Package ‘mmcm’

January 15, 2016

Type Package

Title Modified Maximum Contrast Method

Version 1.2-6

Author Kengo NAGASHIMA and Yasunori SATO

Maintainer Kengo NAGASHIMA <nshi@chiba-u.jp>

Depends mvtnorm

Description An implementation of modified maximum contrast methods and the maximum contrast method: Functions 'mmcm.mvt' and 'mcm.mvt' give P-value by using randomized quasi-Monte Carlo method with 'pmvt' function of package 'mvtnorm', and 'mmcm.resamp' gives P-value by using a permutation method.

License GPL-3

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-01-15 10:28:27

R topics documented:

mmcm-package .. 2
mcm.mvt ... 2
mmcm.mvt ... 5
mmcm.resamp ... 8
print.mmcm ... 12

Index 13
The modified maximum contrast method package

Description

This package provides an implementation of modified maximum contrast methods and the maximum contrast method. This version supports functions `mcm.mvt`, `mmcm.mvt` that gives P-value by using randomized quasi-Monte Carlo method from `pmvt` function of package `mvtnorm`, and `mmcm.resamp` that gives P-value by using the permutation method. In a one-way problem testing pattern of several factor level means, the maximum contrast statistics (Yoshimura, I., 1997) may be used. But under unequal sample size situations, denominator of the maximum contrast statistics is overestimated. Thus we propose a modified maximum contrast statistics for the unequal sample size situation. Denominateor of the modified maximum contrast statistics is not influenced under the unequal sample size situation.

Author(s)

Author: Kengo NAGASHIMA and Yasunori SATO
Maintainer: Kengo NAGASHIMA <nshi@chiba-u.jp>

References

See Also

`mcm.mvt`, `mmcm.mvt`, `mmcm.resamp`

The maximum contrast method by using the randomized quasi-Monte Carlo method

Description

This function gives P-value for the maximum contrast statistics by using randomized quasi-Monte Carlo method from `pmvt` function of package `mvtnorm`.
Usage

mcm.mvt(x, g, contrast, alternative = c("two.sided", "less", "greater"),
 algorithm = GenzBretz())

Arguments

x
 a numeric vector of data values

g
 a integer vector giving the group for the corresponding elements of x

contrast
 a numeric contrast coefficient matrix for the maximum contrast statistics

alternative
 a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

algorithm
 an object of class GenzBretz defining the hyper parameters of this algorithm

Details

mcm.mvt performs the maximum contrast method that is detecting a true response pattern.

$Y_{ij} (i = 1, 2, \ldots; j = 1, 2, \ldots, n_i)$ is an observed response for j-th individual in i-th group.

C is coefficient matrix for the maximum contrast statistics ($i \times k$ matrix, i: No. of groups, k: No. of pattern).

$$C = (c_1, c_2, \ldots, c_k)^T$$

c_k is coefficient vector of kth pattern.

$$c_k = (c_{k1}, c_{k2}, \ldots, c_{ki})^T \quad (\sum_i c_{ki} = 0)$$

T_{max} is the maximum contrast statistic.

$$\bar{Y}_i = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}, \bar{Y} = (\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_i, \ldots, \bar{Y}_a)^T,$$

$$D = \text{diag}(n_1, n_2, \ldots, n_i, \ldots, n_a), V = \frac{1}{\gamma} \sum_{j=1}^{n_i} \sum_{i=1}^{a} (Y_{ij} - \bar{Y}_i)^2,$$

$$\gamma = \sum_{i=1}^{a} (n_i - 1), T_k = \frac{c_k^T \bar{Y}}{\sqrt{V c_k^T D c_k}},$$

$$T_{max} = \max(T_1, T_2, \ldots, T_k).$$

Consider testing the overall null hypothesis $H_0 : \mu_1 = \mu_2 = \ldots = \mu_i$, versus alternative hypotheses H_1 for response patterns ($H_1 : \mu_1 < \mu_2 < \ldots < \mu_i, \quad \mu_1 = \mu_2 < \ldots < \mu_i, \quad \mu_1 < \mu_2 < \ldots = \mu_i$). The P-value for the probability distribution of T_{max} under the overall null hypothesis is

$$P\text{-value} = Pr(T_{max} > T_{max} \mid H_0)$$

t_{max} is observed value of statistics. This function gives distribution of T_{max} by using randomized quasi-Monte Carlo method from package mvtnorm.
Value

- **statistic**: the value of the test statistic with a name describing it.
- **p.value**: the p-value for the test.
- **alternative**: a character string describing the alternative hypothesis.
- **method**: the type of test applied.
- **contrast**: a character string giving the names of the data.
- **contrast.index**: a suffix of coefficient vector of the kth pattern that gives maximum contrast statistics (row number of the coefficient matrix).
- **error**: estimated absolute error and,
- **msg**: status messages.

References

See Also

- pmvt
- GenzBretz
- mmcmNmvt

Examples

```r
## Example 1 ##
# true response pattern: dominant model c=(1, 1, -2)
set.seed(136885)
x <- c(
  rnorm(130, mean = 1/6, sd = 1),
  rnorm( 90, mean = 1/6, sd = 1),
  rnorm(10, mean = -2/6, sd = 1)
)
g <- rep(1:3, c(130, 90, 10))
boxplot(
  x ~ g,
  width = c(length(g[g==1]), length(g[g==2]), length(g[g==3])),
  main = "Dominant model (sample data)",
  xlab = "Genotype",
  ylab = "PK parameter"
)

# coefficient matrix
# c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
  c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2)
)
y <- mcm.mvt(x, g, contrast)
y
## Example 2 ##
# for dataframe
```
true response pattern: pos = 1 dominant model c=(1, 1, -2)
2 additive model c=(-1, 0, 1)
3 recessive model c=(2, -1, -1)
set.seed(3872435)
x <- c(
 rnorm(130, mean = 1 / 6, sd = 1),
 rnorm(90, mean = 1 / 6, sd = 1),
 rnorm(10, mean = -2 / 6, sd = 1),
 rnorm(130, mean = -1 / 4, sd = 1),
 rnorm(90, mean = 0 / 4, sd = 1),
 rnorm(10, mean = 1 / 4, sd = 1),
 rnorm(130, mean = 2 / 6, sd = 1),
 rnorm(90, mean = -1 / 6, sd = 1),
 rnorm(10, mean = -1 / 6, sd = 1)
)

coefficient matrix
c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
 c(-1, 0, 1),
 c(-2, 1, 1),
 c(-1, -1, 2)
)
mmcmtapply <- function(r) {
mcm.mvt(
 xx$x[xx$pos==r[1]], xx$g[xx$pos==r[1]], contrast

)
}
y <- tapply(xxpos, xxpos, mmcmtapply)

miss-detection!

--

mcm.mvt

The modified maximum contrast method by using randomized quasi-Monte Carlo method

Description

This function gives P-value for the modified maximum contrast statistics by using randomized quasi-Monte Carlo method from pmvt function of package mvtnorm.
Usage

\texttt{mmcm.mvt(x, g, contrast, alternative = c("two.sided", "less", "greater"),
algorithm = GenzBretz())}

Arguments

- \texttt{x}: a numeric vector of data values
- \texttt{g}: an integer vector giving the group for the corresponding elements of \texttt{x}
- \texttt{contrast}: a numeric contrast coefficient matrix for modified maximum contrast statistics
- \texttt{alternative}: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
- \texttt{algorithm}: an object of class \texttt{GenzBretz} defining the hyper parameters of this algorithm.

Details

\texttt{mmcm.mvt} performs the modified maximum contrast method that is detecting a true response pattern under the unequal sample size situation.

\(Y_{ij} (i = 1, 2, \ldots; j = 1, 2, \ldots, n_i) \) is an observed response for \(j \)-th individual in \(i \)-th group.

\(C \) is coefficient matrix for modified maximum contrast statistics (\(i \times k \) matrix, \(i \): No. of groups, \(k \): No. of pattern).

\[
C = (c_1, c_2, \ldots, c_k)^T
\]

\(c_k \) is coefficient vector of \(k \)th pattern.

\[
c_k = (c_{k1}, c_{k2}, \ldots, c_{ki})^T \quad (\sum_i c_{ki} = 0)
\]

\(S_{\text{max}} \) is the modified maximum contrast statistic.

\[
\bar{Y}_i = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}, \quad \bar{Y} = (\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_a)^T,
\]

\[
V = \frac{1}{\gamma} \sum_{j=1}^{n_i} \sum_{i=1}^{a}(Y_{ij} - \bar{Y}_i)^2, \quad \gamma = \sum_{i=1}^{a} (n_i - 1),
\]

\[
S_k = \frac{c_k^T \bar{Y}}{\sqrt{V c_k^T c_k}}
\]

\[
S_{\text{max}} = \max(S_1, S_2, \ldots, S_k).
\]

Consider testing the overall null hypothesis \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_i \), versus alternative hypotheses \(H_1 \) for response patterns (\(H_1 : \mu_1 < \mu_2 < \ldots < \mu_i, \mu_1 = \mu_2 < \ldots < \mu_i, \mu_1 < \mu_2 < \ldots = \mu_i \)). The \(P \)-value for the probability distribution of \(S_{\text{max}} \) under the overall null hypothesis is

\[
P \text{-value} = \Pr(S_{\text{max}} > s_{\text{max}} \mid H_0)
\]

\(s_{\text{max}} \) is observed value of statistics. This function gives distribution of \(S_{\text{max}} \) by using randomized quasi-Monte Carlo method from package \texttt{mvtnorm}.

Value

- statistic: the value of the test statistic with a name describing it.
- p.value: the p-value for the test.
- alternative: a character string describing the alternative hypothesis.
- method: the type of test applied.
- contrast: a character string giving the names of the data.
- contrast.index: a suffix of coefficient vector of the \(k \)th pattern that gives modified maximum contrast statistics (row number of the coefficient matrix).
- error: estimated absolute error and,
- msg: status messages.

References

See Also

- pmvt
- GenzBretz
- mmcm.resamp

Examples

```r
## Example 1
set.seed(136885)
x <- c(rnorm(130, mean = 1/6, sd = 1),
      rnorm(90, mean = 1/6, sd = 1),
      rnorm(10, mean = -2/6, sd = 1))
g <- rep(1:3, c(130, 90, 10))
boxplot(x ~ g,
       width = c(length(g[g==1]), length(g[g==2]), length(g[g==3])),
       main = "Dominant model (sample data)",
       xlab = "Genotype", ylab="PK parameter")

# coefficient matrix
# c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2))
y <- mmcm.mvt(x, g, contrast)
```
y

Example 2

for dataframe
true response pattern: pos = 1 dominant model c=(1, 1, -2)
2 additive model c=(-1, 0, 1)
3 recessive model c=(2, -1, -1)

set.seed(3872435)
x <- c(
 rnorm(130, mean = 1 / 6, sd = 1),
 rnorm(90, mean = 1 / 6, sd = 1),
 rnorm(10, mean = -2 / 6, sd = 1),
 rnorm(130, mean = -1 / 4, sd = 1),
 rnorm(90, mean = 0 / 4, sd = 1),
 rnorm(10, mean = 1 / 4, sd = 1),
 rnorm(130, mean = 2 / 6, sd = 1),
 rnorm(90, mean = -1 / 6, sd = 1),
 rnorm(10, mean = -1 / 6, sd = 1)
)
g <- rep(rep(1:3, c(130, 90, 10)), 3)
pos <- rep(c("rsXXXX", "rsYYYY", "rsZZZZ"), each=230)
xx <- data.frame(pos = pos, x = x, g = g)

coefficient matrix
c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
 c(-1, 0, 1),
 c(-2, 1, 1),
 c(-1, -1, 2)
)
mmcmtapply <- function(r) {
 mmcm.mvt(
 xx$x[xx$pos==r[1]], xx$g[xx$pos==r[1]],
 contrast
)
}
y <- tapply(xxpos, xxpos, mmcmtapply)

yy <- data.frame(
 Pos = as.vector(names(y)),
 Pval = as.vector(sapply(y, "[[", 3)),
 Pattern = as.vector(sapply(y, "[[", 7)),
 QMC_Error = as.vector(sapply(y, "[[", 9))
)

yy

mmcm.resamp

The permuted modified maximum contrast method

Description

This function gives P-value for the permuted modified maximum contrast method.
Usage

\texttt{mmcm.resamp(x, g, contrast, alternative = c("two.sided", "less", "greater"),
nsample = 20000, abseps = 0.001, seed = NULL)}

Arguments

- \texttt{x}: a numeric vector of data values
- \texttt{g}: an integer vector giving the group for the corresponding elements of \texttt{x}
- \texttt{contrast}: a numeric contrast coefficient matrix for permuted modified maximum contrast statistics
- \texttt{alternative}: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
- \texttt{nsample}: specifies the number of resamples (default: 20000)
- \texttt{abseps}: specifies the absolute error tolerance (default: 0.001)
- \texttt{seed}: a single value, interpreted as an integer; see \texttt{set.seed()} function. (default: NULL)

Details

\texttt{mmcm.resamp} performs the permuted modified maximum contrast method that is detecting a true response pattern under the unequal sample size situation.

\(Y_{ij} (i = 1, 2, \ldots; j = 1, 2, \ldots, n_i) \) is an observed response for \(j \)-th individual in \(i \)-th group.

\(C \) is coefficient matrix for permuted modified maximum contrast statistics (\(i \times k \) matrix, \(i \): No. of groups, \(k \): No. of pattern).

\[C = (c_1, c_2, \ldots, c_k)^T \]

\(c_k \) is coefficient vector of \(k \)-th pattern.

\[c_k = (c_{k1}, c_{k2}, \ldots, c_{ki})^T \quad (\sum_i c_{ki} = 0) \]

\(M_{\text{max}} \) is a permuted modified maximum contrast statistic.

\[\bar{Y}_i = \frac{\sum_{j=1}^{n_i} Y_{ij}}{n_i}, \quad \bar{Y} = (\bar{Y}_1, \bar{Y}_2, \ldots, \bar{Y}_1, \ldots, \bar{Y}_a)^T, \quad M_k = \frac{c_k^T \bar{Y}}{\sqrt{c_k^T c_k}}, \quad M_{\text{max}} = \max(M_1, M_2, \ldots, M_k). \]

Consider testing the overall null hypothesis \(H_0 : \mu_1 = \mu_2 = \ldots = \mu_i \), versus alternative hypotheses \(H_1 \) for response patterns (\(H_1 : \mu_1 < \mu_2 < \ldots < \mu_i, \mu_1 = \mu_2 < \ldots < \mu_i, \mu_1 < \mu_2 < \ldots = \mu_i \)). The \(P \)-value for the probability distribution of \(M_{\text{max}} \) under the overall null hypothesis is

\[P \text{-value} = P(M_{\text{max}} > m_{\text{max}} \mid H_0) \]

\(m_{\text{max}} \) is observed value of statistics. This function gives distribution of \(M_{\text{max}} \) by using the permutation method, follow algorithm:

1. Initialize counting variable: \(COUNT = 0 \). Input parameters: \texttt{NRESAMPMIN} (minimum resampling count, we set 1000), \texttt{NRESAMPMAX} (maximum resampling count), and \(\epsilon \) (absolute error tolerance).
2. Calculate m_{max} that is the observed value of the test statistic.

3. Let $y_{ij}^{(r)}$, donate data, which are sampled without replacement, and independently, form observed value y_{ij}. Where, (r) is suffix of the resampling number ($r = 1, 2, \ldots$).

4. Calculate $m_{\text{max}}^{(r)}$ from $y_{ij}^{(r)}$. If $m_{\text{max}}^{(r)} > m_{\text{max}}$, then increment the counting variable: $\text{COUNT} = \text{COUNT} + 1$. Calculate approximate P-value $\hat{p}^{(r)} = \text{COUNT} / r$, and the simulation standard error $SE(\hat{p}^{(r)}) = \sqrt{\hat{p}^{(r)}(1 - \hat{p}^{(r)})} / r$.

5. Repeat 3–4, while $r > 100$ and $3.5 \times SE(\hat{p}^{(r)}) < \epsilon$ (corresponding to 99% confidence level), or N_{RESAMP} times. Output the approximate P-value $\hat{p}^{(r)}$.

Value
- **statistic** the value of the test statistic with a name describing it.
- **p.value** the p-value for the test.
- **alternative** a character string describing the alternative hypothesis.
- **method** the type of test applied.
- **contrast** a character string giving the names of the data.
- **contrast.index** a suffix of coefficient vector of the kth pattern that gives permuted modified maximum contrast statistics (row number of the coefficient matrix).
- **error** estimated absolute error and,
- **msg** status messages.

References

See Also
- `mmcm.mvt`

Examples
```
## Example 1 ##
# true response pattern: dominant model c=(1, 1, -2)
set.seed(136885)
x <- c(
  rnorm(130, mean = 1 / 6, sd = 1),
  rnorm( 90, mean = 1 / 6, sd = 1),
  rnorm( 10, mean = -2 / 6, sd = 1)
)
g <- rep(1:3, c(130, 90, 10))
boxplot(
```
x ~ g,
width = c(length(g[1]), length(g[2]), length(g[3])),
main = "Dominant model (sample data)",
xlab = "Genotype", ylab="PK parameter"
)

coefficient matrix
c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
 c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2)
)
y <- mmcm.resamp(x, g, contrast, nsample = 20000, abseps = 0.01, seed = 5784324)
y

Example 2
for dataframe
true response pattern: pos = 1 dominant model c=(1, 1, -2)
2 additive model c=(-1, 0, 1)
3 recessive model c=(2, -1, -1)
set.seed(3872435)
x <- c(
norm(130, mean = 1 / 6, sd = 1),
norm(90, mean = 1 / 6, sd = 1),
norm(10, mean = -2 / 6, sd = 1),
norm(130, mean = -1 / 4, sd = 1),
norm(90, mean = 0 / 4, sd = 1),
norm(10, mean = 1 / 4, sd = 1),
norm(130, mean = 2 / 6, sd = 1),
norm(90, mean = -1 / 6, sd = 1),
norm(10, mean = -1 / 6, sd = 1)
)
g <- rep(rep(1:3, c(130, 90, 10)), 3)
pos <- rep(c("rsXXXX", "rsYYYY", "rsZZZZ"), each=230)
xx <- data.frame(pos = pos, x = x, g = g)

coefficient matrix
c_1: additive, c_2: recessive, c_3: dominant
contrast <- rbind(
 c(-1, 0, 1), c(-2, 1, 1), c(-1, -1, 2)
)

mmcmapply <- function(r) {
 mmcm.resamp(
 xx$x[xx$pos==r[1]], xx$g[xx$pos==r[1]],
 contrast, nsample = 10000, abseps = 0.01, seed = 5784324+as.numeric(r[1])
)
}
y <- tapply(xxpos, xxpos, mmcmapply)

yy <- data.frame(
 Pos = as.vector(names(y)),
 Pval = as.vector(sapply(y, "[", 3)),
 Pattern = as.vector(sapply(y, "[", 7)),
 MC_Error = as.vector(sapply(y, "[", 9))
)
print.mmcm

Description
This function print result of function mcm.mvt, mmcm.mvt and mmcm.resamp.

Usage
S3 method for class 'mmcm'
print(x, digits = getOption("digits"), ...)

Arguments
- **x** Object of class mmcm, which is result of function mcm.mvt, mmcm.mvt and mmcm.resamp.
- **digits** a non-null value for digits specifies the minimum number of significant digits to be printed in values. The default, NULL, uses getOption(digits). (For the interpretation for complex numbers see signif.) Non-integer values will be rounded down, and only values greater than or equal to 1 and no greater than 22 are accepted.
- **...** Further arguments passed to or from other methods.

Details
The case where printed "More than 2 contrast coefficient vectors were selected", some contrast may be unsuitable.

See Also
print.default, mmcm.mvt, mmcm.resamp, mcm.mvt
Index

*Topic **htest**
 - mcm.mvt, 2
 - mmcm-package, 2
 - mmcm.mvt, 5
 - mmcm.resamp, 8

*Topic **print**
 - print.mmc, 12

- GenzBretz, 3, 4, 6, 7
- getOption, 12

- mcm.mvt, 2, 2, 3, 12
- mmcm (mmcm-package), 2
- mmcm-package, 2
- mmcm.mvt, 2, 4, 5, 6, 10, 12
- mmcm.resamp, 2, 7, 8, 9, 12

- pmvt, 2, 4, 5, 7
- print.default, 12
- print.mmc, 12

- set.seed(), 9
- signif, 12