Package ‘mlmmm’

February 20, 2015

Version 0.3-1.2
Date 2010-07-07
Title ML estimation under multivariate linear mixed models with missing values
Author Recai Yucel <ryucel@albany.edu>
Maintainer Recai Yucel <ryucel@albany.edu>
License GPL-2
URL http://www.albany.edu/~ry491374
Repository CRAN
Date/Publication 2010-07-07 06:09:45
NeedsCompilation yes

R topics documented:

adg .. 2
mlmmm.em .. 2
mlmmmbd.em .. 5
pain .. 6

Index 7
Description

Data example used here come from "SAS System for Mixed Models" by Little et. al. (1996) and it is an example data within SASmixed library. This dataset was collected to investigate average daily gains (ADG) of steers fed for 160 days. The treatments are four diets consisting of a base ration and three levels of a medicated feed additive added to the base ration. The objective of the experiment was to determine the optimal level of feed additive to maximize the average daily gain. The steers were housed in barns, the blocking factor, where each barn held four steers and the steers were individually fed. For the purposes of illustration we imposed missing values on the response values, following a missing completely at random mechanism.

Usage

data(adg)

Format

A data frame containing 32 rows and 7 columns (response variables: first two columns which are average daily gain in grams, initial weight on the log scale; predictors next 7 rows (a column of 1 and 3 treatment dummies) and subject indicator is last column)

Source

ML estimation via hybrid of EM and Fisher scoring algorithm under the multivariate linear mixed models with missing values described by Schafer and Yucel (2002), Yucel (2007). This function will typically be used to produce maximum likelihood estimation of the unknown parameters under the model

\[y_i = X_i \beta + Z_i b_i + e_i, \quad i=1, \ldots, m, \]

where

\[y_i = (n_i \times r) \text{ matrix of incomplete multivariate data for subject or cluster } i; \]
\[X_i = (n_i \times p) \text{ matrix of covariates}; \]
\[Z_i = (n_i \times q) \text{ matrix of covariates}; \]
beta = (p x r) matrix of coefficients common to the population (fixed effects);
b_i = (q x r) matrix of coefficients specific to subject or cluster i (random effects); and
e_i = (ni x r) matrix of residual errors.

The matrix b_i, when stacked into a single column, is assumed to be normally distributed with mean zero and unstructured covariance matrix psi, and the rows of e_i are assumed to be independently normal with mean zero and unstructured covariance matrix sigma. Missing values may appear in y_i in any pattern.

In most applications of this model, the first columns of X_i and Z_i will be constant (one) and Z_i will contain a subset of the columns of X_i.

Usage

mlmmm.em(y, subj, pred, xcol, zcol, start, maxits=200, eps=0.0001)

Arguments

y matrix of responses. This is simply the individual y_i matrices stacked upon one another. Each column of y corresponds to a response variable. Each row of y corresponds to a single subject-occasion, or to a single subject within a cluster. Missing values (NA) may occur in any pattern.

subj vector of length nrow(y) giving the subject (or cluster) indicators i for the rows of y. For example, suppose that y is in fact rbind(y1,y2,y3,y4) where nrow(y1)=2, nrow(y2)=3, nrow(y3)=2, and nrow(y4)=7. Then subj should be c(1,1,2,2,2,3,3,4,4,4,4,4,4,4).

pred matrix of covariates used to predict y. This should have the same number of rows as y. The first column will typically be constant (one), and the remaining columns correspond to other variables appearing in X_i and Z_i.

xcol vector of integers indicating which columns of pred will be used in X_i. That is, pred[,xcol] is the X_i matrices (stacked upon one another).

zcol vector of integers indicating which columns of pred will be used in Z_i. That is, pred[,zcol] is the Z_i matrices (stacked upon one another).

start optional list of quantities to specify the initial estimates of the parameters for the EM. If "start" is omitted then mlmmm.em() chooses its own initial values.

maxits maximum number of cycles of EM to be performed. The algorithm runs to convergence or until "maxits" iterations, whichever comes first.

eps convergence criterion. The algorithm is considered to have converged if the relative differences in all parameters from one iteration to the next are less than eps—that is, if all(abs(new-old)<eps*abs(old)).

Details

The EM algorithm used in mlmmm.pan() is described in detail by Schafer and Yucel (2002) and Yucel (2007).
Value

A list containing the following elements:

- **beta**: A matrix containing the final value of the estimate of the fixed effects. The first column corresponds to the estimates for the first column of y, the second column corresponds to the estimates of the second column of y, and so on.

- **sigma**: A matrix containing the final value of the estimate of the variance covariance matrix of the vectorized residual matrix term.

- **psi**: A matrix containing the final value of the estimate of the variance covariance matrix of the (vectorized) random-effects matrix.

- **eb**: A matrix (of dimensions r*q by m) containing the empirical bayes estimates of the random-effects \(b_i \).

- **varb**: An array of dimensions r*q x r*r x m, containing the variance covariance matrix of the random-effects.

- **xtwxinv**: Variance-covariance matrix of the estimate of fixed estimates.

- **converged**: An indicator showing whether the algorithm converged or not.

- **iter**: Number of iterations to convergence.

- **npatt**: Number of distinct missingness patterns, not counting the ones missing all variables making the response matrix.

- **pstfin**: A matrix of dimensions npatt by r, indicating the number of rows with the underlying missingness pattern.

- **iposn**: A vector showing the row numbers of y, which belong to missingness patterns showed in pstfin.

- **patt**: A vector of n denoting the missingness patterns of the rows of y.

- **rmat**: A matrix showing the distinct missingness patterns, excluding the rows that are completely missing.

- **logll**: A vector of expected loglikelihood values at each iteration.

- **logoll**: A vector of observed loglikelihood values at each iteration.

- **clock**: How much time (in seconds) mlmmm.em took to converge.

Author(s)

Recai M. Yucel, Division of Biostatistics and Epidemiology, University of Massachusetts-Amherst <yucel@schoolph.umass.edu>.

References

Yucel, R.M. (2007) R mlmmm package: Fitting multivariate linear mixed-effects models with missing values
Examples

not run:
For a detailed example, see the file "mlmmmex.s" distributed
with this function. Here is a simple example of how mlmmm.em()
might be used to produce ML estimates.
library(mlmmm)
data(adg)
y<cbind(adg$y.1,adg$y.2)
colnames(y)=c("adg","initwt")
subj=adg$subj
see the relationship between avd and intwt which are jointly modeled
library(lattice)
xyplot(y[,1]-log(y[,2]) ~ subj, ylab="Average Daily Gain",xlab="Initial Weight")
below adg$subj is the block or barn
subj<adg$subj
pred <- cbind(adg$pred.int,adg$pred.dummy1,adg$pred.dummy2,adg$pred.dummy3)
xcol<1:4
zcol<1
unst.psi.result <- mlmmm.em(y,subj,pred,xcol,zcol,maxits=200,eps=0.0001)

end(not run)

mlmmm.em

ML estimation under multivariate linear mixed models with block-
 diagonal covariance matrix and missing values

Description

Implementation of em.pan() that restricts the covariance matrix for the random effects to be block-
diagonal. This function is identical to pan() in every way except that psi is now characterized by a
set of r matrices of dimension q x q.

Usage

mlmmm.em(y, subj, pred, xcol, zcol, start, maxits=100, eps=0.01)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>subj</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>pred</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>xcol</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>zcol</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>start</td>
<td>Same as for em.pan() except that the starting value for psi have new dimensions: (q x q x r)</td>
</tr>
<tr>
<td>maxits</td>
<td>See description for mlmmm.em().</td>
</tr>
<tr>
<td>eps</td>
<td>See description for mlmmm.em().</td>
</tr>
</tbody>
</table>
Value

A list with the same components as that from em.pan(), with a minor difference: the dimension of "psi" is now (q x q x r).

References

pain

The longitudinal study on pain in children

Description

This data consist of up to four observations on 64 children 8 to 10. The response is the length of time in seconds that the child can tolerate keeping his or her arm in very cold water, a proxy measure of pain tolerance. Missing data exist due to absenteeism, broken arms, or other reasons. Two measures were taken during a first visit followed by two more measures during a second visit after a two-week gap.

Usage

data(pain)

Format

A data frame containing 256 rows and 10 columns (response variables: first two rows; predictors next 7 rows and subject indicator is last column)

Source

Index

*Topic datasets
 adg, 2
 pain, 6

*Topic models
 mlmmm.em, 2
 mlmmmnd.em, 5

adg, 2
mlmmm.em, 2
mlmmmnd.em, 5

pain, 6