Package ‘mmds’

February 20, 2015

Version 1.1
Date 2011-07-10
Title Mixture Model Distance Sampling (mmds)
Author David Lawrence Miller <dave@ninepointeightone.net>
Maintainer David Lawrence Miller <dave@ninepointeightone.net>
Description This library implements mixture model distance sampling methods. See Miller and Thomas (in prep.).
Depends R (>= 2.8.0)
LazyLoad yes
License GPL-2
Collate 'checkinitialvalues.R' 'DeltaMethod.R' 'detrct.R' 'em.R'
 'eval pdf.R' 'fitmix.R' 'lfit gr.R' 'lfit.R' 'lfit var.R'
 'getpars.R' 'gettests.R' 'integrate hn pt.R' 'integrate hn R'
 'integrate pdf.R' 'inv.reparam pi.R' 'keyfct hn R' 'keyfct R'
 'mu calc R' 'namepars R' 'plot ds mixture R'
 'print ds mixture R' 'print summary ds mixture R'
 'reparam pi R' 'scalevalue R' 'set initial values R' 'sim mix R'
 'solvecov R' 'step ds mixture R' 'summary ds mixture R'
 'switchpars R' 'varNp R' 'zzz R' 'mmds package R'
Repository CRAN
Date/Publication 2012-04-11 06:03:52
NeedsCompilation no

R topics documented:

ds.mixture ... 2
fitmix ... 3
getpars ... 4
inv.reparam.pi .. 5
mmds.gof ... 6
mmds.pars ... 6
plot.ds.mixture .. 7
ds.mixture

reparam.pi ... 8
sim.mix ... 9
step.ds.mixture ... 10
summary.ds.mixture ... 11

Index

ds.mixture A fitted Mixture Model Detection Function Object

Description

The fitted mixture model detection function object returned by `fitmix`. Knowledge of most of this is not useful. Use `link{summary.ds.mixture}` for result summaries.

Details

A `ds.mixture` object has the following elements:

distance Vector of distances used in the analysis.
likelihood Value of the log-likelihood at the maxima.
pars Parameter estimates. See `mmds.pars` for more information.
mix.terms Number of mixture terms fit.
width Truncation distance used.
z List containing the matrix of covariates used. Output from `model.matrix`.
zdim Number of columns of `z`. See `mmds.pars` for more information.
hessian Hessian matrix at the maxima.
pt Logical indicating whether the data were from a point transect survey.
data Data frame after truncation.
ftype Type of detection function.
ctrl.options Options passed to `optim`.
showit Debug level.
opt.method Optimisation method used.
usegrad Were analytic gradients used?
model.formula Model formula.
mu Per-observation effective trip width/effective area of detection.
pa.vec Vector of per-observation detectabilities.
N Estimate of N in the covered area (Horvitz-Thompson).
pa Average detectability.
pars.se Standard errors of the parameters.
N.se Standard error of the Horvitz-Thompson estimate of the abundance.
pa.se Standard error of the average detectability.
aic AIC of the fitted model.
cvm Cramer-von Mises GoF test results. List containing: p, the p-value and w, the test statistic.
ks Kolmogorov-Smirnov test results. List containing: p, the p-value and Dn, the test statistic. See `mmds.gof` for
fitmix

Note

d.s.mixture objects can be passed to step.d.s.mixture to select number of mixture components based on AIC score.

Author(s)

David L. Miller

fitmix Mixture Model Distance Detection Function Fitting

Description

Fits a mixture of half-normals as a detection function to distance sampling data collected via either line or point transects, possibly with covariates.

Usage

fitmix(data, width, mix.terms = 1, pt = FALSE, model.formula = "~1", initialvalues = NULL, showit = 0, ctrl.options = c(maxit = 10000), opt.method = "BFGS+SANN", usegrad = TRUE, ftype = "hn")

Arguments

data data.frame containing the distances and covariates to be used in the analysis (see Details).
width Truncation distance.
mix.terms Number of mixture components to use. Defaults to 1 (ie. CDS).
pt Is the data from point transects? Default FALSE.
model.formula Formula to be used for the covariates. Defaults to "~1" (ie. no covariates).
initialvalues User supplied initialvalues if needed. Defaults to NULL. See mmds.pars for more information.
showit Debugging level from 0 to 3, with 3 being most verbose. Defaults to 0.
ctrl.options Options to give to the optim. Defaults to c(maxit=10000).
opt.method Optimisation method to use, one of "BFGS", "BFGS+SANN" or "EM". Defaults to "BFGS+SANN", see Details.
usegrad Should analytic derivatives be used in the optimisation? Default TRUE.
ftype Function type to be used as the detection function, currently only "hn".

Value

a ds.mixture model object.
Details

This is the main routine that fits mixture model detection functions. Data should be a `data.frame` with (at least) a column named `distance`. Any covariates given in `model.formula` should be named in `data`. Note that rows with `distance` greater than `width` will be discarded.

See `step.ds.mixture` for AIC selection for the number of mixture components.

Author(s)

David L. Miller

References

See Also

`summary.ds.mixture step.ds.mixture plot.ds.mixture sim.mix mmds.gof ds.mixture mmds.gof fitmix mmds.pars step.ds.mixture`

Examples

```r
library(mmds)
set.seed(0)
## simulate some line transect data from a 2 point mixture
sim.dat<-sim.mix(c(-0.223,-1.897,inv.reparam.pi(0.3)),2,100,1)
## fit the model
fit.sim.dat<-fitmix(sim.dat,1,2)
## what happened?
summary(fit.sim.dat)
```

getpars

Grab parameter values

Description

Extract parameter values and create a named list.

Usage

```r
getpars(fpar, mix.terms, zdim = 0, z = NULL)
```

Arguments

- **fpar**: The `$par` element `ds.mixture` object.
- **mix.terms**: Number of mixture components.
- **zdim**: Number of covariates.
- **z**: Covariate matrix.
inv.reparam.pi

Value

a named list with elements $key.scale$ (giving the key scales) and $mix.prop$ giving the mixture proportions.

Author(s)

David L. Miller

Description

Re-parameterise the mixture proportions so that when there is more than a 2-point mixture, the proportions sum to 1.

Usage

inv.reparam.pi(mix.prop, lastpar = FALSE)

Arguments

mix.prop A set of mixture proportions.
lastpar Is the last parameter provided, i.e. does sum(mix.prop)=1?

Value

a vector of parameters

Notes

See Miller and Thomas for information on exactly how these are calculated. Thanks go to David Borchers for proposing the trick.

Author(s)

David L. Miller

References

See Also

reparam.pi
Examples

```r
library(mmds)
reparam.pi(inv.reparam.pi(0.3))
reparam.pi(inv.reparam.pi(c(0.3, 0.4, 0.1), lastpar=TRUE))
```

mmds.gof

Goodness of fit for mixture model detection functions

Description

Goodness of fit testing for detection for mixture model detection functions.

Details

Two goodness of fit tests are provided: the Cramer-von Mises and the Kolmogorov-Smirnov. Both are implemented as in Buckland et al. (2004).

Print methods are provided, so accessing the ks and cvm elements of a `ds.mixture` object will give suitable summaries.

David L. Miller

mmds.pars

Parameters in mmds

Description

The internal parametrisation used in mmds is not directly interpretable. This man page aims to explain how to interpret the parameters and transform them into useful information.

Details

Parametrisation works differently for the scale parameters of the half-normals and for the mixture proportions.

The scale parameters of the half-normals (or their constituent parameters in the case of a covariate model) are given on the log scale.

The mixture proportions are transformed to a parametrisation that allows values to lie over all of the real line (see Miller and Thomas for details).

The parameter vector is made up of the scale parameters followed by the mixture parameters. In the non-covariate case the former is the length of the number of mixtures (`mix.terms`) and the latter is of length `mix.terms-1`. When the model has covariates the scale parameters are given as `mix.terms` intercepts followed by the covariate parameters.

The function `getpars` transforms the parameters (`$pars` element) in a `ds.mixture` object to a named list.

Calling `summary.ds.mixture` will show the mixture proportions.

The parameter `initialvalues` supplied to `fitmix`.
plot.ds.mixture

Plot the results of a mixture model detection function fit.

Description

Plots the detection function (or pdf) of a fitted mixture model detection function, optionally overlayed on a histogram of the observed data.

Usage

```r
## S3 method for class 'ds.mixture'
plot(x, style = "", main = "",
     breaks = "Sturges", ylim = NULL, xlim = NULL,
     pdf = FALSE, plot.formula = NULL, hide.hist = FALSE,
     nomf = FALSE, x.axis = NULL, xlab = "Distance",
     ylab = NULL, ...)```

Arguments

- **x**: a `ds.mixture` object.
- **style**: If set to "comp", composite plots of the detection function will be shown for the detection function (the averaged detection function in the covariate case).
- **main**: (A vector of) title(s) for the plot(s). By default these are set by the function (and are fairly ugly but descriptive).
- **breaks**: Breaks to be used for the histogram. This can be a vector of numbers or any of the permissable options used in `hist`. Defaults to "Sturges".
- **ylim**: Used to manually set the y limit of the plot. Defaults to NULL.
- **xlim**: Used to manually set the x limit of the plot. Defaults to NULL.
- **pdf**: Should the pdf be plotted rather than detection function be plotted? Only really useful with point transect data. Defaults to FALSE.
- **plot.formula**: Formula of covariates to be plotted. Defaults to NULL, which plots all covariates. No effect with non-covariate models.
- **hide.hist**: Should the histogram be hidden, leaving only the detection function (or pdf) to be plotted? Defaults to FALSE.
- **nomf**: Should the mfrow value be altered? Useful when creating custom plots for publication. Defaults to FALSE (yes, change the mfrow value).
- **x.axis**: Set the x axis labels. Again, useful for publication plots. Defaults to NULL, which uses the default R values.
- **xlab**: Label for the x axis.
- **ylab**: Label for the y axis.
- **...**: not used at the moment
Value

a plot!

Details

For covariate models, all the levels of factor variables are plotted or the 25, 50 and 75th percentiles of continuous variables are plotted averaged over the values of the other covariates.

Author(s)

David L. Miller

Examples

```r
library(mmds)
set.seed(0)
simulate some line transect data from a 2 point mixture
sim.dat<-sim.mix(c(-0.223,-1.897,inv.reparam.pi(0.3)),2,100,1)
fit the model
fit.sim.dat<-fitmix(sim.dat,1,2)
plot
plot(fit.sim.dat)
```

---

reparam.pi  

Reparametrize mixture proportions

Description

Re-parameterise the mixture proportions so that when there is more than a 2-point mixture, the proportions sum to 1.

Usage

```r
reparam.pi(thetas)
```

Arguments

- **thetas**: Mixture proportions in their parametrisation for optimization.

Value

- a vector of parameters

Notes

See Miller and Thomas for information on exactly how these are calculated. Thanks go to David Borchers for proposing the trick.
Simulate data from a mixture model detection function

Description

Simulate data from a (line or point transect) mixture model detection function with or without covariates using rejection sampling.

Usage

```r
sim.mix(pars, mix.terms, n, width, zdim = 0, z = NULL,
 pt = FALSE, showit = FALSE)
```

Arguments

- `pars`: Parameters of the model to fit. See `mmds.pars` for details.
- `mix.terms`: Number of mixture components.
- `n`: Number of data to generate.
- `width`: Truncation distance.
- `zdim`: Number of columns of `z`. Defaults to 0.
- `z`: Covariate data. Defaults to NULL. See details for more information.
- `pt`: Should point transect data be generated? Defaults to FALSE.
- `showit`: Print the acceptance rate. Defaults to FALSE.

Details

This routine uses rejection sampling, so may be rather slow of large sample sizes. Direct sampling will be available soon.
Value

a data.frame with the following columns:

- **observed**: Whether the object was observed, always \( n \) 1s. Kept for mmds compatibility.
- **object**: Object identifier, numbered 1 to \( n \). Kept for mmds compatibility.
- **distance**: Observed distances.

Then follows as many columns as there are columns as \( z \), named as in \( z \).

Author(s)

David L. Miller

Examples

```r
library(mmds)
set.seed(0)
simulate some line transect data from a R point mixture
sim.dat<-sim.mix(c(-0.223,-1.897,inv.reparam.pi(0.3)),2,100,1)
hist(sim.dat$distance)
```

---

**step.ds.mixture**  
*Stepwise selection of mixture components*

Description

Uses AIC to select the number of mixture components.

Usage

```r
step.ds.mixture(ds.object, max.terms = 4)
```

Arguments

- **ds.object**: **ds.mixture** object.
- **max.terms**: Maximum number of mixture components to attempt to fit. Default 4.

Value

a **ds.mixture** model object of the best (AIC-wise) model.

Details

This routine is most useful during model building. Setting up a basic 1-point mixture model and then running this on the object returns a model with the lowest AIC.

Progress will be printed to the screen.
summary.ds.mixture

Author(s)
David L. Miller

Examples

library(mmds)
set.seed(0)
## simulate some line transect data from a 2 point mixture
sim.dat<-sim.mix(c(-0.223,-1.897,inv.reparam.pi(0.3)),2,100,1)
## fit the model
fit.sim.dat.1<-fitmix(sim.dat,1,1)
## find best AIC model
step.ds.mixture(fit.sim.dat.1)

summary.ds.mixture  Summarize a ds.mixture object

Description
Summarize a ds.mixture object. The function provides information on parameter estimates, estimates of the abundance in the covered area and the average detectability and their respective standard errors and coefficients of variation.

Usage

## S3 method for class 'ds.mixture'
summary(object, ...)

Arguments

object  A fitted mixture model detection function object.
...
Anything, but it will be ignored.

Value

a summary of a ds.mixture object.

Author(s)
David L. Miller

References

Examples

library(mmds)
set.seed(0)
## simulate some line transect data from a 2 point mixture
sim.dat<-sim.mix(c(-0.223,-1.897,inv.reparam.pi(0.3)),2,100,1)
## fit the model
fit.sim.dat<-fitmix(sim.dat,1,2)
## what happened?
summary(fit.sim.dat)
Index

ds.mixture, 2, 2, 3, 4, 6, 7, 10, 11
fitmix, 2, 3, 4, 6
getpars, 4, 6
hist, 7
inv.reparam.pi, 5
mmds.gof, 2, 4, 6
mmds.pars, 2–4, 6, 9
model.matrix, 2
optim, 2, 3
plot.ds.mixture, 4, 7
reparam.pi, 8
sim.mix, 4, 9
step.ds.mixture, 3, 4, 10
summary.ds.mixture, 4, 6, 11