Package ‘mixture’

December 27, 2016

Type Package

Title Mixture Models for Clustering and Classification

Version 1.4

Date 2015-03-10

Author Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas

Maintainer Ryan Browne <rbrowne@math.mcmaster.ca>

Description An implementation of all 14 Gaussian parsimonious clustering models (GPCMs) for model-based clustering and model-based classification.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation yes

Repository CRAN

SystemRequirements GNU make

Date/Publication 2016-12-27 15:28:19

R topics documented:

e.step ... 2
gpcm ... 2
m.step ... 5
mixture ... 6
x2 ... 7

Index 8
Description

Carries out the E-step for EM algorithm

Usage

```r
e.step(data=NULL, gpar=NULL, labels=NULL, v=1)
```

Arguments

- **data**: A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data $p > 1$.
- **gpar**: A list of the model parameters.
- **labels**: A vector of groups labels. If NULL none are known.
- **v**: The value for deterministic annealing. If $v=1$ the standard estimate is used.

Details

Carries out the E-step for EM algorithm

Value

A $n \times G$ matrix of weights.

Examples

```r
data("x2")
u0 = runif(nrow(x2))
m0 = m.step(data=x2, covtype="VVV", w=cbind(u0, 1-u0), D=NULL, mtol=1e-8, mmax=10)
w0 = e.step(data=x2, gpar=m0, labels=NULL, v=1)
```

Description

Carries out model-based clustering or classification using some or all of the 14 parsimonious Gaussian clustering models (GPCM).
Usage

gpcm(data=NULL, G=1:3, mnames=NULL, start=0, label=NULL, veo=FALSE, nmax=1000, atol=1e-8, mtol=1e-8, mmax=10, pprogress=FALSE, pwarning=FALSE)

Arguments

data A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data \(p > 1 \).

G A sequence of integers giving the number of components to be used.

mnames The models (i.e., covariance structures) to be used. If \(\text{NULL} \) then all 14 are fitted.

start If \(0 \) then the \(\text{kmeans} \) function is used for initialization. If a positive value is inputted then best out of ceiling(\(k \)) random initializations are used. If \(\text{is.vector} \) then deterministic annealing is used with the given sequence of values in \([0,1]\); cf. Zhou and Lange (2010). If \(\text{is.matrix} \) then matrix is used as an initialization matrix as along as it has non-negative elements. Note: only models with the same number of columns of this matrix will be fit. If \(\text{is.function} \) then this function is used for building an initialization matrix. See Examples.

label If \(\text{NULL} \) then the data has no known groups. If \(\text{is.integer} \) then some of the observations have known groups. If \(\text{label}[i]=k \) then observation belongs to group \(k \). If \(\text{label}[i]=0 \) then observation has no known group. See Examples.

veo If \(\text{TRUE} \) then if the number variables in the model exceeds the number of observations the model is still fitted.

nmax The maximum number of iterations each EM algorithm is allowed to use.

atol A number specifying the epsilon value for the convergence criteria used in the EM algorithms. For each algorithm, the criterion is based on the difference between the log-likelihood at an iteration and an asymptotic estimate of the log-likelihood at that iteration. This asymptotic estimate is based on the Aitken acceleration and details are given in the References.

mtol A number specifying the epsilon value for the convergence criteria used in the M-step in the GEM algorithms.

mmax The maximum number of iterations each M-step is allowed in the GEM algorithms.

pprogress If \(\text{TRUE} \) print the progress of the function.

pwarning If \(\text{TRUE} \) print the warnings.

Details

The data \(x \) are either clustered or classified using Gaussian mixture models with some or all of the 14 parsimonious covariance structures described in Celeux & Govaert (1995). The algorithms given by Celeux & Govaert (1995) is used for 12 of the 14 models; the "EVE" and "VVE" models use the algorithms given in Browne & McNicholas (2012, 2013). Starting values are very important to the successful operation of these algorithms and so care must be taken in the interpretation of results.
Value

An object of class gpcm is a list with components:

- **map**: A vector of integers indicating the maximum *a posteriori* classifications for the best model.
- **gpar**: A list of the model parameters.
- **bicModel**: A list containing: the number of groups for the best model, the covariance structure, and Bayesian Information Criterion (BIC) value.
- **loglik**: The log-likelihood values from fitting the best model.
- **z**: A matrix giving the raw values upon which map is based.
- **BIC**: An array containing the log-likelihood (loglik), number of model parameters (npar) and BIC indexed by the covariance structure and number of components.
- **start**: The value inputted into start.
- **startobject**: The type of object inputted into start.

Note

Dedicated print, plot and summary functions are available for objects of class gpcm.

Author(s)

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas.

Maintainer: Ryan Browne <rbrowne@uoguelph.ca>

References

Examples

data("x2")

use k-means starts
tax0 = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start=0, pprogress=TRUE, atol=1e-2)
summary(ax0)
tax0

use 6 random values for starting values
ax6 = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start= 2, atol=1e-2)
summary(ax6)
ax6

use deterministic annealing for starting values
#axNULL = gpcm(x2, G=1:5, mnames=c("VVV", "EVE"), start=NULL, atol=1e-2)
#summary(axNULL)

m.step

M-Step

Description

Carries out the M-step for EM algorithm

Usage

m.step(data=NULL, covtype=NULL, w=NULL, D=NULL, mtol=NULL, mmax=NULL)

Arguments

data A matrix or data frame such that rows correspond to observations and columns correspond to variables. Note that this function currently only works with multivariate data p > 1.

covtype A three letter sequence indicating the covariance structure.
w A nxG matrix of weights.
D An initial value for D. If NULL then the identity matrix is used.

mto1 The convergence criteria for the m.step if an iterative procedure is necessary.

mmax The maximum number of iterations for an iterative procedure.

Details

Carries out the M-step for EM algorithm

Value

A list of the model parameters with the mu, sigma, invsigma and logdet for each group.

Examples

```r
data("x2")
u0 = runif(nrow(x2))
m.step(data=x2, covtype="VY", w=cbind(u0,1-u0), D=NULL, mtol=1e-8, mmax=10)
```

mixture

Mixture Models for Clustering and Classification

Description

An implementation of all 14 Gaussian parsimonious clustering models (GPCMs) for model-based clustering and model-based classification.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.3</td>
</tr>
<tr>
<td>Date</td>
<td>2015-03-10</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>=2)</td>
</tr>
</tbody>
</table>

This package contains the functions `gpcm`, `e.step`, and `m.step` as well as one simulated data set.

Author(s)

Ryan P. Browne, Aisha ElSherbiny and Paul D. McNicholas.

Maintainer: Ryan Browne <rbrowne@math.mcmaster.ca>

See Also

Details, examples, and references are given under `gpcm`.
Simulated Data

Description
Simulated data, with two variables with three groups, used to illustrate gpcm.

Usage
data(x2)

Format
A data frame with 300 observations and 2 columns.

Source
These data were simulated using R.
Index

*Topic **classif**
 e.step, 2
 gpcm, 2
 m.step, 5
*Topic **cluster**
 e.step, 2
 gpcm, 2
 m.step, 5
*Topic **datasets**
 x2, 7
*Topic **multivariate**
 e.step, 2
 gpcm, 2
 m.step, 5
 e.step, 2, 6
 gpcm, 2, 6, 7
 m.step, 5, 6
 mixture, 6
 x2, 7