Package ‘mombf’

June 22, 2018

Version 2.1.2
Date 2018-06-22
Title Moment and Inverse Moment Bayes Factors
Author David Rossell, John D. Cook, Donatello Telesca, P. Roebuck
Maintainer David Rossell <rossell david@gmail.com>
Depends R (>= 2.14.0), methods, mvtorm, ncvreg, mgcv
Imports mclust, survival
Suggests parallel
Description Model selection and parameter estimation for non-local and some conjugate priors. Bayes factors for regression and mixtures. Routines to sample, evaluate prior densities, distributions and quantiles.
License GPL (>= 2)
URL http://mombf.r-forge.r-project.org/
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-06-22 21:04:52 UTC

R topics documented:

bbPrior ... 2
bfnormmix .. 3
dalapl ... 5
ddir .. 6
diwish .. 7
bbPrior

Prior on model space for variable selection problems

Description

unifPrior implements a uniform prior (equal a priori probability for all models). binomPrior implements a Binomial prior. bbPrior implements a Beta-Binomial prior.

Usage

unifPrior(sel, logscale = TRUE)
binomPrior(sel, prob = 0.5, logscale = TRUE)
bbPrior(sel, alpha = 1, beta = 1, logscale = TRUE)

Arguments

- sel: Logical vector indicating which variables are included in the model
- logscale: Set to TRUE to return the log-prior probability.
- prob: Success probability for the Binomial prior
- alpha: First parameter of the Beta-Binomial prior, which is equivalent to specifying a Beta(alpha,beta) prior on prob.
- beta: First parameter of the Beta-Binomial prior, which is equivalent to specifying a Beta(alpha,beta) prior on prob.
bfnormmix

Value

Prior probability of the specified model

Author(s)

David Rossell

Examples

library(mombf)
sel <- c(TRUE,TRUE,FALSE,FALSE)
unifPrior(sel,logscale=FALSE)
binomPrior(sel,prob=.5,logscale=FALSE)
bbPrior(sel,alpha=1,beta=1,logscale=FALSE)

Description

Posterior sampling and Bayesian model selection to choose the number of components k in multivariate Normal mixtures.

bfnormmix computes posterior probabilities under non-local MOM-IW-Dir(q) priors, and also for local Normal-IW-Dir(q.niw) priors. It also computes posterior probabilities on cluster occupancy and posterior samples on the model parameters for several k.

Usage

bfnormmix(x, k=1:2, mu0=rep(0,ncol(x)), g, nu0, S0, q=3, q.niw=1,
B=10^4, burnin= round(B/10), logscale=TRUE, returndraws=TRUE, verbose=TRUE)

Arguments

x n x p input data matrix
k Number of components
mu0 Prior on mu[j] is N(mu0,g Sigma[j])
g Prior on mu[j] is N(mu0,g Sigma[j]). This is a critical MOM-IW prior parameter that specifies the separation between components deemed practically relevant. It defaults to assigning 0.95 prior probability to any pair of mu’s giving a bimodal mixture, see details
S0 Prior on Sigma[j] is IW(Sigma_j; nu0, S0)
u0 Prior on Sigma[j] is IW(Sigma_j; nu0, S0)
q Prior parameter in MOM-IW-Dir(q) prior
q.niw Prior parameter in Normal-IW-Dir(q.niw) prior
bfnormmix

- Number of MCMC iterations
- Number of burn-in iterations
- If set to TRUE then log-Bayes factors are returned
- If set to TRUE the MCMC posterior draws under the Normal-IW-Dir prior are
 returned for all k
- Set to TRUE to print iteration progress

Details

The likelihood is
\[p(x[i] \mid \mu, \Sigma, \eta) = \sum_j \eta_j N(x[i]; \mu_j, \Sigma_j) \]

The Normal-IW-Dir prior is
\[\text{Dir}(\eta; q.niw) \prod_j N(\mu_j; \mu_0, g \Sigma) \text{IW}(\Sigma_j; \nu_0, S_0) \]

The MOM-IW-Dir prior is
\[d(\mu, \Sigma) \text{Dir}(\eta; q) \prod_j N(\mu_j; \mu_0, g \Sigma) \text{IW}(\Sigma_j; \nu_0, S_0) \]

where
\[d(\mu, \Sigma) = [\prod_j <(\mu_j - \mu_l)' A (\mu_j - \mu_l)>] \]

and A is the average of \(\Sigma_1^{-1}, ..., \Sigma_k^{-1} \). Note that one must have \(q>1 \) for the MOM-IW-Dir to define a non-local prior.

By default the prior parameter g is set such that
\[P((\mu[j]-\mu[l])' A (\mu[j]-\mu[l]) < 4) = 0.05. \]

The reasonale when \(\Sigma[j]=\Sigma[l] \) and \(\eta[j]=\eta[l] \) then \((\mu[j]-\mu[l])' A (\mu[j]-\mu[l])>4 \) corresponds to a bimodal density. That is, the default g focuses 0.95 prior prob on a degree of separation between components giving rise to a bimodal mixture density.

bfnormmix computes posterior model probabilities under the MOM-IW-Dir and Normal-IW-Dir priors using MCMC output. As described in Fuquene, Steel and Rossell (2018) the estimate is based on the posterior probability that one cluster is empty under each possible k.

Value

A list with elements

- k Number of components
- \(pp_{momiw} \) Posterior probability of k components under a MOM-IW-Dir(q) prior
- \(pp_{niw} \) Posterior probability of k components under a Normal-IW-Dir(q.niw) prior
- probempty Posterior probability that any one cluster is empty under a MOM-IW-Dir(q.niw) prior
- \(bf_{momiw} \) Bayes factor comparing 1 vs k components under a MOM-IW-Dir(q) prior
- \(logpen \) log of the posterior mean of the MOM-IW-Dir(q) penalty term
- \(logbf_{niw} \) Bayes factor comparing 1 vs k components under a Normal-IW-Dir(q.niw) prior
Author(s)

David Rossell

References

Examples

```r
x <- matrix(rnorm(100*2), ncol=2)
bnormmix(x=x, k=1:3)
```

dalapl

Density and random draws from the asymmetric Laplace distribution

Description

dalapl evaluates the probability density function, palapl the cumulative probability function and ralapl generates random draws.

Usage

dalapl(x, th=0, scale=1, alpha=0, logscale=FALSE)
palapl(x, th=0, scale=1, alpha=0)
ralapl(n, th=0, scale=1, alpha=0)

Arguments

- **x**: Vector of values at which to evaluate the pdf/cdf
- **n**: Number of random draws
- **th**: Location parameter (mode)
- **scale**: Scale parameter (proportional to variance)
- **alpha**: Asymmetry parameter, must be between -1 and 1
- **logscale**: If TRUE the log-pdf is returned

Details

For x<=th the asymmetric Laplace pdf is

\[0.5 \times \exp(-\text{abs}(\text{th}-x)/(\sqrt{\text{scale}} \times (1+\alpha))) / \sqrt{\text{scale}} \]

and for x>th it is

\[0.5 \times \exp(-\text{abs}(\text{th}-x)/(\sqrt{\text{scale}} \times (1-\alpha))) / \sqrt{\text{scale}} \]
Value

dalapl returns the density function, palapl the cumulative probability, ralapl random draws.

Author(s)

David Rossell

Examples

library(mombf)

e <- ralap1(n=10^4, th=1, scale=2, alpha=0.5)
thseq <- seq(min(e), max(e), length=1000)
hist(e, main='', breaks=30, prob=TRUE)
lines(thseq, dalap1(thseq, th=1, scale=2, alpha=0.5), col=2)

ddir

Dirichlet density

Description

Evaluate the density of a Dirichlet distribution

Usage

ddir(x, q, logscale=TRUE)

Arguments

x Vector or matrix containing the value at which to evaluate the density. If a matrix, the density is evaluated for each row. Rows are renormalized to ensure they add up to 1

q Dirichlet parameters. Must have the same length as ncol(x), or length 1 (in which case a symmetric Dirichlet density is evaluated)

logscale For logscale==TRUE, dimom returns the natural log of the prior density

Value

Density of a Dirichlet(q) distribution evaluated at each row of x

Author(s)

David Rossell

Examples

library(mombf)
x= matrix(c(1/3,2/3,.5,.5),nrow=2,byrow=TRUE)
ddir(x,q=2)
diwish

Density for Inverse Wishart distribution

Description

`diwish` returns the density for the inverse Wishart(nu,S) evaluated at Sigma.

Usage

`diwish(Sigma, nu, S, logscale=FALSE)`

Arguments

- `sigma` Positive-definite matrix
- `nu` Degrees of freedom of the inverse Wishart
- `S` Scale matrix of the inverse Wishart
- `logscale` If `logscale==TRUE` the log-density is returned

Value

Inverse Wishart(nu,S) density evaluated at Sigma

Author(s)

David Rossell

See Also

`dpostNIW` for the Normal-IW posterior density

Examples

```r
library(mombf)
Sigma = matrix(c(2,1,2),nrow=2)
diwish(Sigma,nu=4,S=diag(2))
```
dmom

Moment prior and inverse moment prior.

Description

dmom, dimom and demom return the density for the moment, inverse moment and exponential moment priors. pmom, pimom and pemom return the distribution function for the univariate moment, inverse moment and exponential moment priors (respectively). qmom and qimom return the quantiles for the univariate moment and inverse moment priors.

Usage

dmom(x, tau, a.tau, b.tau, phi=1, r=1, V1, baseDensity='normal', nu=3, logscale=FALSE, penalty='product')
dimom(x, tau=1, phi=1, V1, logscale=FALSE, penalty='product')
demom(x, tau, a.tau, b.tau, phi=1, logscale=FALSE)

pmom(q, V1 = 1, tau = 1)
pimom(q, V1 = 1, tau = 1, nu = 1)
pemom(q, tau, a.tau, b.tau)

qmom(p, V1 = 1, tau = 1)
quimom(p, V1 = 1, tau = 1, nu = 1)

Arguments

- x: In the univariate setting, x is a vector with the values at which to evaluate the density. In the multivariate setting it is a matrix with an observation in each row.
- q: Vector of quantiles.
- p: Vector of probabilities.
- V1: Scale matrix (ignored if penalty='product'). Defaults to 1 in univariate setting and the identity matrix in the multivariate setting.
- tau: Prior dispersion parameter is tau*phi. See details.
- a.tau: If tau is left missing, an Inverse Gamma(a.tau/2,b.tau/2) is placed on tau. In this case dmom and demom return the density marginalized with respect to tau.
- b.tau: See a.tau.
- phi: Prior dispersion parameter is tau*phi. See details.
- r: Prior power parameter for MOM prior is 2*r
- baseDensity: For baseDensity=='normal' a normal MOM prior is used, for baseDensity=='t' a T MOM prior with nu degrees of freedom is used.
- nu: Prior parameter indicating the degrees of freedom for the quadratic T MOM and iMOM prior densities. The tails of the inverse moment prior are proportional to the tails of a multivariate T with nu degrees of freedom.
penalty penalty=='product' indicates that product MOM/iMOM should be used. penalty=='quadratic' indicates quadratic iMOM. See Details.

logscale For logscale==TRUE, dimom returns the natural log of the prior density.

Details

For type=='quadratic' the density is as follows. Define the quadratic form q(theta)= (theta-theta0)' * solve(V1) * (theta-theta0) / (tau*phi). The normal moment prior density is proportional to q(theta)*dmvnorm(theta,theta0,tau*phi*V1). The T moment prior is proportional to q(theta)*dmvt(theta,theta0,tau*phi*V1,df=nu). The inverse moment prior density is proportional to q(theta)^(-nu+d)/2 * exp(-1/q(theta)).

pmom, pimom and qimom use closed-form expressions, while qmom uses nlminb to find quantiles numerically. Only the univariate version is implemented. In this case the product MOM is equivalent to the quadratic MOM. The same happens for the iMOM.

Only the product eMOM prior is implemented.

Value

dmom returns the value of the moment prior density. dimom returns the value of the inverse moment prior density.

Author(s)

David Rossell

References

See http://rosselldavid.googlepages.com for technical reports.

See Also

g2mode to find the prior mode corresponding to a given g. mode2g to find the g value corresponding to a given prior mode.

Examples

#evaluate and plot the moment and inverse moment priors
library(mombf)
tau <- 1
thseq <- seq(-3,3,length=1000)
plot(thseq,dmom(thseq,tau=tau),type='l',ylab='Prior density')
lines(thseq,dimom(thseq,tau=tau),lty=2,col=2)
dpostNIW

Posterior Normal-IWishart density

Description

dpostNIW evaluates the posterior Normal-IWishart density at (mu,Sigma). rpostNIW draws independent samples. This posterior corresponds to a Normal model for the data

\[x[i,] \sim N(\mu,\Sigma) \text{ iid } i=1,...,n \]

under conjugate priors

\[\mu \mid \Sigma \sim N(\mu_0, g \Sigma) \quad \Sigma \sim IW(n_0, S_0) \]

Usage

\[
dpostNIW(\mu, \Sigma, x, g=1, \mu_0=\text{rep}(0,\text{length}(\mu)), n_0=\text{nrow}(\Sigma)+1, S_0, \text{logscale}=\text{FALSE})
\]

\[
rpostNIW(n, x, g=1, \mu_0=\text{0}, n_0, S_0, \text{precision}=\text{FALSE})
\]

Arguments

- **mu**
 Vector of length p

- **Sigma**
 p x p positive-definite covariance matrix

- **x**
 n x p data matrix (individuals in rows, variables in columns)

- **g**
 Prior dispersion parameter for mu

- **mu0**
 Prior mean for mu

- **nu0**
 Prior degrees of freedom for Sigma

- **sP**
 Prior scale matrix for Sigma, by default set to I/nu0

- **logscale**
 set to TRUE to get the log-posterior density

- **n**
 Number of samples to draw

- **precision**
 If set to TRUE, samples from the precision matrix (inverse of Sigma) are returned instead

Value

- **dpostNIW** returns the Normal-IW posterior density evaluated at (mu,Sigma).

- **rpostNIW** returns a list with two elements. The first element are posterior draws for the mean. The second element are posterior draws for the covariance (or its inverse if precision==TRUE). Only lower-diagonal elements are returned (Sigma[lower.tri(Sigma,diag=TRUE)]).

Author(s)

David Rossell
See Also
diwish for the inverse Wishart prior density, marginalNIW for the integrated likelihood under a
Normal-IW prior

Examples

#Simulate data
x= matrix(rnorm(100),ncol=2)
#Evaluate posterior at data-generating truth
mu= c(0,0)
Sigma= diag(2)
dpostNIW(mu,Sigma,x=x,g=1,nu0=4,log=FALSE)

table

eprod Expectation of a product of powers of Normal or T random variables

Description

Compute the mean of prod(x)^power when x follows T_dof(mu,sigma) distribution (dof= -1 for
multivariate Normal).

Usage

eprod(m, S, power = 1, dof = -1)

Arguments

 m Location parameter
 S Scale matrix. For multivariate T with dof>2 the covariance is S*dof/(dof-2). For
 the multivariate Normal the covariance is S.
 power Power that the product is raised to
 dof Degrees of freedom of the multivariate T. Set to -1 for the multivariate Normal.

Details

The calculation is based on the computationally efficient approach by Kan (2008).

Value

Expectation of the above-mentioned product

Author(s)

John Cook
References

Examples

Check easy independence case
m <- c(0,3); S <- matrix(c(2,0,0,1),ncol=2)
eprod(m, S, power=2)
(m[1]^2+S[1][1])*(m[2]^2+S[2][2])

hald

Hald Data

Description

Montgomery and Peck (1982) illustrated variable selection techniques on the Hald cement data and gave several references to other analysis. The response variable y is the heat evolved in a cement mix. The four explanatory variables are ingredients of the mix, i.e., x1: tricalcium aluminate, x2: tricalcium silicate, x3: tetracalcium alumino ferrite, x4: dicalcium silicate. An important feature of these data is that the variables x1 and x3 are highly correlated (corr(x1,x3)=-0.824), as well as the variables x2 and x4 (with corr(x2,x4)=-0.975). Thus we should expect any subset of (x1,x2,x3,x4) that includes one variable from highly correlated pair to do as any subset that also includes the other member.

Usage

data(hald)

Format

hald is a matrix with 13 observations (rows) and 5 variables (columns), the first column is the dependent variable. y.hald and x.hald are also availables.

Source

marginalNIW

Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.

Description

The argument z can be used to specify cluster allocations. If left missing then the usual marginal likelihood is computed, else it is computed conditional on the clusters (this is equivalent to the product of marginal likelihoods across clusters)

Usage

marginalNIW(x, xbar, samplecov, n, z, g, mu0=rep(0, ncol(x)), nu0=ncol(x)+4, S0, logscale=TRUE)

Arguments

x Data matrix (individuals in rows, variables in columns). Alternatively you can leave missing and specify xbar, samplecov and n instead
xbar Either a vector with column means of x or a list where each element corresponds to the column means for each cluster
samplecov Either the sample covariance matrix cov(x) or a list where each element contains the covariance for each cluster
n Either an integer indicating the sample size nrow(x) or a vector indicating the cluster counts table(z)
z Optional argument specifying cluster allocations
g Prior dispersion parameter for mu
mu0 Prior mean for mu
nu0 Prior degrees of freedom for Sigma
S0 Prior scale matrix for Sigma, by default set to I/nu0
logscale set to TRUE to get the log-posterior density

Details

The function computes

\[p(x) = \int p(x | \mu, \Sigma) p(\mu, \Sigma) \, d\mu \, d\Sigma \]

where \(p(x[i]) = N(x[i]; \mu, \Sigma) \) iid \(i = 1, ..., n \)

\[p(\mu | \Sigma) = N(\mu; \mu_0, g \Sigma) \]

\[p(\Sigma) = IW(\Sigma; \nu_0, S_0) \]

Value

If z is missing the integrated likelihood under a Normal-IW prior. If z was specified then the product of integrated likelihoods across clusters
Author(s)

David Rossell

See Also
dpostNIW for the posterior Normal-IW density.

Examples

```r
# Simulate data
x = matrix(rnorm(100), ncol=2)

# Integrated likelihood under correct model
marginalNIW(x, g=1, nu0=4, log=FALSE)

# Integrated likelihood under random cluster allocations
z = rep(1:2, each=25)
marginalNIW(x, z, g=1, nu0=4, log=FALSE)
```

mixturebf-class

Class "mixturebf"

Description

Stores the output of Bayesian model selection for mixture models, e.g. as produced by function bfnormmix.

Methods are provided for retrieving the posterior probability of a given number of mixture components, posterior means and posterior samples of the mixture model parameters.

Objects from the Class

Typically objects are automatically created by a call to bfnormmix.

Slots

The class has the following slots:

- **postprob** data.frame containing posterior probabilities for different numbers of components (k) and log-posterior probability of a component being empty (contain no individuals)
- **p** Number of variables in the data to which the model was fit
- **n** Number of observations in the data to which the model was fit
- **priorpars** Prior parameters used when fitting the model
- **postpars** Posterior parameters for a 1-component mixture, e.g. for a Normal mixture the posterior is $N(\mu_1, \Sigma/\text{prec})$ $\text{IW}(\nu_1, S_1)$
- **mcmc** For each considered value of k, posterior samples for the parameters of the k-component model are stored
Methods

- **coef**: Computes posterior means for all parameters
- **show**: Displays general information about the object.
- **postProb**: Extracts posterior model probabilities, Bayes factors and posterior probability of a cluster being empty
- **postSamples**: Extracts posterior samples

Author(s)

David Rossell

References

See Also

See also `bfnormmix`

Examples

```r
showClass("mixturebf")
```

Description

`mode2g` finds the \(g \) value corresponding to a given prior mode. `g2mode` finds the prior mode corresponding to a given \(g \) value. `priorp2g` finds the \(g \) value giving `priorp` prior probability to the interval \((-q,q) \).

All routines operate in the standardized effect sizes scale.

Usage

```r
mode2g(prior.mode, prior=c("iMom", "normalMom", "tMom"), nu=1, dim=1)
g2mode(g, prior=c("iMom", "normalMom", "tMom"), nu=1, dim=1)
priorp2g(priorp, q, nu=1, prior=c("iMom", "normalMom", "tMom"))
```
Arguments

prior.mode Prior mode for the quadratic form \((\theta-\theta_0)' * \text{solve}(\Sigma) * (\theta-\theta_0)/(n*g*\sigma^2)\), where \(\sigma\) is the dispersion parameter and \(\Sigma\) is given by the design matrix.

prior prior="normalMom" does computations for the normal moment prior, prior="tMom" for the T moment prior, prior="iMom" does computations for the inverse moment prior. Currently prior="tMom" is not implemented in priorp2g.

nu Prior degrees of freedom for the T moment prior or the iMom prior (ignored if prior="normalMom").

dim Dimensionality of the parameter, i.e. \(\text{dim}==1\) for univariate, \(\text{dim}==2\) for bivariate and so on.

g Prior parameter. See dimom for details.

Details

See dmom and dimom for details on the meaning of the prior parameters.

Value

mode2g returns the value of the prior parameter \(g\) matching the given mode.

g2mode returns the prior mode for a given prior parameter \(g\).

priorp2g returns \(g\) giving priorp prior probability to the interval \((-q, q)\).

Author(s)

David Rossell <rosselldavid@gmail.com>

References

See http://rosselldavid.googlepages.com for technical reports.

See Also

dmom, dimom, mombf, imombf

Examples

```r
# find g value giving a prior mode for (theta/(sigma*n*Sigma))'2 at 0.2'2
data(hald)
prior.mode <- .2
gmom <- mode2g(prior.mode^2, prior='normalMom')
gtmom <- mode2g(prior.mode^2, prior='tMom', nu=3)
gimom <- mode2g(prior.mode^2, prior='iMom')
gmom
```
Bayesian variable selection for linear models via non-local priors.

Description

Bayesian model selection for linear, asymmetric linear, median and quantile regression under non-local or Zellner priors. \(p \gg n \) can be handled.

modelSelection enumerates all models when feasible and uses a Gibbs scheme otherwise. See \texttt{rnlp}
for posterior samples for the coefficients.

modelsearchBlockDiag seeks the highest posterior probability model using an iterative block search.

Usage

```r
modelSelection(y, x, center=TRUE, scale=TRUE,
enumerate= ifelse(ncol(x)<15,TRUE,FALSE),
includevars=rep(FALSE,ncol(x)),
maxvars= ncol(x),
niter=10^4, thinning=1,
burnin=round(niter/10), family='normal', priorCoef=momprior(tau=0.348),
priorDelta=modelbbprior(alpha.p=1,beta.p=1),
priorVar=igprior(alpha=0.01,lambda=.01),
priorSkew=momprior(tau=0.348), phi, deltainsi=rep(FALSE,ncol(x)),
initSearch='greedy', method='auto', Hess='asymp', optimMethod='CDA',
B=10^5, verbose=TRUE)
```

```r
modelsearchBlockDiag(y, x, priorCoef=momprior(tau=0.348),
priorDelta=modelbbprior(1,1), priorVar=igprior(0.01,0.01),
blocksize=10, maxiter=10, maxvars=100, maxlogmargdrop=20,
maxenum=10, verbose=TRUE)
```

Arguments

- **y** Vector with observed responses
- **x** Design matrix with all potential predictors
- **center** If TRUE, \(y \) and \(x \) are centered to have zero mean, therefore eliminating the need to include an intercept term in \(x \)
- **scale** If TRUE, \(y \) and columns in \(x \) are scaled to have standard deviation1
enumerate
If TRUE all models with up to maxvars are enumerated, else Gibbs sampling is used to explore the model space
includevars
Logical vector of length ncol(x) indicating variables that should always be included in the model, i.e. variable selection is not performed for these variables
maxvars
When enumerate==TRUE only models with up to maxvars variables enumerated. In modelsearchBlockDiag a sequence of models is defined from 1 up to maxvars
niter
Number of Gibbs sampling iterations
thinning
MCMC thinning factor, i.e. only one out of each thinning iterations are reported. Defaults to thinning=1, i.e. no thinning
burnin
Number of burn-in MCMC iterations. Defaults to 1*niter. Set to 0 for no burn-in
family
Residual distribution. Possible values are 'normal', 'two-piece normal', 'laplace', 'two-piece laplace', or 'auto'. For the latter the residual distribution is inferred from the data. 'laplace' corresponds to median regression and 'two-piece laplace' to quantile regression. See argument priorSkew
priorCoef
Prior on coefficients, created by momprior, imomprior, emomprior or zellnerprior. Prior dispersion is on coefficients/sqrt(scale) for Normal and two-piece Normal, and on coefficients/sqrt(2*scale) for Laplace and two-piece Laplace.
priorDelta
Prior on model space. Use modelbbprior() for Beta-Binomial prior, modelbinomprior(p) for Binomial prior with prior inclusion probability p, modelcomplexprior for Complexity prior, or modelunifprior() for Uniform prior
priorVar
Inverse gamma prior on scale parameter, created by igprior(). For Normal variance=scale, for Laplace variance=2*scale.
priorSkew
Either a fixed value for tanh(alpha) where alpha is the asymmetry parameter or a prior on tanh(alpha). For family='two-piece laplace' setting alpha=a is equivalent to performing quantile regression for the quantile (1+a)/2. Ignored if family is 'normal' or 'laplace'.
phi
Residual variance. Typically this is unknown and therefore left missing. If specified argument priorVar is ignored
deltaini
Logical vector of length ncol(x) indicating which coefficients should be initialized to be non-zero. Defaults to all variables being excluded from the model
initSearch
Algorithm to refine deltaini. initSearch=='greedy' uses a greedy Gibbs sampling search. initSearch=='SCAD' sets deltaini to the non-zero elements in a SCAD fit with cross-validated regularization parameter. initSearch=='none' leaves deltaini unmodified
method
Method to compute marginal likelihood. The default is to used closed-form expressions whenever possible (only available for pMOM priors with up to 15 covariates) and Laplace approximations otherwise. method=='Laplace' for Laplace approx, method=='plugin' for BIC-type approximation, method=='MC' for Importance Sampling, method=='Hybrid' for Hybrid Laplace-IS (only available for piMOM prior). See Details.
hess
Method to estimate the hessian in the Laplace approximation to the integrated likelihood under Laplace or asymmetric Laplace errors. When hess=='asym
the asymptotic hessian is used, hess=='asympDiagAdj' a diagonal adjustment is applied (see Rossell and Rubio for details).

optimMethod
Algorithm to maximize objective function when method=='Laplace' or method=='MC'. optimMethod=='LMA' uses modified Newton-Raphson algorithm, 'CDA' coordinate descent algorithm

B
Number of samples to use in Importance Sampling scheme. Ignored if method=='Laplace'

verbose
Set verbose==TRUE to print iteration progress

blocksize
Maximum number of variables in a block. Careful, the cost of the algorithm is of order 2*blocksize

maxiter
Maximum number of iterations, each iteration includes a screening pass to add and subtract variables

maxlogmargdrop
Stop the sequence of models when the drop in log p(y|model) is greater than maxlogmargdrop. This option avoids spending unnecessary time exploring overly large models

maxenum
If the posterior mode found has less than maxenum variables then do a full enumeration of all its submodels

Details

Let delta be the vector indicating inclusion/exclusion of each column of x in the model. The Gibbs algorithm sequentially samples from the posterior of each element in delta conditional on all the remaining elements in delta and the data. To do this it is necessary to evaluate the marginal likelihood for any given model. These have closed-form expression for the MOM prior, but for models with >15 variables these are expensive to compute and Laplace approximations are used instead (for the residual variance a log change of variables is used, which improves the approximation). For other priors closed forms are not available, so by default Laplace approximations are used. For the iMOM prior we also implement a Hybrid Laplace-IS which uses a Laplace approximation to evaluate the integral wrt beta and integrates wrt phi (residual variance) numerically.

It should be noted that Laplace approximations tend to under-estimate the marginal densities when the MLE for some parameter is very close to 0. That is, it tends to be conservative in the sense of excluding more variables from the model than an exact calculation would.

Finally, method==’plugin’ provides a BIC-type approximation that is faster than exact or Laplace methods, at the expense of some accuracy. In non-sparse situations where models with many variables have large posterior probability method==’plugin’ can be substantially faster.

For more details on the methods used to compute marginal densities see Johnson & Rossell (2012).

modelSelection

Using method == 'modelSearchBlockDiag' uses the block search method described in Papaspiliopoulos & Rossell. Briefly, spectral clustering is run on X’X to cluster variables into blocks of blocksize and subsequently the Coolblock algorithm is used to define a sequence of models of increasing size. The exact integrated likelihood is evaluated for all models in this path, the best model chosen, and the scheme iteratively repeated to add and drop variables until convergence.

Value

Object of class msfit, which extends a list with elements
modelSelection

`postSample` matrix with posterior samples for the model indicator. `postSample[i,j]==1` indicates that variable j was included in the model in the MCMC iteration i

`postOther` postOther returns posterior samples for parameters other than the model indicator, i.e. basically hyper-parameters. If hyper-parameters were fixed in the model specification, postOther will be empty.

`margpp` Marginal posterior probability for inclusion of each covariate. This is computed by averaging marginal post prob for inclusion in each Gibbs iteration, which is much more accurate than simply taking `colMeans(postSample)`

`postMode` Model with highest posterior probability amongst all those visited

`postModeProb` Unnormalized posterior prob of posterior mode (log scale)

`postProb` Unnormalized posterior prob of each visited model (log scale)

`coef` Estimated coefficients (via posterior mode) for highest posterior probability model

Author(s)

David Rossell

References

Papaspiliopoulos O., Rossell, D. Scalable Bayesian variable selection and model averaging under block orthogonal design. 2016

See Also

`msfit-class` for details on the output. `postProb` to obtain posterior model probabilities. `rnlp` to obtain posterior samples for the coefficients. `nlpMarginal` to compute marginal densities for a given model.

Examples

```
#Simulate data
x <- matrix(rnorm(100*3),nrow=100,ncol=3)
theta <- matrix(c(1,1,0),ncol=1)
y <- x %*% theta + rnorm(100)

#Specify prior parameters
priorCoef <- imomprior(tau=1)
priorDelta <- modelunifprior()
priorVar <- igprior(alpha=.01,lambda=.01)
```
Moment and inverse moment Bayes factors for linear models.

Description

`mombf` computes moment Bayes factors to test whether a subset of regression coefficients are equal to some user-specified value. `imombf` computes inverse moment Bayes factors. `zellnerbf` computes Bayes factors based on the Zellner-Siow prior (used to build the moment prior).

Usage

```r
mombf(lm1, coef, g, prior.mode, baseDensity='normal', nu=3, theta0, logbf=FALSE, B=10^5)
imombf(lm1, coef, g, prior.mode, nu = 1, theta0 , method='adapt', quant=100, B = 10^5)
```

Arguments

- `lm1`: Linear model fit, as returned by `lm1`.
- `coef`: Vector with indexes of coefficients to be tested. e.g. `coef=c(2,3)` and `theta0=c(0,0)` tests `coef(lm1)[2]=coef(lm1)[3]=0`.
- `g`: Vector with prior parameter values. See `dmom` and `dimom` for details.
- `prior.mode`: If specified, `g` is determined by calling `g2mode`.
- `baseDensity`: Density upon which the Mom prior is based. `baseDensity='normal'` results in the normal Mom prior, `baseDensity='t'` in the t Mom prior with `nu` degrees of freedom.
- `nu`: For `mombf`, `nu` specifies the degrees of freedom of the t Mom prior. It is ignored unless `baseDensity='t'`. `nu` defaults to 3. For `imombf`, `nu` specifies the degrees of freedom for the inverse moment prior (see `dimom` for details). Defaults to `nu=1`, which Cauchy-like tails.
- `theta0`: Null value for the regression coefficients. Defaults to 0.
logbf: If logbf==TRUE the natural logarithm of the Bayes factor is returned.

method: Numerical integration method to compute the bivariate integral (only used by imombf). For method='adapt', the inner integral is evaluated (via integrate) at a series of nquant quantiles of the residual variance posterior distribution, and then averaged as described in Johnson (1992). Set method='MC' to use Monte Carlo integration.

nquant: Number of quantiles at which to evaluate the integral for known sigma. Only used if method='adapt'.

B: Number of Monte Carlo samples to estimate the T Mom and the inverse moment Bayes factor. Only used in mombf if baseDensity='t'. Only used in imombf if method='MC'.

Details

These functions actually call momunknown and imomunknown, but they have a simpler interface. See dmom and dimom for details on the moment and inverse moment priors. The Zellner-Siow g-prior is given by dmvnorm(theta,theta0,n*g*V1).

Value

mombf returns the moment Bayes factor to compare the model where theta!=theta0 with the null model where theta==theta0. Large values favor the alternative model; small values favor the null. imombf returns inverse moment Bayes factors. zellnerbf returns Bayes factors based on the Zellner-Siow g-prior.

Author(s)

David Rossell

References

See Also

momunknown, imomunknown and zbfunknown for another interface to compute Bayes factors. momknown, imomknown and zbfknown to compute Bayes factors assuming that the dispersion parameter is known, and for approximate Bayes factors for GLMs. mode2g for prior elicitation.

Examples

```r
# Compute Bayes factor for Hald's data
data(hald)

# Set g so that prior mode for standardized effect size is at 0.2
```
momknown

prior.mode <- .2^2
V <- summary(lm1)$cov.unscaled
gmom <- mode2g(prior.mode,prior='normalMom')
gimom <- mode2g(prior.mode,prior='iMom')

Set g so that interval (-0.2,0.2) has 5% prior probability
(in standardized effect size scale)
prorp <- .05; q <- .2
gmom <- c(gmom,priorp2g(priorp=prorp,q=q,prior='normalMom'))
gimom <- c(gmom,priorp2g(priorp=prorp,q=q,prior='iMom'))

mbf(lm1,coef=2,g=gmom) #moment BF
imombf(lm1,coef=2,g=gimom,B=10^5) #inverse moment BF
zellnerbf(lm1,coef=2,g=1) #BF based on Zellner's g-prior

momknown

Bayes factors for moment, inverse moment and Zellner-Siow g-prior.

Description

momknown and momunknown compute moment Bayes factors for linear models when \(\sigma^2 \) is known and unknown, respectively. The functions can also be used to compute approximate Bayes factors for generalized linear models and other settings. imomknown, imomunknown compute inverse moment Bayes factors. zbfknown, zbfunknown compute Bayes factors based on the Zellner-Siow g-prior.

Usage

momknown(theta1hat, V1, n, g = 1, theta0, sigma, logbf = FALSE)
momunknown(theta1hat, V1, n, nuisance.theta, g = 1, theta0, ssr, logbf = FALSE)
imomknown(theta1hat, V1, n, nuisance.theta, g = 1, nu = 1, theta0, sigma, method='adapt', B=10^5)
imomunknown(theta1hat, V1, n, nuisance.theta, g = 1, nu = 1, theta0, ssr, method='adapt', nquant = 100, B = 10^5)
zbfknown(theta1hat, V1, n, g = 1, theta0, sigma, logbf = FALSE)
zbfunknown(theta1hat, V1, n, nuisance.theta, g = 1, theta0, ssr, logbf = FALSE)

Arguments

- theta1hat: Vector with regression coefficients estimates.
- V1: Matrix proportional to the covariance of theta1hat. For linear models, the covariance is \(\sigma^2 * V1 \).
- n: Sample size.
- nuisance.theta: Number of nuisance regression coefficients, i.e. coefficients that we do not wish to test for.
momknown

ssr Sum of squared residuals from a linear model call.
g Prior parameter. See dmom and dimom for details.
theta0 Null value for the regression coefficients. Defaults to 0.
sigma Dispersion parameter is sigma^2.
logbf If logbf==TRUE the natural logarithm of the Bayes factor is returned.
nu Prior parameter for the inverse moment prior. See dimom for details. Defaults to nu=1, which Cauchy-like tails.
method Numerical integration method (only used by imomknown and imomunknown). Set method='adapt' in imomknown to integrate using adaptive quadrature of functions as implemented in the function integrate. In imomunknown the integral is evaluated as in imomknown at a series of nquant quantiles of the posterior for sigma, and then averaged as described in Johnson (1992). Set method='MC' to use Monte Carlo integration.
nquant Number of quantiles at which to evaluate the integral for known sigma.
B Number of Monte Carlo samples to estimate the inverse moment Bayes factor. Ignored if method!='MC'.

Details

See dmom and dimom for details on the moment and inverse moment priors. The Zellner-Siow g-prior is given by dmvnorm(theta,theta0,n*g*V1).

Value

momknown and momunknown return the moment Bayes factor to compare the model where theta!=theta0 with the null model where theta==theta0. Large values favor the alternative model; small values favor the null. imomknown and imomunknown return inverse moment Bayes factors. zbfknown and zbfunknown return Bayes factors based on the Zellner-Siow g-prior.

Author(s)

David Rossell

References

See http://rosselldavid.googlepages.com for technical reports.

See Also

mombf and imombf for a simpler interface to compute Bayes factors in linear regression. mode2g for prior elicitation.
Examples

#simulate data from probit regression
set.seed(4+2*2008)
n <- 50; theta <- c(log(2), 0)
x <- matrix(NA, nrow = n, ncol = 2)
x[, 1] <- rnorm(n, 0, 1); x[, 2] <- rnorm(n, .5 * x[, 1], 1)
y <- rbinom(n, 1, p)

#fit model
glm1 <- glm(y ~ x[, 1] + x[, 2], family = binomial(link = "probit"))
thetahat <- coef(glm1)
V <- summary(glm1)$cov.scaled

#compute Bayes factors to test whether x[1] can be dropped from the model
g <- .5
bfmom.1 <- momknown(thetahat[2], V[2, 2], n = n, g = g, sigma = 1)
bfimom.1 <- imomknown(thetahat[2], V[2, 2], n = n, nuisance = theta = 2, g = g, sigma = 1)
bfmom.1
bfimom.1

Description

Stores the output of Bayesian variable selection, as produced by function modelSelection. The class extends a list, so all usual methods for lists also work for msfit objects, e.g. accessing elements, retrieving names etc.

Some additional methods are provided for printing information on screen, computing posterior probabilities or sampling from the posterior of regression coefficients, as indicated below.

Objects from the Class

Typically objects are automatically created by a call to modelSelection. Alternatively, objects can be created by calls of the form `new("msfit", x)` where `x` is a list with the adequate elements (see slots).

Slots

The class extends a list with elements:

- **postSample** matrix with posterior samples for the model indicator. `postSample[i, j] == 1` indicates that variable j was included in the model in the MCMC iteration i

- **postOther** postOther returns posterior samples for parameters other than the model indicator, i.e. basically hyper-parameters. If hyper-parameters were fixed in the model specification, postOther will be empty.
margpp Marginal posterior probability for inclusion of each covariate. This is computed by averaging marginal post prob for inclusion in each Gibbs iteration, which is much more accurate than simply taking colMeans(postSample).

postMode Model with highest posterior probability amongst all those visited

postModeProb Unnormalized posterior prob of posterior mode (log scale)

postProb Unnormalized posterior prob of each visited model (log scale)

coef Estimated coefficients (via posterior mode) for highest posterior probability model

family Residual distribution, i.e. argument family when calling `modelSelection`

p Number of variables

Methods

show signature(object = "msfit"): Displays general information about the object.

postProb signature(object = "msfit"): Extracts posterior model probabilities.

rnlp signature(object = "msfit"): Obtain posterior samples for regression coefficients.

Author(s)

David Rossell

References

See Also

See also `modelSelection` and `rnlp`.

Examples

showClass("msfit")
Usage

```r
momprior(tau, tau.adj=10^6, r=1)
imomprior(tau, tau.adj=10^6)
emomprior(tau, tau.adj=10^6)
zellnerprior(tau, tau.adj=10^6)
modelunifprior()
modelbinomprior(p=0.5)
modelbbprior(alpha.p=1, beta.p=1)
modelcomplexprior(c=1)
igprior(alpha=.01, lambda=.01)
```

Arguments

- `tau`: Prior dispersion parameter for covariates undergoing selection
- `tau.adj`: Prior variance in Normal prior for covariates not undergoing selection
- `r`: MOM prior parameter is $2+r$
- `p`: Prior inclusion probability for binomial prior on model space
- `alpha.p`: Beta-binomial prior on model space has parameters alpha.p, beta.p
- `beta.p`: Beta-binomial prior on model space has parameters alpha.p, beta.p
- `c`: Under the Complexity prior the prior probability of having k variables in the model is proportional to $1/(c^k)$
- `alpha`: Inverse gamma prior has parameters alpha/2, lambda/2
- `lambda`: Inverse gamma prior has parameters alpha/2, lambda/2

Details

Under the uniform prior, the prior probability of any model is proportional to 1 / number of models. Under the Binomial, Beta-Binomial and Complexity priors a model with k out of K active variables has prior probability $P(Z=k)$ / (K choose k), where where $Z \sim$ Binomial(K,p), $Z \sim$ BetaBinomial(K,alpha.p,beta.p) or for the Complexity prior $P(Z=k)$ proportional to $1/K^c(k^c)$.

Objects from the Class

Objects can be created by calls of the form `new("msPriorSpec", ...), but it is easier to use creator functions.

For priors on regression coefficients use momprior, imomprior or emomprior. For prior on model space modelunifprior, modelbinomprior modelbbprior, or modelcomplexprior. For prior on residual variance use igprior.

Slots

- `priorType`: Object of class "character". "coefficients" indicates that the prior is for the non-zero regression coefficients. "modelIndicator" that it is for the model indicator, and "nuisancePars" that it is for the nuisance parameters. Several prior distributions are available for each choice of `priorType`, and these can be specified in the slot `priorDist`.

priorDistr: Object of class "character". If priorType="coefficients", priorDistr can be equal to "pMOM", "piMOM", "peMOM" or "zellner" (product moment, product inverse moment, product exponential moment or Zellner prior, respectively). If priorType="modelIndicator", priorDistr can be equal to "uniform" or "binomial" to specify a uniform prior (all models equally likely a priori) or a binomial prior, or to "complexity" for the Complexity prior of Castillo et al 2015. For a binomial prior, the prior inclusion probability for any single variable must be specified in slot priorPars['p']. For a beta-binomial prior, the Beta hyper-prior parameters must be in priorPars['alpha.p'] and priorPars['beta.p']. For the Complexity prior, the prior parameter must be in the slot priorPars['c']. If priorType="nuisancePars", priorDistr must be equal to "invgamma". This corresponds to an inverse gamma distribution for the residual variance, with parameters specified in the slot priorPars.

priorPars: Object of class "vector", where each element must be named. For priorDistr=='pMOM', there must be an element "r" (MOM power is 2r). For any priorDistr there must be either an element "tau" indicating the prior dispersion or elements "a.tau" and "b.tau" specifying an inverse gamma hyper-prior for "tau". Optionally, there may be an element "tau.adj" indicating the prior dispersion for the adjustment variables (i.e. not undergoing variable selection). If not defined, "tau.adj" is set to 0.001 by default. For priorDistr=='binomial', there must be either an element "p" specifying the prior inclusion probability for any single covariate, or a vector with elements "alpha.p" and "beta.p" specifying a Beta(alpha.p,beta.p) hyper-prior on p. For priorDistr=='invgamma' there must be elements "alpha" and "lambda". The prior for the residual variance is an inverse gamma with parameters .5*alpha and .5*lambda.

Methods

No methods defined with class "msPriorSpec" in the signature.

Note

When new instances of the class are created a series of check are performed to ensure that a valid prior specification is produced.

Author(s)

David Rossell

References

See Also

See also modelSelection for an example of defining an instance of the class and perform Bayesian model selection.
Examples

```
showClass("msPriorSpec")
```

nlpmarginals

Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors

Description

The marginal density of the data, i.e. the likelihood integrated with respect to the given prior distribution on the regression coefficients of the variables included in the model and an inverse gamma prior on the residual variance.

nlpmarginal is the general function, the remaining ones correspond to particular cases and are kept for backwards compatibility with old code, and will be deprecated in the future.

Usage

```r
nlpmarginal(sel, y, x, family="normal", priorCoef=momprior(tau=0.348),
priorVar=igprior(alpha=0.01,lambda=0.01), priorSkew=momprior(tau=0.348),
method='auto', hess='asymp', optimMethod='CDA', B=10^5, logscale=TRUE, XTX, yTX)
```

```r
pmomMarginalK(sel, y, x, phi, tau=1, method='Laplace', B=10^5, logscale=TRUE, XTX, yTX)
```

```r
pmomMarginalU(sel, y, x, alpha=0.001, lambda=0.001, tau=1,
method='Laplace', B=10^5, logscale=TRUE, XTX, yTX)
```

```r
pmomMarginalK(sel, y, x, phi, tau, r=1, method='auto', B=10^5,
logscale=TRUE, XTX, yTX)
```

```r
pmomMarginalU(sel, y, x, alpha=0.001, lambda=0.001, tau=1,
r=1, method='auto', B=10^5, logscale=TRUE, XTX, yTX)
```

Arguments

- `sel` Vector with indexes of columns in `x` to be included in the model
- `y` Vector with observed responses
- `x` Design matrix with covariates. Only the columns specified in `sel` are included in the model, the rest are disregarded
- `family` Residual distribution. Possible values are 'normal','twopiecenormal','laplace', 'twopiecelaplace'
- `priorCoef` Prior on coefficients, created by `momprior`, `imomprior`, `emomprior` or `zellnerprior`. Prior dispersion is on coefficients/sqrt(scale) for Normal and two-piece Normal, and on coefficients/sqrt(2*scale) for Laplace and two-piece Laplace.
- `priorVar` Inverse gamma prior on scale parameter, created by `igprior()`. For Normal variance=scale, for Laplace variance=scale^2
- `priorSkew` Either a number fixing tanh(alpha) where alpha is the asymmetry parameter or a prior on residual skewness parameter, assumed to be of the same family as `priorCoef`. Ignored if `family` is 'normal' or 'laplace'.
method Method to approximate the integral. method=='auto' uses closed-form expressions whenever possible and Laplace approximations otherwise. method=='Laplace' for Laplace approx. method=='MC' for Monte Carlo

ehess Method to estimate the hessian in the Laplace approximation to the integrated likelihood under Laplace or asymmetric Laplace errors. When hess=='asymp' the asymptotic hessian is used, hess=='asympDiagAdj' a diagonal adjustment is applied (see Rossell and Rubio for details).

optimMethod Algorithm to maximize objective function when method=='Laplace' or method=='MC'. optimMethod=='LMA' uses modified Newton-Raphson algorithm, 'CDA' coordinate descent algorithm

B Number of Monte Carlo samples to use (ignored unless method=='MC')

logscale If logscale==TRUE the log marginal density is returned.

XtX Optionally, specify the matrix X'X. Useful when the function must be called a large number of times.

ytX Optionally, specify the vector y'X. Useful when the function must be called a large number of times.

phi Residual variance, assumed to be known by pmomMarginalK and pmomMarginalK

alpha Prior for phi is inverse gamma alpha/2, lambda/2

lambda Prior for phi is inverse gamma alpha/2, lambda/2

tau Prior dispersion parameter for MOM and iMOM priors (see details)

r Prior power parameter for MOM prior is 2*r

Details

The marginal density of the data is equal to the integral of N(y;x[,sel]*theta,phi*I) * pi(theta|phi,tau) * IG(phi;alpha/2,lambda/2) with respect to theta, where pi(theta|phi,tau) is a non-local prior and IG denotes the density of an inverse gamma.

pmomMarginalK and pmomMarginalK assume that the residual variance is known and therefore the inverse-gamma term in the integrand can be omitted.

The product MOM and iMOM densities can be evaluated using the functions dpmom and dimom.

Value

Marginal density of the observed data under the specified prior.

Author(s)

David Rossell

References

pmomLM

Bayesian variable selection and model averaging for linear and probit models via non-local priors.

Description

Variable selection for linear and probit models, providing a sample from the joint posterior of the model and regression coefficients. pmomLM and pmomPM implement product Normal MOM and heavy-tailed product MOM as prior distribution for linear and probit model coefficients (respectively). emomLM and emomPM set an eMOM prior.

pplPM finds the value of the prior dispersion parameter tau minimizing posterior expected predictive loss (Gelfand and Ghosh, 1998) for the Probit model, i.e. can be used to automatically set up tau.

ppmodel returns the proportion of visits to each model.

Usage

pmomLM(y, x, xadj, center=FALSE, scale=FALSE, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', verbose=TRUE)

pmomPM(y, x, xadj, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, initSearch='greedy', verbose=TRUE)

emomLM(y, x, xadj, center=FALSE, scale=FALSE, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', verbose=TRUE)

emomPM(y, x, xadj, niter=10^4, thinning=1, burnin =round(niter/10), priorCoef, priorDelta, initSearch='greedy', verbose=TRUE)

pplPM(tau=seq(exp(seq(log(.01),log(2)),length=20)), kPen=1, y, x, xadj, niter=10^4, thinning=1, burnin=round(niter/10), priorCoef, priorDelta, priorVar, initSearch='greedy', mc.cores=1)

ppmodel(nlpfit)

See Also

modelSelection to perform model selection based on product non-local priors. momunknown, imomunknown, momknown, imomknown to compute Bayes factors for additive MOM and iMOM priors. mode2g for prior elicitation.

Examples

x <- matrix(rnorm(100*2),ncol=2)
y <- x %*% matrix(c(.5,1),ncol=1) + rnorm(nrow(x))

pmomMarginalK(sel=1, y=y, x=x, phi=1, tau=1, method='Laplace')

pmomMarginalK(sel=1:2, y=y, x=x, phi=1, tau=1, method='Laplace')
Arguments

\(y \) Vector with observed responses. For \texttt{pmomLM} this must be a numeric vector. For \texttt{pmomPM} it can either be a logical vector, a factor with 2 levels or a numeric vector taking only two distinct values.

\(x \) Design matrix with all potential predictors which are to undergo variable selection.

\(xadj \) Design matrix for adjustment covariates, i.e. variables which are included in the model with probability 1. For instance, \(xadj \) can be used to force the inclusion of an intercept in the model.

\(\text{center} \) If \(\text{center}==\text{TRUE} \), \(y \) and \(x \) are centered to have zero mean, therefore eliminating the need to include an intercept term in \(x \).

\(\text{scale} \) If \(\text{scale}==\text{TRUE} \), \(y \) and columns in \(x \) are scaled to have standard deviation 1.

\(niter \) Number of MCMC sampling iterations.

\(\text{thinning} \) MCMC thinning factor, i.e. only one out of each \(\text{thinning} \) iterations are reported. Defaults to \(\text{thinning}=1 \), i.e. no thinning.

\(\text{burnin} \) Number of burn-in MCMC iterations. Defaults to \(.1 \times niter \). Set to 0 for no burn-in.

\(\text{priorCoef} \) Prior distribution for the coefficients. Must be object of class \texttt{msPriorSpec} with slot \texttt{priorType} set to 'coefficients'. Possible values for slot \texttt{priorDistr} are 'pMOM', 'piMOM' and 'peMOM'.

\(\text{priorDelta} \) Prior on model indicator space. Must be object of class \texttt{msPriorSpec} with slot \texttt{priorType} set to 'modelIndicator'. Possible values for slot \texttt{priorDistr} are 'uniform' and 'binomial'. For 'binomial', you can either set the prior probability 'p' or specify a Beta-binomial prior by specifying the parameters 'alpha.p','beta.p'.

\(\text{priorVar} \) Prior on residual variance. Must be object of class \texttt{msPriorSpec} with slot \texttt{priorType} set to 'nuisancePars'. Slot \texttt{priorDistr} must be equal to 'invgamma'.

\(\text{initSearch} \) Algorithm to refine \(\delta_{ini} \). \texttt{initSearch}=='greedy' uses a greedy Gibbs sampling search. \texttt{initSearch}=='SCAD' sets \(\delta_{ini} \) to the non-zero elements in a SCAD fit with cross-validated regularization parameter. \texttt{initSearch}=='none' initializes to the null model with no variables in \(x \) included.

\(\text{verbose} \) Set \(\text{verbose}==\text{TRUE} \) to print iteration progress.

\(\text{tauseq} \) Grid of \(\tau \) values for which the posterior predictive loss should be evaluated.

\(\text{kPen} \) Penalty term specifying the relative importance of deviations from the observed data vs deviation from the posterior predictive. \(\text{kPen} \) can be set either to a numeric value or to 'msize' to set penalty equal to the average model size. Loss is \(\text{Dev}(y_p,yhat) + kPen \times \text{Dev}(yhat,yobs) \), where \(y_p \): draw from post predictive, \(yobs \): observed data and \(yhat \) is \(\text{E}(y_p|yobs) \).

\(\text{mc.cores} \) Allows for parallel computing. \(\text{mc.cores} \) is the number of processors to use. Setting \(\text{mc.cores}>1 \) requires the \texttt{parallel} package.

\(\text{nlpfit} \) Non-local prior model fit, as returned by \texttt{pmomLM}, \texttt{pmomPM}, \texttt{emomLM} or \texttt{emomPM}.
Details

The implemented MCMC scheme makes proposals from the joint posterior of \((\delta[i], \theta[i])\) given all other parameters and the data, where \(\delta[i]\) is the indicator for inclusion/exclusion of covariate \(i\) and \(\theta[i]\) is the coefficient value. In contrast with some model fitting options implemented in \texttt{modelSelection}, here the scheme is exact. However, sampling the coefficients can adversely affect the mixing when covariates are very highly correlated. In practice, the mixing seems to be reasonably good for correlations up to 0.9.

\texttt{pmomPM} uses the scheme of Albert & Chib (1993) for probit models.

Value

\texttt{pmomLM} and \texttt{pmomPM} returns a list with elements

- \texttt{postModel} matrix with posterior samples for the model indicator. \texttt{postModel[i,j]==1} indicates that variable \(j\) was included in the model in the MCMC iteration \(i\)
- \texttt{postCoeff1} matrix with posterior samples for coefficients associated to \(x\)
- \texttt{postCoeff2} matrix with posterior samples for coefficients associated to \(xadj\)
- \texttt{postPhi} vector with posterior samples for residual variance
- \texttt{postOther} \texttt{postOther} returns posterior samples for other parameters, i.e. basically hyper-parameters. Currently the prior precision parameter \(\tau\)
- \texttt{margpp} Marginal posterior probability for inclusion of each covariate. This is computed by averaging marginal post prob for inclusion in each MCMC iteration, which is much more accurate than simply taking \texttt{colMeans(postModel)}

\texttt{pplPM} returns a list with elements

- \texttt{optfit} Probit model fit using \(\tau_{opt}\). It is the result of a call to \texttt{pmomPM}.
- \texttt{PPL} data.frame indicating for each value in \(\tau_{seq}\) the posterior predictive loss \((\text{PPL}=G+P)\), the goodness-of-fit \((G)\) and penalty terms \((P)\)

- the average number of covariates in the model \((\text{msize})\) including \(xadj\) and the smoothed \(sPPL\) obtained via a \texttt{gam} fit.
- \texttt{tauopt} Value of \(\tau\) minimizing the \(\text{PPL}\)

Author(s)

David Rossell, Donatello Telesca

References

See Also

For more details on the prior specification see msPriorSpec-class To compute marginal densities for a given model see pmomMarginalK, pmomMarginalU, pimomMarginalK, pimomMarginalU.

Examples

#Simulate data
def x <- matrix(rnorm(100*3),nrow=100,ncol=3)
def xadj <- rep(1,nrow(x))
def theta <- matrix(c(1,1),ncol=1)
y <- 10*xadj + x %*% theta + rnorm(100)

#Beta-binomial prior on model space
priorDelta <- modelbbprior(alpha=1,beta=1)

#Non-informative prior on residual variance
priorVar <- igprior(alpha=.1,lambda=.1)

#Product MOM prior with tau=0.3 on x coefficients
#Non-informative prior on xadj coefficients
priorCoef <- momprior(tau=0.3, tau.adj=10^6)

mom0 <- pmomLM(y=x,x=xadj,xadj=adj,center=FALSE,scale=FALSE,niter=1000,
priorCoef=priorCoef,priorDelta=priorDelta,priorVar=priorVar)
round(colMeans(mom0$postModel),2)
round(colMeans(mom0$postCoef1),2)
round(colMeans(mom0$postCoef2),2)

#Alternative prior: hyper-prior on tau
priorCoef <- new("msPriorSpec",priorType='coefficients',priorDistr="pMOM",
priorPars=c(a_tau=1,b_tau=.15,tau.adj=10^6,r=1)) #hyper-prior
mom1 <- pmomLM(y=x,x=xadj,xadj=adj,center=FALSE,scale=FALSE,niter=1000,
priorCoef=priorCoef,priorDelta=priorDelta,priorVar=priorVar)
mean(mom1$postOther) #posterior mean for tau

#Probit model
n <- 500; rho <- .25; niter <- 1000
def theta <- c(.4,.6,0); theta.adj <- 0
def V <- diag(length(theta)); V[upper.tri(V)] <- V[lower.tri(V)] <- rho
def x <- rmvnorm(n,rep(0,length(theta)),V); xadj <- matrix(1,nrow=nrow(x),ncol=1)
lpred <- as.vector(x %*% matrix(theta,ncol=1) + xadj %*% matrix(theta.adj,ncol=1))
p <- pnorm(lpred)
y <- runif(n)<p

mom2 <- pmomPM(y=x,x=xadj,niter=1000,priorCoef=priorCoef,
postModeOrtho

priorDelta=priorDelta,initSearch='greedy')
colMeans(mom2$postCoeff)
coef(glm(y - x + xadj ~ 1, family=binomial(link='probit')))
maxvars

The search for the HPM is restricted to models with up to maxvars variables (note: posterior model probabilities and BMA are valid regardless of maxvars)

momcoef

optional argument containing pre-computed coefficients needed to obtain the marginal likelihood under the pMOM prior. A first call to postModeBlockDiag returns these coefficients, thus this argument is useful to speed up successive calls.

Details

The first step is to list a sequence of models with 0,...,maxvars variables which, under fairly general conditions listed in Papaspiliopoulos & Rossell (2016), is guaranteed to include the HPM. Then posterior model probabilities are computed for all these models to determine the HPM, evaluate the marginal posterior of the residual variance on a grid, and subsequently compute the marginal density p(y) via adaptive quadrature. Finally this adaptive grid is used to compute marginal inclusion probabilities and Bayesian model averaging estimates. For more details see Papaspiliopoulos & Rossell (2016).

Value

List with elements

models data.frame indicating the variables included in the sequence of models found during the search of the HPM, and their posterior probabilities. The model with highest posterior probability in this list is guaranteed to be the HPM.

phi data.frame containing an adaptive grid of phi (residual variance) values and their marginal posterior density p(\phi|y).

logpy log-marginal density p(y), i.e. normalization constant of p(\phi|y).

bma Marginal posterior inclusion probabilities and Bayesian model averaging estimates for each column in x.

postmean.model Coefficient estimates conditional on each of the models in models

momcoef If a MOM prior was specified in priorCoef, momcoef stores some coefficients needed to compute its marginal likelihood

Author(s)

David Rossell

References

Papaspiliopoulos O., Rossell D. Scalable Bayesian variable selection and model averaging under block-orthogonal design. 2016

Examples

#Simulate data
set.seed(1)
p <- 500; n <- 510
x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE,scale=TRUE)
postProb

Obtain posterior model probabilities

Description

Obtain posterior model probabilities after running Bayesian model selection

Usage

```r
postProb(object, nmax, method='norm')
```

Arguments

- **object**: Object of class msfit returned by `modelSelection` or class mixturebf, e.g. returned by `bfnormmix`
- **nmax**: Maximum number of models to report (defaults to no max)
- **method**: Only when class(object) is msfit. For 'norm' probabilities are obtained by renormalizing the stored integrated likelihoods, for 'exact' they are given by the proportion of MCMC visits to each model. 'norm' has less variability but can be biased if the chain has not converged.

Value

A `data.frame` with posterior model probabilities in column `pp`. Column `modelid` indicates the indexes of the selected covariates (empty for the null model with no covariates).
Description

Obtain posterior model probabilities after running Bayesian model selection

Usage

```
postSamples(object)
```

Arguments

- `object` Object containing posterior samples, e.g. of class `mixturebf` as returned by `bfnormmix`

Value

For objects of class `mixturebf`, a list with one element for each considered number of mixture components.

Each element in the list contains posterior samples on the mixture weights (eta) and other component-specific parameters such as means (mu) and Cholesky decomposition of the inverse covariance matrix (cholSigmainv)

Author(s)

David Rossell

Examples

```
#See help(bfnormmix)
```
Gibbs sampler for linear and Cox proportional hazards model under product non-local priors and Zellner's prior. Both sampling conditional on a model and Bayesian model averaging are implemented (see Details).

If x and y not specified samples from non-local priors/posteriors with density proportional to $d(\theta) N(\theta; m, V)$ are produced, where $d(\theta)$ is the non-local penalty term.

Usage

```r
rnlp(y, x, m, v, msfit, priorCoef, priorVar=igprior(alpha=0.01, lambda=0.01), niter=10^3, burnin=round(niter/10), thinning=1, pp='norm')
```

Arguments

- **y**: Vector with observed responses. When `class(y)='Surv'` sampling is based on the Cox partial likelihood, else a linear model is assumed.
- **x**: Design matrix with all potential predictors
- **m**: Mean for the Normal kernel
- **V**: Covariance for the Normal kernel
- **msfit**: Object of class `msfit`, e.g. as returned by `modelSelection`. If left missing sampling under the full model $y \sim x$ is performed, otherwise posterior model samples in `msfit` are used.
- **priorCoef**: Prior distribution for the coefficients. Must be object of class `msPriorSpec` with slot `priorType` set to 'coefficients'. Possible values for slot `priorDistr` are 'pMOM', 'piMOM', 'peMOM' and 'zellner'
- **priorVar**: Prior on residual variance. Must be object of class `msPriorSpec` with slot `priorType` set to 'nuisancePars'. Slot `priorDistr` must be equal to 'invgamma'
- **niter**: Number of MCMC iterations
- **burnin**: Number of burn-in MCMC iterations. Defaults to .1*niter. Set to 0 for no burn-in
- **thinning**: MCMC thinning factor, i.e. only one out of each thinning iterations are reported. Defaults to no thinning
- **pp**: When `msfit` is provided this is the method to compute posterior model probabilities, which determine the sampled models. Can be 'norm' or 'exact', see `postProb` for details.
Details

The algorithm is implemented for product MOM (pMOM), product iMOM (piMOM) and product eMOM (peMOM) priors. The algorithm combines an orthogonalization that provides low serial correlation with a latent truncation representation that allows fast sampling.

When \(y \) and \(x \) are specified sampling is for the linear regression posterior. When argument \texttt{msfit} is left missing, posterior sampling is for the full model regressing \(y \) on all covariates in \(x \). When \texttt{msfit} is specified each model is drawn with probability given by \texttt{postProb(msfit)}. In this case, a Bayesian Model Averaging estimate of the regression coefficients can be obtained by applying \texttt{colMeans} to the \texttt{rnlp} output matrix.

When \(y \) and \(x \) are left missing, sampling is from a density proportional to \(d(\theta) \, N(\theta; m, V) \), where \(d(\theta) \) is the non-local penalty (e.g. \(d(\theta)=\prod(\theta^{2r}) \) for the pMOM prior).

Value

Matrix with posterior samples

Author(s)

David Rossell

References

See Also

\texttt{modelSelection} to perform model selection and compute posterior model probabilities. For more details on prior specification see \texttt{msPriorSpec-class}.

Examples

```r
# Generate data
set.seed(2)
n <- 10^3; tau <- 0.133; x <- rmvnorm(n, sigma=matrix(c(2,1,1,2),nrow=2))
theta_true <- c(0.5,1); phi_true <- 1
y <- theta_true[1]*x[,1] + theta_true[2]*x[,2] + rnorm(n, sd=sqrt(phi_true))

# Specify prior parameters
priorCoef <- imomprior(tau=1)
priorVar <- igprior(alpha=.1, lambda=.01)

th <- rnlp(y=y, x=x, niter=100, priorCoef=priorCoef, priorVar=priorVar)
colMeans(th)
acf(th[,1])
```
Index

*Topic classes
 - mixturebf-class, 14
 - msfit-class, 25
 - msPriorSpec-class, 26

*Topic datasets
 - hald, 12

*Topic distribution
 - bbPrior, 2
 - dalapl, 6
 - diwish, 7
 - ddir, 6
 - dpostNIW, 10
 - emomlm (pmomLM), 31
 - emomPM (pmomLM), 31
 - emomprior (msPriorSpec-class), 26
 - eprod, 11

*Topic models
 - bfnormmix, 3
 - eprod, 11
 - marginalNIW, 13
 - mode2g, 15
 - modelSelection, 17
 - mombf, 21
 - momknown, 23
 - nlpmarginals, 29
 - pmomLM, 31
 - postModeOrtho, 35
 - postProb, 37
 - postSamples, 38
 - rnlp, 39

 - bbPrior, 2
 - bfnormmix, 3, 15
 - binomPrior (bbPrior), 2

 - coef.mixturebf (mixturebf-class), 14

 - dalapl, 5
 - ddir, 6
 - demom (dmm), 8
 - demom, data.frame-method (dmm), 8
 - demom, matrix-method (dmm), 8
 - demom, vector-method (dmm), 8
 - demom-methods (dmm), 8

 - dimom, 16
 - dimom (dmm), 8

 - diwish, 7, 11
 - dmm, 8, 16
 - dpostNIW, 7, 10, 14

 - emomLM (pmomLM), 31
 - emomPM (pmomLM), 31
 - emomprior (msPriorSpec-class), 26
 - eprod, 11

 - g2mode, 9
 - g2mode (mode2g), 15

 - hald, 12

 - igprior (msPriorSpec-class), 26
 - imombf, 16, 24
 - imombf (mombf), 21
 - imomknown, 22, 31
 - imomknown (momknown), 23
 - imomprior (msPriorSpec-class), 26
 - imomunknown, 22, 31

41
imomunknown (momknown), 23
marginalNIW, 11, 13
marginalNIW, matrix, missing, missing, missing, missing, missing (marginalNIW), 13
marginalNIW, matrix, missing, missing, missing, vector (marginalNIW), 13
marginalNIW, missing, ANY, matrix, numeric, missing (marginalNIW), 13
marginalNIW, missing, list, list, numeric, missing (marginalNIW), 13
marginalNIW-methods (marginalNIW), 13
mixturebf (mixturebf-class), 14
mixturebf-class, 14
mode2g, 9, 15, 22, 24, 31
modelbbprior (msPriorSpec-class), 26
modelbinomprior (msPriorSpec-class), 26
modelcomplexprior (msPriorSpec-class), 26
modelsearchBlockDiag (modelSelection), 17
modelSelection, 17, 26, 28, 31, 38, 40
modenuifprior (msPriorSpec-class), 26
momknown, 16, 21, 24
momknown, 22, 23, 31
momprior (msPriorSpec-class), 26
momunknown, 22, 31
momunknown (momknown), 23
msfit (msfit-class), 25
msfit-class, 25
msPriorSpec (msPriorSpec-class), 26
msPriorSpec-class, 26

nlpMarginal, 20
nlpMarginal (nlpmarginals), 29
nlpmarginals, 29
palapl (dalapl), 5
pemom (dmom), 8
pimom (dmom), 8
pimomMarginalK, 34
pimomMarginalK (nlpmarginals), 29
pimomMarginalU, 34
pimomMarginalU (nlpmarginals), 29
pmom (dmom), 8
pmomLM, 31
pmomMarginalK, 34
pmomMarginalK (nlpmarginals), 29
pmomMarginalU, 34

pmomMarginalU (nlpmarginals), 29
pmomPM (pmomLM), 31
postModeBlockDiag (postModeOrtho), 35
postModeOrtho, 35
postProb, 20, 37
postProb, mixturebf-method (postProb), 37
postProb, msfit-method (postProb), 37
postProb-methods (postProb), 37
postSamples, 38
postSamples, mixturebf-method (postSamples), 38
postSamples-methods (postSamples), 38
plpPM (pmomLM), 31
ppmodel (pmomLM), 31
priorp2g (mode2g), 15
qimom (dmom), 8
qnom (dmom), 8
ralapl (dalapl), 5
rnlp, 20, 26, 39
rnlp, ANY, matrix, missing, missing, missing-method (rnlp), 39
rnlp, ANY, matrix, missing, missing, msfit-method (rnlp), 39
rnlp, missing, missing, numeric, matrix, missing-method (rnlp), 39
rnlp-methods (rnlp), 39
rpostNIW (dpostNIW), 10
show, mixturebf-method (mixturebf-class), 14
show, msfit-method (msfit-class), 25
unifPrior (bbPrior), 2
x.hald (hald), 12
y.hald (hald), 12
zbfknown, 22
zbfknown (momknown), 23
zbfunknown, 22
zbfunknown (momknown), 23
zellnerbf (mombf), 21
zellnerprior (msPriorSpec-class), 26