Package ‘mmeln’

September 25, 2015

Type Package
Title Estimation of Multinormal Mixture Distribution
Version 1.2
Date 2015-09-23
Author Charles-Edouard Giguere
Maintainer Charles-Edouard Giguere <ce.giguere@gmail.com>
Description Fit multivariate mixture of normal distribution using covariance structure.
License GPL-3
LazyLoad yes
Repository CRAN
Encoding UTF-8
Date/Publication 2015-09-25 16:19:10
NeedsCompilation no

R topics documented:

- mmeln-package 2
- dmnorm 3
- estim 4
- exY 5
- mmeln 6
- plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln 8
- post.mmeln,entropy.mmeln 10

Index 12
mmeln-package

Mixture of multivariate normal

Description

This package fits mixture of multivariate normal. Different types of covariance structure can be used.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>MMELN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2010-10-22</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Charles-Édouard Giguère
Maintainer: Charles-Édouard Giguère <ce.giguere@umontreal.ca>

See Also

mmeln, estim.mmeln, anova.mmeln

Examples

```r
### load an example.
data(exY)

### estimation of the parameters of the mixture.

temps <- factor(1:3)
mmeln1 <- mmeln(Y, G = 2, form.loc = ~temps-1, form.mel = ~1, cov = "CS")
mix1 <- estim(mmeln1, mu = list(rep(1,3), rep(2,3)), tau = c(0),
              sigma = list(c(1,.6), c(1,.6)), iterlim = 100, tol = 1e-6)
mix1
anova(mix1)
plot(mix1, main="Mixture of multivariate normal")
```
Description

Function to estimate Multivariate Normal Density Function

Usage

dnrm(X, Mu, Sigma)

Arguments

X A matrix or a vector (if you have only one multivariate observation) containing the data. This matrix may contain missing data.
Mu A mean vector or a matrix where the number of column is p. If Mu is a matrix and X a vector, the density is evaluated for each value of Mu specified in the matrix Mu
Sigma The covariance matrix. This matrix must be symmetric positive definite(all eigen values are positive. see eigen)

Details

This methods compute the value of the density function for a given data and a given set of parameters. It works like the R command dnorm in the stats package. Although this methods can be used directly it is not intended this way. If you want to estimate density of multivariate normal distribution, the library mvtnorm is more appropriate

Value

This command return a vector of density.

Note

This function can be used as a standalone but is implemented here for use within the mmeln package

Author(s)

Charles-Édouard Giguère

References

M.S. Srivastava (2002), Methods of Multivariate Statistics, WILEY

See Also

mmeln,eigen
Examples

```r
dmnorm(1:3,1:3,diag(3))
```

Description

Compute the MLE of the model parameters using the E-M (Expectation-Maximization) algorithm

Usage

```r
## S3 method for class 'mmeln'
estim(x,...,mu=NA,tau=NA,sigma=NA,random.start=FALSE,iterlim=500,tol=1e-8)
```

Arguments

- `x`: An object of type `mmeln` containing the design of the model, see `mmeln`
- `...`: For the moments no other arguments can be added
- `mu`: A list of length $X \times G$ containing the starting value for the location parameters
- `tau`: The starting value for the mixture parameters
- `sigma`: A list of length $X \times G$ containing the starting value for the covariances parameters
- `random.start`: A True/False value indicating if the starting parameters should be given at random. If true the starting values are not needed.
- `iterlim`: The maximum number of iterations allowed
- `tol`: Tolerance, degree of precision required to stop the iterative process

Details

Methods `estim.mmeln...` are used by the `estim` function but are of no use outside this method.

Value

Return an object of type "mmeln" & "mmelnSOL" les arguments suivants :

- `obj$Y`: The data matrix
- `obj$G`: The number of groups
- `obj$p`: Number of column in Y
- `obj$N`: Number of row in Y
- `obj$Xg`: The list of location design matrices
- `obj$pl`: The number of location parameters
Mixture design matrix
The number of mixture parameters
Covariance type
logical value indicating if covariance is equal across group
The number of covariance parameters

Author(s)
Charles-Édouard Giguère

References
Srivastava, M.S. (2002), Methods of Multivariate Statistics, WILEY

See Also
mmeln.package

Examples
data(exY)
estimation of the parameters of the mixture
temps=0:2
mmeln1=mmeln(Y, G = 3, form.loc = list(~temps, ~temps + I(temps^2), ~temps + I(temps^2)), form.mel = ~SEXE, cov = "cs")
mmelnSOL1=estim(mmeln1, mu = list(c(1,1), c(2,0,0), c(3,0,0)),
tau = c(0,0,0), sigma = list(c(1,0), c(1,0), c(1,0)))

A two mixture example

Description
A simulated dataset used for example

Format
Two variables are available:

SEXE A variable identifying sex of participants.
Y A three column matrix containing the data.
Details

Half of the row follow the distribution $N[(2,3,4)',\begin{bmatrix}1 & .6 & .5 \\ .6 & 1 & .3 \\ .5 & .3 & 1\end{bmatrix}]$, the other half follow the distribution $N[(-1,5,-2)',\begin{bmatrix}1 & .6 & .5 \\ .6 & 1 & .3 \\ .5 & .3 & 1\end{bmatrix}]$.

mmeln: mixture of multivariate normal

Description

constructor for objects of class mmeln: mixture of multivariate normal

Usage

```r
mmeln(Y,G=2,p=dim(Y)[2],form.loc=NULL,X=NULL,
form.mel=NULL,Z=NULL,cov="IND",equalcov=FALSE,param=NULL)
```

Arguments

- **Y**: A matrix containing the data used for estimation. This matrix may contain NA but it needs at least one observation per row. It’s assumed that the missing mechanism is not related to the data under study (MAR: Missing At Random).
- **G**: The number of groups in the mixture
- **p**: Doesn’t need to be specified. It’s the dimension of the multivariate data (number of column in Y)
- **form.loc,X**: Location design of the model. By default, the mean model is used where we estimate p mean in each group. Only one of these two parameters must be specified depending if the model is specified through a formula (See R documentation) or a design matrix. If you want to specify a different design for each group you must pass the arguments as a list. See examples below for further details. If a formula is used it must use variable of length p representing the design across time, for example: ~temps where temps=factor(1:4). If a design matrix is used, it must be of dimension p*k where k<=p
- **form.mel,Z**: Mixture design of the model. Only one of these two parameters must be specified. The design is constant across groups. This is equivalent to multinomial regression
- **cov**: Covariance type (for now only the CS structure is implemented). Enter either the type of covariance as a string or as numeric corresponding to the position in the following choices : 1)UN (general unstructured covariance), 2) CS (Compound Symmetry with constant variance), 3) UCS (Compound Symmetry with unconstant variance), 4) AR1 (Auto-regressive of order 1 with constant variance), 5) UAR1 (Auto-regressive of order 1 with unconstant variance), 6) IND: (diagonal structure with constant variance), 7) UIND (diagonal structure with unconstant variance)
- **equalcov**: Logical value T/F indicating if the variance is equal across groups. Default to FALSE.
The `mmeln` object describes the way the mixture is designed and permits a lot of different modelisation of the data. Many specific methods are associated with this class of objects: print, anova, logLik, post. Once a solution is found through the `estim.mmeln` function, the object is promoted to an object of class `mmelnSOL` but inherits all the attributes and function of the `mmeln` class but gains its own print method. The attributes in a `mmeln` object should be accessed via adequate function inside the `mmeln` library except if handled by an advanced user.

Value

Retourne un objet de type "mmeln" ayant les arguments suivants :

- `obj$Y` The data matrix
- `obj$Yl` A list of length N containing the data in each row without the NA value.
- `obj$Yv` A list of length N indicating the column where there is valid data
- `obj$G` The number of groups
- `obj$p` Number of column in Y
- `obj$pi` A vector where p[i] is the number of observation in row i
- `obj$N` Number of row in Y
- `obj$M` Number of total observations \(\sum_{i=1}^{N}(pi) \)
- `obj$Xg` The list of location design matrices
- `obj$p1` The number of location parameters
- `obj$Z` Mixture design matrix
- `obj$pm` The number of mixture parameters
- `obj$cov` Covariance type
- `obj$equalcov` logical value indicating if covariance is equal across group
- `obj$pc` The number of covariance parameters

Author(s)

Charles-Édouard Giguère
References

Bernard D. Flury (1997), A first course in multivariate statistics, Springer

M.S. Srivastava (2002), Methods of Multivariate Statistics, WILEY

See Also

estim.mmeln

Examples

data(exY)
estimation of the parameters of the mixture
temps <- 0:2
mmeln1 <- mmeln(y, G = 3,
 form.loc = list(-temps, -temps + I(temps^2), -temps + I(temps^2)),
 form.mel = ~SEXE, cov = "CS")

plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln

Utility methods for objects of class mmeln

Description

Methods to plot, compare and assessed the log(Likelihood) of objects of class mmeln. The method cov.tsf which convert a vector of covariance parameter into a covariance matrix and multnm which performs an estimation of multinomial model are internal methods that should not be used unless by experimented user

Usage

S3 method for class 'mmeln'
plot(x,...,main="",xlab="Temps",ylab="Y",col=1:x$G,leg=TRUE)
S3 method for class 'mmeln'
logLik(object,...,param=NULL)
S3 method for class 'mmeln'
anova(object,..., test = TRUE)
S3 method for class 'mmelnSOL'
print(x,...,se.estim="MLR")
cov.tsf(param,type,p)
Arguments

- **x**: An object of type mmeln or mmelnSOL (mmelnSOL required for the command print)
- **object**: An object of type mmeln
- **main**: Title of the graphic
- **xlab**: Label of the X axis
- **ylab**: Label of the Y axis
- **col**: Colour of the lines plotted in each group
- **leg**: Logical value indicating if the legend is plotted or not
- **...**: Other object of type mmeln to compare (use is only valid in the anova command)
- **test**: Logical value indicating if the likelihood ratio test is required. Valid only when two objects are entered
- **param**: For the function logLik a list of parameters like defined in mmeln, by default it is taken from the mmeln object. For the cov.tsf function it is vector containing the distinct value of the covariance as defined in the mmeln function
- **type**: Type of covariance as defined in mmeln
- **p**: Rank of covariance matrix
- **se.estim**: Type of estimator. The default is MLR based on the information matrix defined as $I_r^{-1} = I_r^{-1} I_e I_r^{-1}$. The other choices are the Observational information matrix "ML" and the Empirical information matrix based on the cross product of the gradient of the logLikelihood "ML.E"

Details

The function plot draws XSG lines showing the expected value. The function logLik gives the log(Likelihood) of a model. The function anova compares mmeln models and gives the total number of parameters, the log(Likelihood), the AIC (Akaike information criterion), the BIC (Bayesian information criterion based on the number of observation) and the BIC2 (BIC based on the number of subjects). Optionally, the Likelihood ratio test is performed. The function print is used for solution given by the estim.mmeln function. The print method gives the number of iterations required for convergence and the statistics for the location, mixture and covariance parameters.

Author(s)

Charles-Édouard Giguère

References

Bernard D. Flury (1997), A first course in multivariate statistics, Springer
M.S. Srivastava (2002), Methods of Multivariate Statistics, WILEY
See Also

mmeln

Examples

load an example.

data(exY)

estimation of the parameters of the mixture

temps=1:3

mmeln1=mmeln(Y,G=2,form.loc=as.factor(temps)-1,form.mel=-1,cov="CS")

mmeln2=mmeln(Y,G=2,form.loc=list(~temps-1,(temps-2)^2),form.mel=-1,cov="CS")

mix1=estim(mmeln1,mu=list(rep(1,3),rep(2,3)),tau=c(0),
 sigma=list(c(1,.4),c(1,.4)),iterlim=100,tol=1e-6)

mix2=estim(mmeln2,mu=list(c(2,1),c(5,-1)),tau=c(0),
 sigma=list(c(1,.4),c(1,.4)),iterlim=100,tol=1e-6)

mix1

mix2

anova(mix1,mix2)

plot(mix1,main="Mixture of multivariate normal")

plot(mix2,main="Mixture of multivariate normal")
tau Mixture parameters. By default, those are taken from \(X \)
sigma Covariance parameters. By default, those are taken from \(X \)

Details

This procedure returns the posterior probabilities of membership in each group or the entropy of the model. They were computed as described in McLachlan and Peel (2000). If the parameters \(X \$ \text{param} \) is not null no further parameters are necessary, otherwise you have to give a value for \(\mu \), \(\tau \), \(\sigma \) (this is mainly used inside the \text{estim.mmeln} \ function)

Value

Returns a matrix \(P \) with \(X$N \) row and \(X$G \) column where \(P[i,j] \) is the posterior probabilities of subject \(i \) being in the group \(j \) or the value of entropy.

Author(s)

Charles-Édouard Giguère

References

See Also

\text{estim.mmeln}

Examples

load an example.
\begin{verbatim}
data(exY)

estimation of the parameters of the mixture
temps <- factor(1:3)
mmeln1 <- mmeln(Y, G = 2, form.loc = ~temps - 1, form.mel = ~1, cov = "CS")
mix1 <- estim(mmeln1, mu = list(rep(1,3),rep(2,3)), tau = c(0),
 sigma = list(c(1, .4), c(1, .4)), iterlim = 100, tol = 1e-6)
post(mix1)
entropy(mix1)
\end{verbatim}
Index

*Topic datasets
 eX, 5
*Topic density
 dnorm, 3
dnorm, 3
eigen, 3
entropy(post.mmeln,entropy.mmeln), 10
estim, 4
estim.mmeln, 7–9, 11
estimloc.disp.CS1(estim), 4
estimloc.disp.IND1(estim), 4
estimmmlnCS1(estim), 4
estimmmlnIND1(estim), 4
eX, 5
I.CS1(estim), 4
I.IND1(estim), 4
IE.CS1(estim), 4
IE.IND1(estim), 4
logit(estim), 4
logLik.mmeln
plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln, (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
post.mmeln,entropy.mmeln, 10
*Topic multivariate
 estim, 4
 mmeln, 6
 plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln, (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 post.mmeln,entropy.mmeln, 10
*Topic multivariate normal
dnorm, 3
*Topic normal
 estim, 4
 mmeln, 6
 plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln, (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 post.mmeln,entropy.mmeln, 10
*Topic package
 mmeln-package, 2
 covNA.wt(estim), 4
 dmnorm, 3
 dnorm, 3
 eigen, 3
 entropy(post.mmeln,entropy.mmeln), 10
 estim, 4
 estim.mmeln, 7–9, 11
 estimloc.disp.CS1(estim), 4
 estimloc.disp.IND1(estim), 4
 estimmmlnCS1(estim), 4
 estimmmlnIND1(estim), 4
 eX, 5
 I.CS1(estim), 4
 I.IND1(estim), 4
 IE.CS1(estim), 4
 IE.IND1(estim), 4
 logit(estim), 4
 logLik.mmeln
 plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln, (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 post.mmeln,entropy.mmeln, 10
 mmeln, 4, 6, 9, 10
 mmeln-package, 2
 mmeln.package, 5
 mmeln-package (mmeln-package), 2
 multnm
 (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 post.mmeln,entropy.mmeln, 10
 pfQ.intermediate.CS1(estim), 4
 plot.mmeln
 (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln, 8
 post.mmeln,entropy.mmeln, 10
 cov.tsf
 (plot.mmeln,logLik.mmeln,anova.mmeln,print.mmeln), 8
 post.mmeln,entropy.mmeln, 10
 post.mmeln,entropy.mmeln, 10
print.mmelnSOL
 (plot.mmeln, logLik.mmeln, anova.mmeln, print.mmeln),
 8

SEX (exY), 5

Xinv (estim), 4

Y (exY), 5