Package ‘miscTools’

November 25, 2016

Version 0.6-22
Date 2016-11-25
Title Miscellaneous Tools and Utilities
Author Arne Henningsen, Ott Toomet
Maintainer Arne Henningsen <arne.henningsen@gmail.com>
Depends R (>= 2.14.0)
Suggests Ecdat (>= 0.1-5)
Description Miscellaneous small tools and utilities.
Many of them facilitate the work with matrices,
e.g. inserting rows or columns, creating symmetric matrices,
or checking for semidefiniteness.
Other tools facilitate the work with regression models,
e.g. extracting the standard errors,
obtaining the number of (estimated) parameters,
or calculating R-squared values.
License GPL (>= 2)
URL http://www.micEcon.org
NeedsCompilation no
Repository CRAN
Date/Publication 2016-11-25 14:14:33

R topics documented:

 coefTable .. 2
 colMedians .. 3
 compPlot .. 4
 ddnorm .. 4
 insertCol ... 5
 insertRow ... 6
 isSemidefinite .. 7
 margEff ... 9
CoefTable

Description
Generate Table for Coefficients, Std. Errors, t-values and P-values.

Usage
coeftable(coef, stderr, df = NULL)

Arguments
coef vector that contains the coefficients.
stderr vector that contains the standard errors of the coefficients.
df degrees of freedom of the t-test used to calculate P-values.

Value
a matrix with 4 columns: coefficients, standard errors, t-values and P-values. If argument df is not provided, the last column (P-values) is filled with NAs.

Author(s)
Arne Henningsen

Examples
coeftable(rnorm(10), 0.5 * abs(rnorm(10)), 20)
Description

Compute the sample medians of the columns (non-rows) of a data.frame or array.

Usage

```
colMedians( x, na.rm = FALSE )
```

Arguments

- `x`: a data.frame or array.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

A vector or array of the medians of each column (non-row) of `x` with dimension `dim(x)[-1]`.

Author(s)

Arne Henningsen

See Also

`rowMedians`, `median`, `colMeans`.

Examples

```r
data( "Electricity", package = "Ecdat" )
colMedians( Electricity )
a4 <- array( 1:120, dim = c(5,4,3,2),
  dimnames = list( c("a","b","c","d","e"),
    c("A","B","C","D"),
    c("x","y","z"), c("Y","Z") )
)
colMedians( a4 )
median( a4[, "B", "x", "Z" ] ) # equal to
colMedians( a4 )[ "B", "x", "Z" ]
```
compPlot
Scatterplot to Compare two Variables

Description

Plot a scatterplot to compare two variables.

Usage

```r
compPlot( x, y, lim = NULL, ... )
```

Arguments

- `x` values of the first variable (on the X axis).
- `y` values of the second variable (on the Y axis).
- `lim` optional vector of two elements specifying the limits of both axes).
- `...` further arguments are passed to `plot`.

Author(s)

Arne Henningsen

Examples

```r
set.seed( 123 )
x <- runif( 25 )
y <- 2 + 3 * x + rnorm( 25 )
ols <- lm( y ~ x )

compPlot( y, fitted( ols ) )
compPlot( y, fitted( ols ), lim = c( 0, 10 ) )
compPlot( y, fitted( ols ), pch = 20 )
compPlot( y, fitted( ols ), xlab = "observed", ylab = "fitted" )
```

ddnorm
Derivative of the Normal Distribution’s Density Function

Description

This function returns the derivative(s) of the density function of the normal (Gaussian) distribution with respect to the quantile, evaluated at the quantile(s), mean(s), and standard deviation(s) specified by arguments `x`, `mean`, and `sd`, respectively.
ddnorm(x, mean = 0, sd = 1)

Arguments

- x: quantile or vector of quantiles.
- mean: mean or vector of means.
- sd: standard deviation or vector of standard deviations.

Value

numeric value(s): derivative(s) of the density function of the normal distribution with respect to the quantile

Author(s)

Arne Henningsen

See Also
dnorm

dnorm(c(-1, 0, 1))

dnnorm(c(-1, 0, 1))

insertCol

Insert Column into a Matrix

Description

Insert a new column into a matrix.

Usage

insertCol(m, c, v = NA, cName = "")

Arguments

- m: matrix.
- c: column number where the new column should be inserted.
- v: optional values of the new column.
- cName: optional character string: the name of the new column.

Value

a matrix with one more column than the provided matrix m.
Author(s)
Arne Henningsen

See Also
insertRow.

Examples
m <- matrix(1:4, 2)
insertCol(m, 2, 5:6)

insertRow

Insert Row into a Matrix

Description
Insert a new row into a matrix.

Usage
insertRow(m, r, v = NA, rName = "")

Arguments
m
matrix.
r
row number where the new row should be inserted.
v
optional values for the new row.
rName
optional character string: the name of the new row.

Value
a matrix with one more row than the provided matrix m.

Author(s)
Arne Henningsen

See Also
insertCol.

Examples
m <- matrix(1:4, 2)
insertRow(m, 2, 5:6)
isSemidefinite

Positive or Negative Semidefiniteness

Description
Check whether a symmetric matrix is positive or negative semidefinite.

Usage

```r
isSemidefinite( m, ... )
```

Default S3 method:
isSemidefinite(m, ...)

S3 method for class 'matrix'
isSemidefinite(m, positive = TRUE,
 tol = 100 * .Machine$double.eps,
 method = ifelse(nrow(m) < 13, "det", "eigen"), ...)

S3 method for class 'list'
isSemidefinite(m, ...)

semidefiniteness(m, ...)

Arguments

- `m` a symmetric quadratic matrix or a list containing symmetric quadratic matrices.
- `positive` logical. Check for positive semidefiniteness (if TRUE, default) or for negative semidefiniteness (if FALSE).
- `tol` tolerance level (values between -tol and tol are considered to be zero).
- `method` method to test for semidefiniteness, either checking the signs of the principal minors (if "det", default for matrices with up to 12 rows/columns) or checking the signs of the eigenvalues (if "eigen", default for matrices with 13 or more rows/columns).
- `...` further arguments of `isSemidefinite.list` are passed to `isSemidefinite.matrix`; further arguments of `semidefiniteness` are passed to `isSemidefinite`; further arguments of other functions are currently ignored.

Details

Function `semidefiniteness()` passes all its arguments to `isSemidefinite()`. It is only kept for backward-compatibility and may be removed in the future.

If argument `positive` is set to FALSE, `isSemidefinite()` checks for negative semidefiniteness by checking for positive semidefiniteness of the negative of argument `m`, i.e. `-m`.

If method "det" is used (default for matrices with up to 12 rows/columns), `isSemidefinite()` checks whether all principal minors (not only the leading principal minors) of the matrix `m` (or...
of the matrix \(-m\) if argument positive is FALSE are larger than \(-tol\). Due to rounding errors, which are unavoidable on digital computers, the calculated determinants of singular (sub-)matrices (which should theoretically be zero) can considerably deviate from zero. In order to reduce the probability of incorrect results due to rounding errors, \texttt{isSemidefinite()} does not calculate the determinants of (sub-)matrices with reciprocal condition numbers smaller than argument \(tol\) but sets the corresponding principal minors to (exactly) zero. The number of principal minors of an \(N \times N\) matrix is \(\sum_{k=1}^{N} \binom{N}{k}\), which gets very large for large matrices. Therefore, it is not recommended to use method "\texttt{det}" for matrices with, say, more than 12 rows/columns.

If method "eigen" (default for matrices with 13 or more rows/columns) is used, \texttt{isSemidefinite()} checks whether all eigenvalues of the matrix \(m\) (or of the matrix \(-m\) if argument positive is FALSE) are larger than \(-tol\). Due to rounding errors, which are unavoidable on digital computers, those eigenvalues of a singular matrix that should theoretically be zero can considerably deviate from zero. In order to reduce the probability of incorrect results due to rounding errors, \texttt{isSemidefinite()} does not calculate the eigenvalues of an \(N \times N\) matrix with reciprocal condition number smaller than argument \(tol\) but checks whether all \(N (N - 1) \times (N - 1)\) submatrices with row \(i\) and column \(i\), \(i = 1, \ldots, N\), removed are positive semidefinite. If necessary, this procedure is done recursively.

Please note that a matrix can be neither positive semidefinite nor negative semidefinite.

Value

\texttt{isSemidefinite()} and \texttt{semidefiniteness()} return a logical value (if argument \(m\) is a matrix) or a logical vector (if argument \(m\) is a list) indicating whether the matrix (or each of the matrices) is positive/negative (depending on argument positive) semidefinite.

Author(s)

Arne Henningsen

References

Examples

```
# a positive semidefinite matrix
isSemidefinite( matrix( 1L 3L 3L ))

# a negative semidefinite matrix
isSemidefinite( matrix(-1L 3L 3L ), positive = FALSE )

# a matrix that is positive and negative semidefinite
isSemidefinite( matrix( 0L 3L 3L ))
isSemidefinite( matrix( 0L 3L 3L ), positive = FALSE )

# a matrix that is neither positive nor negative semidefinite
isSemidefinite( symMatrix( 1:6 ) )
isSemidefinite( symMatrix( 1:6 ), positive = FALSE )
```
checking a list of matrices
ml <- list(matrix(1, 3, 3), matrix(-1, 3, 3), matrix(0, 3, 3))
isSemidefinite(ml)
isSemidefinite(ml, positive = FALSE)

margEff

Method for Returning Marginal Effects

Description

Currently, this package just defines the generic function `margEff` so that it can be used to define `margEff` methods for objects of specific classes in other packages.

Usage

`margEff(object, ...)`

Arguments

- `object`: an object of which marginal effects should be calculated.
- `...`: further arguments for methods

Author(s)

Arne Henningsen

nObs

Return number of observations for statistical models

Description

Returns number of observations for statistical models. The default method assumes presence of a component `param$nObs` in `x`.

Usage

`nObs(x, ...)`

Default S3 method:

`nObs(x, ...)`

S3 method for class 'lm'

`nObs(x, ...)`

Arguments

- `x`: a statistical model, such as created by `lm`
- `...`: further arguments for methods
Details

This is a generic function. The default method returns the component x$nParam$nobs. The lm-method is based on qr-decomposition, in the same way as the does summary.lm.

Value

numeric, number of observations

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

nParam

Examples

Construct a simple OLS regression:
x1 <- runif(100)
x2 <- runif(100)
y <- 3 + 4*x1 + 5*x2 + rnorm(100)
m <- lm(y~x1+x2) # estimate it
nObs(m)

nParam Number of model parameters

Description

This function returns the number of model parameters. The default method returns the component x$nParam$nParam.

Usage

nParam(x, free=FALSE, ...)
Default S3 method:
nParam(x, ...)
S3 method for class 'lm'
nParam(x, ...)

Arguments

x a statistical model
free logical, whether to report only the free parameters or the total number of parameters (default)
... other arguments for methods
Details

Free parameters are the parameters with no equality restrictions. Some parameters may be restricted (e.g. sum of two probabilities may be restricted to equal unity). In this case the total number of parameters may depend on the normalisation.

Value

Number of parameters in the model

Author(s)

Ott Toomet, <otoomet@econ.au.dk>

See Also

nObs for number of observations

Examples

Construct a simple OLS regression:
x1 <- runif(100)
x2 <- runif(100)
y <- 3 + 4*x1 + 5*x2 + rnorm(100)
m <- lm(y~x1+x2) # estimate it
summary(m)
getParam(m) # you get 3

Description

Test whether a function is quasiconcave or quasiconvex. The bordered Hessian of this function is checked by quasiconcavity() or quasiconvexity().

Usage

quasiconcavity(m, tol = .Machine$double.eps)
quasiconvexity(m, tol = .Machine$double.eps)

Arguments

m a bordered Hessian matrix or a list containing bordered Hessian matrices
tol tolerance level (values between -tol and tol are considered to be zero).

Value

logical or a logical vector (if m is a list).
Author(s)

Arne Henningsen

References

Examples

```r
quasiconcavity( matrix( 0, 3, 3 )
quasiconvexity( matrix( 0, 3, 3 )

m <- list()
m[[1]] <- matrix( c( 0,-1,-1, -1,-2,3, -1,3,5 ), 3, 3 )
m[[2]] <- matrix( c( 0,1,-1, 1,-2,3, -1,3,5 ), 3, 3 )

quasiconcavity( m )
quasiconvexity( m )
```

rowMedians

Medians of Rows

Description

Compute the sample medians of the rows of a data.frame or matrix.

Usage

```r
rowMedians( x, na.rm = FALSE )
```

Arguments

- `x`: a data.frame or matrix.
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

A vector of the medians of each row of `x`.

Author(s)

Arne Henningsen

See Also

`colMedians`, `median`, `colMeans`.
Examples

```r
m <- matrix(1:12, nrow = 4)
rowMedians(m)
```

rSquared

Calculate R squared value

Description

Calculate R squared value.

Usage

```r
rSquared(y, resid)
```

Arguments

- `y` vector of endogenous variables
- `resid` vector of residuals

Author(s)

Arne Henningsen

Examples

```r
data("Electricity", package = "Ecdat")
reg <- lm(cost ~ q + pl + pk + pf, Electricity)
rSquared(Electricity$cost, reg$residuals)
summary(reg)$r.squared # returns the same value
```

stdEr

Standard deviations

Description

Extract standard deviations from estimated models.

Usage

```r
stdEr(x, ...)
```

```r
## Default S3 method:
stdEr(x, ...)
```

```r
## S3 method for class 'lm'
stdEr(x, ...)
```
sumKeepAttr

Arguments

x a statistical model, such as created by `lm`

... further arguments for methods

Details

`stdErr` is a generic function with methods for objects of "lm" class. The default method returns the square root of the diagonal of the variance-covariance matrix.

Value

numeric, the estimated standard errors of the coefficients.

Author(s)

Ott Toomet <otoomet@ut.ee>

See Also

`vcov`, `summary`.

Examples

```r
data(cars)
lmRes <- lm(dist ~ speed, data=cars)
stdErr(lmRes)
```

sumKeepAttr

Sum of an Array While Keeping its Attributes

Description

This function returns the sum of an numeric array (e.g. vector or matrix) while keeping its attributes.

Usage

```r
sumKeepAttr(x, keepNames = FALSE, na.rm = FALSE)
```

Arguments

x an numeric array (e.g. vector or matrix).

keepNames logical. Should the name(s) of the element(s) of x be assigned to the returned sum? (only relevant if codex has only one element).

na.rm logical. Passed to `sum`. Should missing values be removed?

Value

the sum (see `sum`).
symMatrix

Author(s)
Arne Henningsen

See Also
sum

Examples
a <- 1:10
attr(a, "min") <- 1
attr(a, "max") <- 10
sum(a)
sumKeepAttr(a)

symMatrix Symmetric Matrix

Description
Create a Symmetric Matrix.

Usage
symMatrix(data = NA, nrow = NULL, byrow = FALSE,
upper = FALSE)

Arguments
data an optional data vector.
nrow the desired number of rows and columns.
byrow logical. If 'FALSE' (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.
upper logical. If 'FALSE' (the default) the lower triangular part of the matrix (including
the diagonal) is filled, otherwise the upper triangular part of the matrix is filled.

Value
a symmetric matrix.

Author(s)
Arne Henningsen

See Also
matrix, lower.tri.
Examples

fill the lower triangular part by columns
symMatrix(1:10, 4)
fill the upper triangular part by columns
symMatrix(1:10, 4, upper = TRUE)
fill the lower triangular part by rows
symMatrix(1:10, 4, byrow = FALSE)

triang

Upper triangular matrix from a vector

Description

Creates an upper triangular square matrix from a vector.

Usage

```r
triang( v, n )
```

Arguments

- `v` vector
- `n` desired dimension of the returned square matrix

Note

If the vector has less elements than the upper triangular matrix, the last elements are set to zero.

Author(s)

Arne Henningsen

See Also

`veclupos`

Examples

```r
v <- c( 1:5 )
triang( v, 3 )
```
vecli

Vector of linear independent values

Description

Returns a vector containing the linear independent elements of a symmetric matrix (of full rank).

Usage

vecli(m)

Arguments

m symmetric matrix

Author(s)

Arne Henningsen

See Also

veclipos.

Examples

a symmetric n x n matrix
m <- cbind(c(11,12,13),c(12,22,23),c(13,23,33))
vecli(m) # returns: 11 12 13 22 23 33

vecli2m

Convert vector of linear independent values into a Matrix

Description

Converts a vector into a symmetric matrix that the original vector contains the linear independent values of the returned symmetric matrix.

Usage

vecli2m(v)

Arguments

v a vector.
Author(s)

Arne Henningsen

See Also

vecli, veclipos.

Examples

```r
v <- c( 11, 12, 13, 22, 23, 33 )
vecli2m( v )
```

veclipos | Position in a vector of linear independent values

Description

Returns the position of the \([i,j]\)th element of a symmetric \(n \times n\) matrix that this element has in a vector of the linear independent values of the matrix.

Usage

```r
veclipos( i, j, n )
```

Arguments

- **i**: row of the element in the matrix.
- **j**: column of the element in the matrix.
- **n**: dimension of the matrix.

Note

A symmetric \(n \times n\) matrix has \(n*(n+1)/2\) independent values.
The function is: \(n*(n-1)/2-((n-min(i,j))*(n-min(i,j)+1)/2)+max(i,j)\)

Author(s)

Arne Henningsen

See Also

vecli, vecli2m.

Examples

```r
veclipos( 1, 2, 3 ) # returns: 2
```
Index

*Topic **array**
colMedians, 3
insertCol, 5
insertRow, 6
isSemidefinite, 7
quasiconcavity, 11
rowMedians, 12
rSquared, 13
symMatrix, 15
triang, 16
vecli, 17
vecli2m, 17
veclipos, 18

*Topic **methods**
ddnorm, 4
margeff, 9
nObs, 9
nParam, 10
stderr, 13
sumKeepAttr, 14

*Topic **models**
coefTable, 2
compPlot, 4

*Topic **multivariate**
rSquared, 13

*Topic **univar**
rSquared, 13

coeffTable, 2
colMeans, 3, 12
colMedians, 3, 12
compPlot, 4

ddnorm, 4
dnorm, 5

insertCol, 5, 6
insertRow, 6, 6
isSemidefinite, 7

lm, 9, 14

lower.tri, 15
margeff, 9
matrix, 15
median, 3, 12

nObs, 9, 11
nParam, 10, 10

plot, 4
quasiconcavity, 11
quasiconvexity (quasiconcavity), 11
rowMedians, 3, 12
rSquared, 13

semidefiniteness (isSemidefinite), 7
stderr, 13
sum, 14, 15
sumKeepAttr, 14
summary, 14
summary.lm, 10
symMatrix, 15

triang, 16

vcov, 14
vecli, 17, 18
vecli2m, 17, 18
veclipos, 16–18, 18