic is greater than the quantile, the test is rejected (takes the value 1). The procedure stops when the null hypothesis is accepted (all alternative hypotheses are 0). The statistics to test the null hypotheses are different whether the variance `sigma` is known.
A `mht.order` object is returned for which the methods `predict`, `refit` and `plot` are available.

Value

A `mht.order` object is returned for which the methods `predict`, `refit` and `plot` are available.

- **data**: A list containing:
 - `X` - The scaled matrix used in the algorithm, the first column being (1,...,1).
 - `Y` - the input response vector
 - `means.X` - Vector of means of the input data matrix.
 - `sigma.X` - Vector of variances of the input data matrix.

- **coefficients**: Matrix of the estimated coefficients. Each row concerns a specific user level `alpha`.

- **residuals**: Matrix of the residuals. Each row concerns a specific user level `alpha`.

- **relevant_var**: Set of the relevant variables. Each row concerns a specific user level `alpha`.

- **fitted.values**: Matrix of the fitted values, each column concerns a specific user level `alpha`.

- **kchap**: Vector containing the length of the estimated set of relevant variables, for each values of `alpha`.

- **quantile**: The estimated type I error to be used in the second step of the procedure in order to have a test of level `alpha`, each column stands for one test. See F.Rohart (2011) for details.

- **call**: The call that has been used.

References

Adaptive tests of linear hypotheses by model selection; Baraud & al 2002
Multiple hypotheses testing for variable selection; F. Rohart 2011

See Also

`predict.mht.order`, `refit.mht.order`, `plot.mht.order`

Examples

```r
## Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2.5), rep(0, 15))
y = x%*%beta + rnorm(100)

mod.order = mht.order(x, y, ordre = 5:1, alpha = c(0.1, 0.05))
mod.order

## End(Not run)
```
order.variables

Description

Gives an order to the variables and rearrange the input matrix following that order.

Usage

order.variables(data,Y,maxordre,ordre=c("bolasso","pval","pval_hd","FR"),
 var_nonselect,m,showordre)

Arguments

data Input matrix of dimension n * p; each of the n rows is an observation vector of
 p variables. The intercept should be included in the first column as (1,...,1). If
 not, it is added.

Y Response variable of length n.

maxordre Number of variables to be ordered. Default is min(n/2-1,p/2-1).

ordre Several possible algorithms to order the variables, ordre=c("bolasso","pval","pval_hd","FR").

"bolasso" uses the dyadic algorithm with the Bolasso technique dyadiqueordre,
"pval" uses the p-values obtained with a regression on the full set of variables
(only when p<n), "pval_hd" uses marginal regression, "FR" uses Forward Regres-

var_nonselect Number of variables that don’t undergo feature selection. They have to be in

m Number of bootstrapped iteration of the Lasso. Only use if the algorithm is set
to "bolasso". Default is m=100.

showordre If showordre=TRUE, show the variables being ordered at each step of the algo-

Details

Rank the variables of data taking into account the vector of observations Y and rearrange the input
matrix following that order.

Value

data A list containing:

• X - The scaled matrix used in the algorithm, the first column being (1,...,1).
• Y - the input response vector
• means.X - Vector of means of the input data matrix.
• sigma.X - Vector of variances of the input data matrix.

data_ord Input data matrix rearranged by ORDREBETA
ORDRE Gives the maxordre most important variables of the data matrix.
ORDREBETA Gives the order on all the variables of the data matrix (either arbitrary completion of ORDRE - ‘Bolasso’ and ‘FR’, or the true order - ‘pval’ and ‘pval_hd’).

References
Multiple hypotheses testing for variable selection; F. Rohart 2011

Examples
```r
## Not run:
x=matrix(rnorm(100*20),100,20)
beta=c(rep(2.5),rep(0,15))
y=x%*%beta+rnorm(100)
res.bolasso=order.variables(x,y,maxordre=15,ordre="bolasso")
res.pval=order.variables(x,y,ordre="pval")
res.FR=order.variables(x,y,maxordre=15,ordre="FR")
res.pval.hd=order.variables(x,y,maxordre=15,ordre="pval_hd")
```

End(Not run)

plot: graphical output for a mht or mht.order object

Description
Graphical output for a mht or mht.order object. Four plots (selectable by which.plot) are currently available: a plot of the fitted values against the true values, a plot of the residuals against the fitted values, a Normal Q-Q plot, and a barplot showing the coefficients.

Usage
```r
## S3 method for class 'mht'
plot(x,which.plot=1:4,...)
## S3 method for class 'mht.order'
plot(x,which.plot=1:4,...)
```

Arguments
- `x` Object of class “mht” as obtained from mht or “mht.order” as obtained from mht.order.
- `which.plot` if a subset of the plots is required, specify a subset of the numbers 1:4.
- `...` not used.
Details

The four plots are shown for each level alpha of the mht or mht.order object.

For the Normal Q-Q plot, the standardized residuals are used. They are calculated as R[i]/sqrt(var(R)).

See Also

mht, mht.order

Examples

Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2.5), rep(0, 15))
y = x %*% beta + rnorm(100)

mht
mod = mht(x, y, alpha = c(0.1, 0.05), maxordre = 15)
plot(mod)

mht.order
mod.order = mht.order(x, y, ordre = 5:1, alpha = c(0.1, 0.05))
plot(mod.order)

End(Not run)
predict

See Also
 bolasso, dyadiqueordre

Examples

Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2.5), rep(0.15))
y = x %*% beta + rnorm(100)

Bolasso
mod = bolasso(x, y, mu = seq(1.5, 0.1, -0.1))
plot(mod)

End (Not run)

predict

Predict a mht or mht.order object

Description

Predict a mht or mht.order object for new data newx

Usage

S3 method for class 'mht'
predict(object, newx, level, ...)
S3 method for class 'mht.order'
predict(object, newx, level, ...)

Arguments

object Object of class "mht.order" as obtained from mht.order or "mht" as obtained from mht.
newx Data matrix of size n*p.
level Level of the prediction interval. Default is 0.95.
... not used.

Details

The prediction is available for each level alpha of the object. The prediction values and the prediction interval are derived from the predict.lm function. If newx is missing, the fitted values of the object are returned.
Value

Array of predicted values and prediction interval. The third dimension is relative to the type I error alpha -from the initial object-. For each alpha, a matrix with column names fit, lwr, and upr (from predict.lm)

See Also

mht, mht.order, predict.lm

Examples

```r
## Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2.5), rep(0, 15))
y = x %*% beta + rnorm(100)

# mht
mod = mht(x, y, alpha = c(0.1, 0.05), maxordre = 15)

# predict without new data: gives the fitted values
pred = predict(mod)

# predict with new data
pred = predict(mod, newx = matrix(rnorm(40*20), 40, 20))
pred

## End(Not run)
```

 quantilemht Calculation of the quantiles for the mht procedure

Description

Calculation of the quantiles for the mht procedure

Usage

quantilemht(data, k, alpha, IT, maxq, sigma)

Arguments

data Input matrix of dimension n*p; each row is an observation vector.
k Positive integer.
alpha A user supplied type I error sequence. Default is (0.1,0.05).
IT Number of simulations in the calculation of the quantile. Default is 1000.
maxq Number of maximum multiple hypotheses testing to do. Default is log(min(n,p)-
1,2).
sigma Value of the variance if it is known; 0 otherwise. Default is 0.
Details

Calculation of the quantile of the statistic that tests the null hypothesis H_k:

$$E(Y) = X_1\beta_1 + X_2\beta_2 + \ldots + X_k\beta_k$$,

i.e there is no more signal remaining in the variables (k+1,...,p).

Value

- quantile: The estimated quantiles.
- nbrprob: Number of times there was not enough simulation to estimate the alpha-quantile.

refit.mht
Refit a mht object

Description

Refit a mht object for a new observation Ynew

Usage

```r
## S3 method for class 'mht'
refit(object, Ynew, var_nonselect, sigma, maxordre, ordre, m, show, IT, ...)
```

Arguments

- `object`: Object of class "mht".
- `Ynew`: Response variable of length n.
- `var_nonselect`: Number of variables that don’t undergo feature selection. They have to be in the first columns of data. Default is 1, the selection is not performed on the intercept.
- `sigma`: Value of the variance if it is known; 0 otherwise. Default is 0.
- `maxordre`: Number of variables to be ordered. Default is min(n/2-1, p/2-1).
- `ordre`: Several possible algorithms to order the variables, ordre=c("bolasso","pval","pval_hd","FR"). "bolasso" uses the dyadic algorithm with the Bolasso technique dyadiqueordre, "pval" uses the p-values obtained with a regression on the full set of variables (only when p<\(n\)), "pval_hd" uses marginal regression, "FR" uses Forward Regression. Default is "bolasso".
- `m`: Number of bootstrapped iteration of the Lasso. Only use if the algorithm is set to "bolasso". Default is m=100.
- `show`: Vector of logical values, show=(showordre,showtest,showresult). Default is (1,0,1).
 If showordre=TRUE, shows the variables being ordered at each step of the algorithm. If showtest=TRUE, the number of regularization parameters tested is printed to show the advancement of the dyadic algorithm. Only used if the algorithm is set to "bolasso". If showresult=TRUE, shows the value of the statistics and the estimated quantile at each step of the procedure.
- `IT`: Number of simulations for the calculation of the quantile. Default is 1000.
- `...`: not used.
Details

maxq is not a parameter of refit.mht as the same number of alternative is neccessary for a refit of the model.
For more details, see mht.

Value

A 'mht' object is returned.

data A list containing:

- X - The scaled matrix used in the algorithm, the first column being (1,...,1).
- Y - the input response vector
- means.X - Vector of means of the input data matrix.
- sigma.X - Vector of variances of the input data matrix.

coefficients Matrix of the estimated coefficients. Each row concerns a specific user level alpha.
residuals Matrix of the residuals. Each row concerns a specific user level alpha.
relevant_var Set of the relevant variables for each alpha.
fitted.values Matrix of the fitted values, each column concerns a specific user level alpha.
ordre Order obtained on the maxordre variable.
ordrebeta The full order on all the p variables.
kchap Vector containing the length of the estimated set of relevant variables, for the matrix containing the intercept, for each values of alpha.
quantile The estimated quantiles used in the second step of the procedure.
call The call that has been used.
call.old The call that produced the initial 'object'.

Examples

Not run:
x=matrix(rnorm(100*20),100,20)
beta=c(rep(2.5),rep(0,15))
y=x%*%beta+rnorm(100)
ynew=x%*%beta+rnorm(100)

mht
mod=mht(x,y,alpha=c(0.1,0.05),maxordre=15)

refit mht on a new vector of observation
mod2=refit(mod,ynew,maxordre=15)

End(Not run)
Refit a mht.order object for a new observation Ynew and/or a new order ordrenew

S3 method for class 'mht.order'
refit(object, Ynew, ordrenew, IT, var_nonselect, sigma, showresult, ...)

Arguments

- **object**: Object of class "mht.order" as obtained from mht.
- **Ynew**: Response variable of length n.
- **ordrenew**: Vector from which the variables are to be ordered, it can be a partial order. If absent, data is considers to be already ordered; Default is (1,2,...,p).
- **IT**: Number of simulations in the calculation of the quantile. Default is 10000.
- **var_nonselect**: Number of variables that don’t undergo feature selection. They have to be in the first columns of data. Default is 1, the selection is not performed on the intercept.
- **sigma**: Value of the variance if it is known; 0 otherwise. Default is 0.
- **showresult**: Logical value. if TRUE, show the value of the statistics and the estimated quantile at each step of the procedure. Default is TRUE.
- **...**: not used.

Details

see mht.order for details.

Value

A 'mht.order' object is returned.

- **data**: A list containing:
 - X - The scaled matrix used in the algorithm, the first column being (1,...,1).
 - Y - The input response vector
 - means.X - Vector of means of the input data matrix.
 - sigma.X - Vector of variances of the input data matrix.
- **coefficients**: Matrix of the estimated coefficients. Each row concerns a specific user level alpha.
- **residuals**: Matrix of the residuals. Each row concerns a specific user level alpha.
- **relevant_var**: Set of the relevant variables. Each row concerns a specific user level alpha.
fitted.values Matrix of the fitted values, each column concerns a specific user level \(\alpha \).
kchap Vector containing the length of the estimated set of relevant variables, for each values of \(\alpha \).
quantile The estimated type I error to be used in the second step of the procedure in order to have a test of level \(\alpha \), each column stands for one test. See F.Rohart (2011) for details.
call The call that has been used.
call.old The call that produced the initial 'object'.

Examples

```r
# Not run:
x = matrix(rnorm(100*20), 100, 20)
beta = c(rep(2.5), rep(0, 15))
y = x %*% beta + rnorm(100)
ynew = x %*% beta + rnorm(100)

# mht.order
mod.order = mht.order(x, y)

# refit mht.order on a new vector of observation
mod.refit = refit(mod.order, ynew)

# End(Not run)
```
Index

bolasso, 3, 7, 14, 15

data.scale, 4
decombaseortho, 5
dyadiqueordre, 4, 6, 8, 12, 15, 17

glmnet, 3

mht, 2, 8, 13–16, 18, 19
mht-package, 2
mht.order, 2, 10, 13–16, 19

order.variables, 12

plot, 13
plot.bolasso, 4, 7, 14
plot.mht, 9
plot.mht.order, 11
predict, 15
predict.lm, 15, 16
predict.mht, 9
predict.mht.order, 11

quantilemht, 16

rankMatrix, 6
refit (refit.mht), 17
refit.mht, 9, 17
refit.mht.order, 11, 19