Package ‘mlgt’

February 20, 2015

Type Package
Title Multi-Locus Geno-Typing
Version 0.16
Date 2012-03-26
Author Dave T. Gerrard
Maintainer Dave T. Gerrard <david.gerrard@manchester.ac.uk>
Description Processing and analysis of high throughput (Roche 454)
 sequences generated from multiple loci and multiple biological
 samples. Sequences are assigned to their locus and sample of
 origin, aligned and trimmed. Where possible, genotypes are
 called and variants mapped to known alleles.
License GPL (>= 2)
LazyLoad yes
Depends R (>= 2.13.0), methods, seqinr
Suggests snowfall
URL http://personalpages.manchester.ac.uk/staff/David.Gerrard/
Collate 'mlgt.R'
Repository CRAN
Date/Publication 2012-03-26 13:20:25
NeedsCompilation no

R topics documented:

 mltg-package ... 2
 alignReport ... 3
 callGenotypes .. 4
 callGenotypes.default 5
 combineMlgtResults 6
 createKnownAlleleList 7
 dumpVariantMap.mlgtrResult 8
mlgt-package

dumpVariants ... 8
errorCorrect ... 9
genotypeCall ... 10
getSubSeqsTable .. 10
getTopBlastHits ... 11
inspectBlastResults .. 12
mlgt ... 12
mlgtDesign ... 13
mlgtResult ... 14
my.mlgt.Result ... 15
plotGenotypeEvidence ... 15
prepareMlgtRun ... 16
printBlastResultGraphs ... 17
variantMap ... 17
writeGenotypeCallsToFile .. 18

Index 19

mlgt-package mlgt: Multi-locus geno-typing

Description

Package: mlgt
Type: Package
Version: 0.16
Date: 2012-03-27
Author: Dave T. Gerrard <david.gerrard@manchester.ac.uk>
License: GPL (>= 2)
LazyLoad: yes

Details

mlgt sorts a batch of sequence by barcode and identity to templates. It makes use of external applications BLAST and MUSCLE. Genotypes are called and alleles can be compared to a reference list of sequences. More information about each function can be found in its help documentation.

Some text

The main functions are: prepareMlgtRun, mlgt, callGenotypes, createKnownAlleleList, ...

References

alignReport

Report on alignment

Description
Inspect site frequency spectra for alignments.

Usage

alignReport(mlgtResultObject, markers = names(mlgtResultObject@markers), samples = mlgtResultObject@samples, correctThreshold = 0.01, consThreshold = (1 - correctThreshold), profPlotWidth = 60, fileName = NULL, method = "table", warn = TRUE)

Arguments
mlgtResultObject
an object of class mlgtResult

markers
Which markers to output

samples
Which samples to output

correctThreshold
A hypothetical level at which you might correct low frequency variants. Default = 0.01.

consThreshold
(1 - correctThreshold)

profPlotWidth
How many residues to plot in profile mode. Default=60.

fileName
Give a filename to export result to (pdf).

method
One of c("table", "profile", "hist"). "hist" plot a histogram of MAF frequencies. "profile" plots a coloured barplot representing the allele frequencies at each site.

warn
Issue warnings (default = TRUE)

Details
Produce different kinds of reports to assess quality of data for each marker/sample pair. Can be a good way to assess whether errorCorrect should be applied.

Value
A data frame for each marker listing site statistics.
callGenotypes

Make genotype calls

Description

Apply a genotype call method to a table or list of tables of variant data such as the markerSampleList table of an mlgtResult.

Usage

```r
callGenotypes(resultObject, 
  method = "callGenotypes.default", 
  markerList = names(resultObject@markers), 
  sampleList = resultObject@samples, mapAlleles = FALSE, 
  alleleDb = NULL, approxMatching = FALSE, ...
)
```

Arguments

- **resultObject**: An object of class `mlgtResult`, as returned by `mlgt`
- **alleleDb**: A list of `variantMap` objects derived from known alleles. As made by `createKnownAlleleList`
- **method**: How to call genotypes. Currently only "callGenotypes.default" is implemented. Users can define their own methods as R functions (see the vignette).
- **markerList**: For which of the markers do you want to call genotypes (default is all)?
- **sampleList**: For which of the samples do you want to call genotypes (default is all)?
- **mapAlleles**: FALSE/TRUE. Whether to map variants to db `alleledb` of known alleles.
- **approxMatching**: If TRUE, a BLAST search is also performed to find matches (slower). Additional columns are added to the genotypeTable
- **...**: Other parameter values will be passed to custom methods such as `callGenotypes.default`

See Also

- `errorCorrect`

Examples

```r
## Not run:
data("mlgtResult", package = "mlgt")
alignReport(my.mlgt RESULT, markers = "DPA1_E2", samples = "MID-22", method = "profile")
alignReport(my.mlgt RESULT, markers = "DPA1_E2", samples = "MID-22", method = "hist")

## End(Not run)
```
Details

After `mlgt` has generated tables of the most common variants assigned in each marker/sample pair, an attempt can be made to call genotypes. This is kept separate because users might want to try different calling methods and have the option to map to a known set of alleles. Currently, only one method is implemented (‘custom’). See `callGenotypes.default`. This function also includes the option to map variants to a list of known alleles created using `createKnownAlleleList`. The basic method makes only perfect matches but a secondary method can be triggered (approxMatching=TRUE) to find the allele with the greatest similarity using a local BLAST search.

Value

list of call results including the call parameters and a table of calls (class `genotypeCall`). If an `mlgtResult` object was supplied then a list of `genotypeCall` objects will be returned, each named by marker.

Examples

```r
## Not run:
data("mlgtResult", package="mlgt")
my.mlgt.Result
# the default method
my.genotypes <- callGenotypes(my.mlgt.Result)
# using a custom method
callGenotypes.custom <- function(table, maxPropUniqueVars=0.5) {
    table$status <- "notCalled"
    table$propUniqueVars <- table$numbVar/table$numbSeq
    table$status <- ifelse(table$propUniqueVars <= maxPropUniqueVars, "good", "bad")
    return(table)
}
my.custom.Genotypes <- callGenotypes(my.mlgt.Result, method="callGenotypes.custom")
## End(Not run)
```

Description

This is the default method to call genotypes from a table of variant counts. Methods:

`callGenotypes.default` Three sequential steps for each marker/sample pair:

1. if the number of reads is less than `minTotalReads` the genotype is `tooFewReads`
2. if the difference between the sum of counts of the top two variants and the count of the third most variant, expressed as proportion of total, is less than `minDiffToVarThree`, OR the third most abundant variant accounts for more than `maxPropVarThree` (default=0.1) of the reads, then the genotype is `complexVars`
3. if the difference between the counts of top two variants, expressed as a proportion of the total, is greater than or equal to `minPropDiffHomHetThreshold`, then the genotype is `HOMOZYGOTE`. Otherwise it is `HETEROZYGOTE`.

Usage

callGenotypes.default(table, minTotalReads = 50,
 minDiffToVarThree = 0.4,
 minPropDiffHomHetThreshold = 0.3,
 maxPropVarThree = 0.1)

Arguments

table The table of sequence counts as in the markerSampleTable of an mlgtResult object.
minTotalReads Minimum number of reads before attempting to call genotypes
minDiffToVarThree Difference between sum of counts of top two variants and the count of the third most frequent variant, expressed as proportion of total.
minPropDiffHomHetThreshold Difference between counts of top two variants. One way to distinguish HOMOZYGOTES and HETEROZYGOTES.
maxPropVarThree Also call as ‘complexVars’ if the third variant accounts for more than this proportion of used reads (default=0.1)

Value

A data.frame identical to those in markerSampleList but with additional columns giving parameter values, and a ‘status’ column giving the genotype status.

combineMlgtResults Combine two or more mlgtResult objects

Description

Combine results from one or more runs, or combine partial results after a parallel job.

Usage

combineMlgtResults(resultList,
 projectName = resultList[[1]]@projectName,
 runName = "combinedMlgtResults")

Arguments

resultList A list of objects of class mlgtResult
projectName Do you want to provide your own projectName
runName Do you want to provide your own runName
createKnownAlleleList

Details

In some cases, you may want to combine multiple mlgtResult objects into a single object. Can combine results using the same markers as long as the samples used have different names between results. Can combine results using different sets (subsets) of markers. Will fail if the same marker/sample combination appears in more than one mlgtResult. Can be used to recombine the list of result obtained by running mlgt in parallel on subsets of the full marker list.

Value

An object of class mlgtResult

createKnownAlleleList Create variantMap object from allele alignment

Description

Create a variantMap object to store known alleles for a marker

Usage

createKnownAlleleList(markerName, markerSeq,
alignedAlleleFile, alignFormat = "msf",
sourceName = alignedAlleleFile, userAlignment = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>markerName</td>
<td>A specific marker name</td>
</tr>
<tr>
<td>markerSeq</td>
<td>something</td>
</tr>
<tr>
<td>alignedAlleleFile</td>
<td>a sequence alignment</td>
</tr>
<tr>
<td>alignFormat</td>
<td>the format of alignedAlleleFile. "msf" (the default) or "fasta"</td>
</tr>
<tr>
<td>sourceName</td>
<td>A character string to record the source of the alignment. Defaults to the value of alignedAlleleFile</td>
</tr>
<tr>
<td>userAlignment</td>
<td>The specified alignedAlleleFile already includes the marker sequence. Default = FALSE.</td>
</tr>
</tbody>
</table>

Details

To compare variants produced using mlgt the sequences of the known alleles must be aligned to the same marker used to find the variants. The resulting sub-sequence alignment may have identical sequences for different alleles. If that happens, those alleles are condensed into one and their names concatenated. User can supply files with marker sequences pre-aligned to the reference alleles.

Value

a variantMap object named by markerName
dumpVariantMap.mlgtResult

Dump variants as fasta

Description

Output unique variants to one or more fasta files.

Usage

```r
dumpVariantMap.mlgtResult(resultObject,
markers = names(resultObject@markers),
file = paste(resultObject@projectName, resultObject@runName, "seqDump", sep = "."),
singleFile = TRUE)
```

Arguments

- `resultObject` An object of class `mlgtResult` containing the sequence variants.
- `markers` For which markers do you want to output sequences.
- `file` An output file name. If not supplied, one is created.
- `singleFile` Whether to output results for all markers to a single file or to one file per marker.

Details

This is a stop-gap function while I decide how best to handle output of full sequences.

Value

Writes fasta files in the current directory.

dumpVariants

Print sequence to file

Description

A function to output all sequences or just unique sequences to a fasta file

Usage

```r
dumpVariants(mlgtResultObject,
markers = names(mlgtResultObject@markers),
samples = mlgtResultObject@samples,
fileSuffix = "variantDump.fasta", uniqueOnly = FALSE)
```
errorCorrect

Arguments

- `mlgtResultObject`: an object of class `mlgtResult`
- `markers`: Which markers to output
- `samples`: Which samples to output
- `fileSuffix`: Add a common suffix to the file names. Useful for keeping track of different sets of sequences.
- `uniqueOnly`: Only output single copy of each sequence. A count for each sequence are appended to the names.

Details

The sequence variants stored within an object of class `mlgtResult` are not very easy to extract. This function will output all variants or all variant for specific markers and samples into fasta files. Users can select to only output unique sequences or the full alignment including duplicated sequences. One file will be created for each marker/sample pair.

Description

Correct very low frequency site variants.

Arguments

- `mlgtResultObject`: An object of class `mlgtResult`
- `correctThreshold`: The maximum Minor Allele Frequency (MAF) at which variants will be corrected.

Details

You may want to alter some of the sequences if you believe that sequences at very low frequency (within the set of sequences from a marker/sample pair) represent sequencing errors. `errorCorrect()` is implemented as an additional step after running `mlgt`, however, it is recommended to include error correction within `mlgt` using the `errorCorrect=TRUE` option. Using `alignReport` beforehand may help you decide whether to do this.

Value

A new `mlgtResult` object with errors 'corrected'

See Also

`alignReport`
getSubSeqsTable

A list of sequences mapped to both ‘thisMarker’ and ‘thisSample’ is created and these sequences are aligned to ‘markerSeq’.

Usage

```r
getSubSeqsTable(thisMarker, thisSample, sampleMap, fMarkerMap, rMarkerMap, markerSeq, maxVarsToAlign = 30, minTotalCount = 500, errorCorrect = FALSE, correctThreshold = 0.01, minLength = 70)
```
Arguments

- **thisMarker**: A specific marker name
- **thisSample**: A specific sample name
- **sampleMap**: A list of sequence IDs assigned to each marker. Each element named by marker name.
- **fMarkerMap**: A list of sequence IDs assigned to each sample using BLAST hits in forward orientation. Each element named by sample name.
- **rMarkerMap**: A list of sequence IDs assigned to each sample using BLAST hits in reverse orientation. Each element named by sample name.
- **markerSeq**: The sequence of ‘thisMarker’
- **maxVarsToAlign**: If total assigned sequences exceeds ‘minTotalCount’, then only the ‘maxVarsToAlign’ most abundant variants are used.
- **minTotalCount**: How many assigned sequences to allow before limiting the number of raw variants to align.
- **errorCorrect**: Use error correction on alignment of raw variants
- **correctThreshold**: Maximum proportion of raw reads at which (minor allele) bases and gaps are corrected.
- **minLength**: Reads below this length are excluded (they are very likely to be primer-dimers).

Details

This internal function is called by `mlgt`

Value

A table of unique variants and their counts. The sequences have been trimmed to the portion aligned with ‘markerSeq’

getTopBlastHits

Return top blast hits

Description

Auxiliary function

Usage

```r
getTopBlastHits(blastTableFile)
```

Arguments

- **blastTableFile**: The name of a file of tabulated blast results.

Value

A reduced blast table with one hit per query
inspectBlastResults
Plot BLAST statistics for one marker

Description

`prepareMlgtRun` produces several BLAST tables. It is instructive to plot the BLAST results and assess the performance of different markers.

Usage

```
inspectBlastResults(blastTable, subject)
```

Arguments

- `blastTable`: The file of BLAST results.
- `subject`: The name of a single marker

Details

This function is used to plot a series of histograms based on BLAST statistics.

Value

Plots three histograms based on the BLAST statistics 'Alignment length', 'Bit Score' and 'Percent Identity'.

See Also

- `printBlastResultGraphs`

`mlgt`
Get variants for all markers/samples

Description

`mlgt` Works through all pairs of markers and samples. Aligns variants and trims aligned variants to the marker sequence. Potential 'alleles' are assigned from the most common variants within each sample.

Usage

```
mlgt(designObject, maxVarsToAlign = 30, 
     minTotalCount = 500, errorCorrect = FALSE, 
     correctThreshold = 0.01, minLength = 70)
```
Arguments

- **designObject**: an object of class `mlgtDesign`
- **minTotalCount**: How many assigned sequences to allow before limiting the number of raw variants to align.
- **maxVarsToAlign**: If total assigned sequences exceeds 'minTotalCount', then only the 'maxVarsToAlign' most abundant variants are used.
- **errorCorrect**: Use error correction on alignment of raw variants
- **correctThreshold**: Maximum proportion of raw reads at which (minor allele) bases and gaps are corrected.
- **minLength**: Reads below this length are excluded (they are very likely to be primer-dimers).

Details

Depends upon `prepareMlgtRun` having been run in the current directory to generate ‘designObject’ of class `mlgtDesign`. The basic process for each marker/sample pair is to align all unique variants using MUSCLE and then extract the alignment portion aligned to the reference marker sequence, ignoring the rest. The marker alignment is critical and `mlgt` has several options to optimise this alignment. If the total number of reads is less than minTotalCount, then all variants are aligned. Otherwise, only the most abundant 30 unique variants are aligned. Optionally, alignments are ‘error-corrected’ as per the separate function `errorCorrect`. Reads shorter than ‘minLength’ are filtered out.

Value

an object of class `mlgtResult` containing all variants and their counts, a summary table (all markers) and one summary table per marker.

See Also

- `prepareMlgtRun`

`mlgtDesign` An S4 class that holds information about an mlgt analysis.

Description

Returned by `prepareMlgtRun`. Used as sole input for `mlgt`

Details

- **projectName**: In which project does this run belong
- **runName**: Which run was this. An identifier for the sequence run
- **markers**: A list of named sequences.
- **samples**: A vector of sample names
mlgtResult

fTags A vector of named sequence of MIDs used to barcode samples at the 5’ end.

rTags A vector of named sequence of MIDs used to barcode samples at the 3’ end.

inputFastaFile The name of the file containing sequences. Currently only fasta format is supported. It is up to you to pre-filter the sequences.

See Also

prepareMlgtRun, mlgt

mlgtResult An S4 class to hold results from mlgt

Description

Extends mlgtDesign

Details

　　projectName In which project does this run belong
　　runName Which run was this. An identifier for the sequence run
　　markers A list of named sequences.
　　samples A vector of sample names
　　fTags A vector of named sequence of MIDs used to barcode samples at the 5’ end.
　　rTags A vector of named sequence of MIDs used to barcode samples at the 3’ end. May be same as fTags
　　inputFastaFile The name of the file containing sequences. Currently only fasta format is supported. It is up to you to pre-filter the sequences.
　　runSummaryTable A summary table with one row per marker
　　alleleDb A list of objects of class variantMap. Contains all variants returned by mlgt
　　markerSampleList A list of tables, one table per marker giving results for each sample/MID

See Also

mlgtDesign, prepareMlgtRun, mlgt
my.mlgt.Result

An example mlgtResult object.

Description

This is the result of running mlgt on the sample data given in the README.

Format

a mlgtResult object.

Author(s)

Dave T. Gerrard, 2012-04-01

Source

Package mlgt

plotGenotypeEvidence

Plot genotyping evidence

Description

Plot the distributions of values used in calling genotypes.

Arguments

callList A list of genotypes calls.
genotypeCall A single table of genotype calls
file The file to write to.

Details

Currently only makes sense with "custom" method. The resulting plots are

1. Histogram of the number of sequences assigned to each sample
2. Histogram of diffToVarThree parameter. Used to decide whether to make the call
3. Histogram of propDiffHomHet parameter. Used to distinguish HOMOZYGOTES and HETEROZYGOTES
4. propDiffHomHet against diffToVarThree
5. diffToVarThree against number of sequences
6. propDiffHomHet against number of sequences
prepareMlgtRun

Value

Creates six plots for each marker with a genotypeCall table. See details.

See Also

callGenotypes

Examples

```r
## Not run:
data("mlgtResult", package="mlgt")
my.genotypes <- callGenotypes(my.mlgt.Result)
plotGenotypeEvidence(genotypeCall=my.genotypes[["DPA1_E2"]])

## End(Not run)
```

Description

Required before mlgt is used. Create BLAST databases and assign sequences using BLAST.

Usage

```r
prepareMlgtRun(designObject, projectName, runName, samples, markers, fTags, rTags, inputFastaFile, overwrite)
```

Arguments

designObject Only used internally.
projectName In which project does this run belong
runName Which run was this. An identifier for the sequence run
markers A list of named sequences.
samples A vector of sample names
fTags A vector of named sequence of MIDs used to barcode samples at the 5’ end.
rTags A vector of named sequence of MIDs used to barcode samples at the 3’ end.
inputFastaFile The name of the file containing sequences. Currently only fasta format is supported. It is up to you to pre-filter the sequences.
overwrite Should files in the current directory be overwritten? c("prompt", "yes", "no")

Details

This important function stores all the information about the analysis run AND populates the working directory with multiple local Blast databases, which are later required by mlgt. Once prepareMlgtRun has been run, mlgt can be run as well as printBlastResultGraphs and inspectBlastResults.
Value

An object of class \texttt{mlgtDesign} is returned. Also, several BLAST dbs and sets of BLAST results are created in the working directory. These are essential for \texttt{mlgt} to run.

See Also

\texttt{printBlastResultGraphs} and \texttt{inspectBlastResults} can only be run AFTER \texttt{prepareMlgtRun}.

\begin{verbatim}
printBlastResultGraphs

Plot BLAST statistics for several markers to file

\end{verbatim}

Description

Plot the BLAST statistics easily for all markers of an \texttt{mlgtResult} object.

Usage

\begin{verbatim}
printBlastResultGraphs(designObject,
 markerList = designObject@markers,
 fileName = "blastResultGraphs.pdf")
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{designObject} An object of class \texttt{mlgtDesign} which will contain the name of the blast results file \texttt{designObject@markerBlastResults}
 \item \texttt{markerList} Which markers to output. Defaults to \texttt{designObject@markers}
 \item \texttt{fileName} Defaults to "blastResultGraphs.pdf"
\end{itemize}

Value

Plots BLAST results to a pdf file.

See Also

\texttt{inspectBlastResults}

\begin{verbatim}
variantMap

An S4 class to hold all unique variants found/known for a marker.

\end{verbatim}

Description

An S4 class to hold all unique variants found/known for a marker.
writeGenotypeCallsToFile

Write genotype calls to file

Description

A genotype call table or a list of tables can be written to tab-delimited file(s).

Arguments

calllist A list of genotypes calls.
genotypeCall Alternatively, supply a single table of genotype calls
filePrefix A prefix to add to the start of each file name. Useful to distinguish sets of genotype call results from same run.
file The file to write to. If none specified, function will attempt to make one. Ignored if ‘singleFile = TRUE’.
singleFile FALSE/TRUE whether to concatenate results from a list of genotypeCalls
writeParams List call parameter values at top of file? Beware using this option when ‘singleFile = TRUE’
appendValue Used internally to concatenate results.

Details

This function is quite flexible and can output a single table of concatenated results or a series of individual files. Call parameters can be included above each table but be careful doing this when singleFile=TRUE

Value

Writes tables in the current working directory.

Examples

```r
## Not run:
data("mlgtResult", package="mlgt")
my.genotypes <- callGenotypes(my.mlgt.Result)
writeGenotypeCallsToFile(my.genotypes)

## End(Not run)
```
Index

*Topic datasets
 my.mlgt.Result, 15

alignReport, 3, 9

callGenotypes, 2, 4, 5, 10, 16
callGenotypes.default, 4, 5, 5
combineMlgtResults, 6
createKnownAlleleList, 2, 4, 5, 7

dumpVariantMap.mlgtResult, 8
dumpVariants, 8

errorCorrect, 3, 4, 9, 13
errorCorrect, missing, list-method (errorCorrect), 9
errorCorrect.mlgtResult, missing-method (errorCorrect), 9

genotypeCall, 5, 10
getSubSeqsTable, 10
getTopBlastHits, 11

inspectBlastResults, 12, 16, 17

mlgt, 2, 4, 5, 7, 9–11, 12, 13–17
mlgt.mlgtDesign-method (mlgt), 12
mlgt-package, 2
mlgt.mlgtDesign (mlgt), 12
mlgtDesign, 13, 13, 14, 17
mlgtResult, 3, 4, 6–9, 13, 14, 15, 17
my.mlgt.Result, 15

plotGenotypeEvidence, 15
plotGenotypeEvidence, genotypeCall, missing, character-method (plotGenotypeEvidence), 15
plotGenotypeEvidence, genotypeCall, missing, missing-method (plotGenotypeEvidence), 15
plotGenotypeEvidence, genotypeCall, missing, missing-method (plotGenotypeEvidence), 15
plotGenotypeEvidence, genotypeCall, missing, character-method (plotGenotypeEvidence), 15
plotGenotypeEvidence, genotypeCall, missing, missing-method (plotGenotypeEvidence), 15

writeGenotypeCallsToFile, 10, 18
writeGenotypeCallsToFile, list, missing-method (writeGenotypeCallsToFile), 18
writeGenotypeCallsToFile, missing, genotypeCall-method (writeGenotypeCallsToFile), 18
writeGenotypeCallsToFile, list, writeGenotypeCallsToFile, genotypeCall-method (writeGenotypeCallsToFile), 18

variantMap, 4, 7, 10, 14, 17

printBlastResultGraphs, 12, 16, 17, 17

writeGenotypeCallsToFile, 10, 18
writeGenotypeCallsToFile, list, missing-method (writeGenotypeCallsToFile), 18
writeGenotypeCallsToFile, missing, genotypeCall-method (writeGenotypeCallsToFile), 18
writeGenotypeCallsToFile, list, writeGenotypeCallsToFile, genotypeCall-method (writeGenotypeCallsToFile), 18