Package ‘mpt’

September 8, 2016

Version 0.5-4
Date 2016-09-08
Title Multinomial Processing Tree Models
Depends R (>= 3.0.0), stats
Imports graphics, utils
Description Fitting and testing multinomial processing tree (MPT) models, a class of statistical models for categorical data. The parameters are the link probabilities of a tree-like graph and represent the latent cognitive processing steps executed to arrive at observable response categories (Batchelder & Riefer, 1999 <doi:10.3758/bf03210812>; Erdfelder et al., 2009 <doi:10.1027/0044-3409.217.3.108>; Riefer & Batchelder, 1988 <doi:10.1037/0033-295x.95.3.318>).
License GPL (>= 2)
URL http://homepages.uni-tuebingen.de/florian.wickelmaier
NeedsCompilation no
Author Florian Wickelmaier [aut, cre], Achim Zeileis [aut]
Maintainer Florian Wickelmaier <wickelmaier@web.de>
Repository CRAN
Date/Publication 2016-09-08 11:36:34

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>citysize</td>
<td>2</td>
</tr>
<tr>
<td>logLik.mpt</td>
<td>3</td>
</tr>
<tr>
<td>mpt</td>
<td>4</td>
</tr>
<tr>
<td>mptEM</td>
<td>7</td>
</tr>
<tr>
<td>mptspec</td>
<td>9</td>
</tr>
<tr>
<td>plot.mpt</td>
<td>11</td>
</tr>
<tr>
<td>proact</td>
<td>13</td>
</tr>
<tr>
<td>prospecMemory</td>
<td>15</td>
</tr>
</tbody>
</table>
Description

Thirty-seven participants performed a city-size paired-comparison task. On each trial, participants indicated which of two cities was more populous. After the paired comparisons, participants were asked for each city if they recognized its name, knew in which country it is, and how many inhabitants it has. The study was designed to be similar to Experiment 6 in Hilbig, Erdfelder, and Pohl (2010).

Usage
data(citysize)

Format

A data frame consisting of six components:

- gender factor. Participant gender.
- age Participant age.
- country Number cities whose country was correctly identified.
- rt Median response time (in seconds) across paired comparisons.
- instr factor. When none, no additional instructions were given; when recog, participants were instructed to choose the city they recognized whenever possible.
- y a matrix of aggregate response frequencies per participant. The column names indicate each of eight response categories: correct/false responses when both cities were recognized (KC, KF), when both were unrecognized (GC, GF), when only one was recognized and the recognized city was chosen (RC, RF), and when only one was recognized and the unrecognized city was chosen (UF, UC).

Source

Data were collected at the Department of Psychology, University of Tuebingen, in June/July 2016.
logLik.mpt

References

See Also

mpt.

Examples

data(citysize)

```r
## Fit r-model separately for each instruction type
mpt(mptspec("rmmodel"), unname(citysize[citysize$instr == "none", "y"])

## Test instruction effect on r parameter
city.agg <- aggregate(y ~ instr, citysize, sum)
y <- as.vector(t(city.agg[, -1]))

m1 <- mpt(mptspec("rmmodel", .replicates=2), y)
m2 <- mpt(update(m1$spec, .restr=list(r2=r1)), y)
anova(m2, m1)  # more use of RH with recognition instruction

## Plot parameter estimates
dotchart(coef(m1)[c(4, 1:3)], xlim=0:1, labels=c("a", "b", "g", "r"),
         xlab="Parameter estimate (r-model)",
         main="Recognition heuristic use by instruction type")
points(coef(m1)[c(8, 5:7)], 1:4, pch=16)
legend(0, 1, c("none", "recognition"), pch=c(1, 16),
       title="Instruction", bty="n")
```

logLik.mpt

Log-Likelihood of an mpt Object

Description

Returns the log-likelihood value of the (joint) multinomial processing tree model represented by object evaluated at the estimated parameters.

Usage

```r
## S3 method for class 'mpt'
logLik(object, ...)
```
Arguments

object: an object inheriting from class mpt, representing a fitted multinomial processing tree model.

... some methods for this generic require additional arguments. None are used in this method.

Value

The log-likelihood of the model represented by object evaluated at the estimated parameters.

See Also

mpt, logLik.lm, AIC.

Examples

mpt1 <- mpt(mptspec("SR2"), c(243, 64, 58, 55)) # from Riefer et al. (2002)
logLik(mpt1)
AIC(mpt1)
BIC(mpt1)
deviance(mpt1)
nobs(mpt1)

mpt

Multinomial Processing Tree (MPT) Models

Description

Fits a (joint) multinomial processing tree (MPT) model specified by a symbolic description via mptspec.

Usage

mpt(spec, data, start = NULL, method = c("BFGS", "EM"), treeid = "treeid",
freqvar = "freq", optimargs =
if(method == "BFGS") list(control =
 list(reltol = .Machine$double.eps^(1/1.2), maxit = 1000))
else list())

S3 method for class 'mpt'
anova(object, ..., test = c("Chisq", "none"))

S3 method for class 'mpt'
coef(object, logit = FALSE, ...)

S3 method for class 'mpt'
confint(object, parm, level = 0.95, logit = TRUE, ...)
Multinomial processing tree models (Batchelder & Riefer, 1999; Erdfelder et al., 2009; Riefer & Batchelder, 1988) seek to represent the categorical responses of a group of subjects by a small number of latent (psychological) parameters. These models have a tree-like graph, the links being the parameters, the leaves being the response categories. The path from the root to one of the leaves represents the cognitive processing steps executed to arrive at a given response.

If data is a data frame, each row corresponds to one response category. If data is a vector or matrix, each element or column corresponds to one response category. The order of response categories and of model equations specified in `mptspec` should match.

Joint (or product) multinomial models consist of more than one processing tree. The `treeid` should uniquely identify each tree.

Per default, parameter estimation is carried out by `optim`'s BFGS method on the logit scale with analytical gradients; it can be switched to `mptEM` which implements the EM algorithm.
Value

An object of class mpt containing the following components:

- **coefficients**: a vector of parameter estimates.
- **loglik**: the log-likelihood of the fitted model.
- **nobs**: the number of nonredundant response categories.
- **fitted**: the fitted response frequencies.
- **goodness.of.fit**: the goodness of fit statistic including the likelihood ratio fitted vs. saturated model (G2), the degrees of freedom, and the p-value of the corresponding chi-square distribution.
- **ntrees**: the number of trees in a joint multinomial model.
- **n**: the total number of observations per tree.
- **y**: the vector of response frequencies.
- **pcat**: the predicted probabilities for each response category.
- **treeid**: a vector that identifies each tree.
- **a, b, c**: structural constants passed to mptEM.
- **spec**: the MPT model specification returned by mptspec.
- **method**: the optimization method used.
- **optim**: the return value of the optimization function.

References

See Also

- mptEM, mptspec, simulate.mpt, retroact, proact, plot.mpt, residuals.mpt, logLik.mpt, vcov.mpt, optim.

Examples

```r
## Storage-retrieval model for pair clustering (Riefer & Batchelder, 1988)
data(retroact)
spec <- mptspec(
c*s*r,
(1 - c)*u^2,
2*(1 - c)*u*r*(1 - u),
```
mptEM

EM Algorithm for Multinomial Processing Tree Models

Description

Applies the EM algorithm to fit a multinomial processing tree model.

Usage

mptEM(theta, data, a, b, c, maxit = 1000, tolerance = 1e-8, stepsize = 1, verbose = FALSE)

Arguments

theta a vector of starting values for the parameter estimates.

data a vector of absolute response frequencies.

a a three-dimensional array representing the model structure.

b a three-dimensional array representing the model structure.

c a matrix of structural constants.

maxit the maximum number of iterations.

tolerance the convergence criterion; the iterations converge when $\log\text{Lik} - \log\text{Lik.old} < \text{tolerance}$.

stepsize the step size defaulting to 1; slightly larger values may speed up convergence, but may also give errors; use with care.

verbose logical indicating if output should be produced for each iteration.
Details

Usually, mptEM is automatically called by mpt.

A prerequisite for the application of the EM algorithm is that the probabilities of the i-th branch leading to the j-th category take the form

\[p_{ij}(\Theta) = c_{ij} \prod_{s=1}^{S} \vartheta_s^{a_{ij}} (1 - \vartheta_s)^{b_{ij}}, \]

where \(\Theta = (\vartheta_s) \) is the parameter vector, \(a_{ij} \) and \(b_{ij} \) count the occurrences of \(\vartheta_s \) and \(1 - \vartheta_s \) in a branch, respectively, and \(c_{kj} \) is a nonnegative real number. The branch probabilities sum up to the total probability of a given category, \(p_j = p_{1j} + \ldots + p_{Ij} \). This is the structural restriction of the class of MPT models that can be represented by binary trees. Other model types have to be suitably reparameterized for the algorithm to apply.

See Hu and Batchelder (1994) and Hu (1999) for details on the algorithm.

Value

- theta: the vector of parameter estimates.
- loglik: the log-likelihood at termination of the algorithm.
- pcat: a vector of predicted probabilities for each response category.
- pbranch: a vector of predicted branch probabilities.
- iter: the number of iterations of the algorithm.

References

See Also

- mpt.

Examples

```r
## Fit storage-retrieval model to data in Riefer et al. (2002)
spec <- mptspec("SR2")

mpt1 <- mpt(spec, c(243, 64, 58, 55), method = "EM")
```
Specify a Multinomial Processing Tree (MPT) Model

Description

Returns the specification of an MPT model object for fitting with `mpt`.

Usage

```r
mptspec(..., .restr = NULL)
```

```r
## S3 method for class 'mptspec'
update(object, .restr = NULL, ...)
```

Arguments

- `...`: (named) expressions or a character string specifying the model. See Details.
- `restr`: a named list of parameter restrictions. See Details.
- `object`: an object of class `mptspec`.

Details

`...` is used to symbolically specify the MPT model equations by suitable expressions, for example, they could look like this

\[r + (1 - r) \times b, \ (1 - r) \times (1 - b), \ b, \ 1 - b \]

where each expression represents the probability of a response in the corresponding category (link probabilities are multiplied, branch probabilities are added). Thus, there usually are as many expressions as response categories.

Joint (or product) multinomial models consist of more than a single processing tree. To identify the trees in such a model, expressions may have optional names. Canonically, these names are of the form `xY`, where `x` is the tree identifier and `y` specifies the response category within a tree.

Alternatively, `...` may be a character string identifying one out of a list of prevalent MPT models. Currently implemented are the following models (other models have to be specified by explicit expressions as described above):

- **1HT**: the one-high-threshold model (Blackwell, 1963; Swets, 1961).
- **2HT**: the two-high-threshold model (Snodgrass & Corwin, 1988; see also Broeder & Schuetz, 2009).
- **PairAsso**: the paired-associate learning model (Riefer & Batchelder, 1988).
- **prospec**: the event-based prospective memory model (Smith & Bayen, 2004).
- **rmodel**: the r-model of recognition heuristic use (Hilbig, Erdfelder, & Pohl, 2010).
- **SourceMon**: the source-monitoring model (Batchelder & Riefer, 1990).
- **SR, SR2**: the storage-retrieval model for pair clustering (Batchelder & Riefer, 1986). SR2 is the model without singleton items.
If one of these models is selected, ... may include an optional .replicates argument that specifies the number of replicates of the model equations, for example, when the same model is applied repeatedly in several experimental conditions. Accordingly, parameter names are augmented by numbers to make them unique.

Parameter restrictions included in .restr may be of the form \(b = r \) or \(b = 0.5 \) etc. Depending on the fitting algorithm employed in \texttt{mpt} (BFGS, but not EM), mathematical functions are permissible, for example, \(b = \sqrt{r} \).

The update method is used to add parameter restrictions to an existing \texttt{mptspec} object.

Value

An object of class \texttt{mptspec} that serves as input to \texttt{mpt} which fits the model to data. It consists of the following components:

- \texttt{par2prob} a function that takes a vector of parameter values and computes the response probabilities.
- \texttt{par2deriv} a function that takes a vector of parameter values and computes first and second derivatives of the model equations.
- \texttt{prob} a list containing expressions of the model equations.
- \texttt{deriv} a list containing expressions of the first and second derivatives of the model equations.
- \texttt{par} a named vector of parameter values.
- \texttt{restr} a list containing expressions of parameter restrictions.

References

See Also

mpt.

Examples

```r
## Specify storage-retrieval model for pairs
spec1 <- mptspec(
  c*r,
  (1 - c)*u^2,
  2*(1 - c)*u*(1 - u),
  c*(1 - r) + (1 - c)*(1 - u)^2
)

## Specify storage-retrieval model with parameter restrictions
spec2 <- mptspec(
  c*r,
  (1 - c)*u^2,
  2*(1 - c)*u*(1 - u),
  c*(1 - r) + (1 - c)*(1 - u)^2,
   .restr = list(c = r/2, u = 0.3)
)

## Optional names identifying trees in joint MPT model
spec3 <- mptspec(
  "1.1" = r + (1 - r)*b,
  "1.2" = (1 - r)*(1 - b),
  "2.1" = b,
  "2.2" = 1 - b
)

## Fit one-high-threshold model to data in Broeder & Schuetz (2009)
mpt1 <- mpt(spec <- mptspec("1HT"), c(55, 35, 45, 765))

## Working with the mptspec object
spec$par2prob(c(0.5, 0.1))  # response probabilities
spec$par2deriv(coef(mpt1))$deriv  # Jacobian matrix at ML estimate

## See ?recogROC for further examples.
```
Description

Plots MPT residuals against fitted values.

Usage

```r
## S3 method for class 'mpt'
plot(x, showNames = TRUE,
     xlab = "Predicted response probabilities", ylab = "Deviance residuals",
     ...)  

## S3 method for class 'mpt'
residuals(object, type = c("deviance", "pearson"), ...)
```

Arguments

- `x`, `object` an object of class `mpt`, typically the result of a call to `mpt`.
- `showNames` logical. Should the names of the residuals be plotted? Defaults to `TRUE`.
- `xlab`, `ylab` graphical parameters passed to plot.
- `type` the type of residuals which should be returned; the alternatives are: "deviance" (default) and "pearson".
- `...` further arguments passed to or from other methods.

Details

The deviance residuals are plotted against the predicted response probabilities. If `showNames` is true, plotting symbols are the names of the residuals.

Value

For `residuals`, a named vector of residuals having as many elements as response categories.

See Also

`mpt`, `mpt.residuals.glm`.

Examples

```r
## Compare two constrained MPT models
data(proact)

spec <- mptspec(
  p1*q1*r1,
  p1*q1*(1 - r1),
  p1*(1 - q1)*r1,
  (1 - p1) + p1*(1 - q1)*(1 - r1),
  p2*q2*r2,
  p2*q2*(1 - r2),
  p2*(1 - q2)*r2,
```

Recall Frequencies for DaPolito’s Experiment on Proactive Inhibition

Description

In DaPolito’s experiment (Greeno, James, DaPolito & Polson, 1978), 60 subjects were presented with lists of stimulus-response associates to be learned, followed by a test in which only the stimuli were presented and the responses had to be recalled. Stimuli consisted of three-letter syllables, responses of the numbers from 1 to 30, so list items looked like, say, ESI-12, JOK-3, MAL-8, etc. Part of the items had two responses (A-B, A-C), the control items had only a single correct response. If the recall of C responses is poorer than that of control items, then proactive inhibition has occurred, that is interference with the recall by information that has been learned earlier.

Riefer and Batchelder (1988) analyzed only the A-B and A-C items. They investigated how repeated A-B presentation affects the B and C recall, respectively. The responses were classified into four categories and pooled across subjects.

Usage

data(proact)

Format

A data frame consisting of five variables:

- test first or second test.
- abpres the number of A-B presentations.
- resp a factor giving the response category; BC both B and C responses are correctly recalled, Bc only B is recalled, bc only C is recalled, bc neither response is recalled.
- freq the aggregate recall frequencies per condition.
- treeid an identifier for the single trees of the joint multinomial model.
Source

Examples

```r
data(proact)

## Testing hypotheses about the parameters
mpt1 <- mpt(mptspec(
  p1*q1*r1,
  p1*q1*(1 - r1),
  p1*(1 - q1)*r1,
  (1 - p1) + p1*(1 - q1)*(1 - r1),

  p2*q2*r2,
  p2*q2*(1 - r2),
  p2*(1 - q2)*r2,
  (1 - p2) + p2*(1 - q2)*(1 - r2),

  p3*q3*r3,
  p3*q3*(1 - r3),
  p3*(1 - q3)*r3,
  (1 - p3) + p3*(1 - q3)*(1 - r3),

  p4*q4*r4,
  p4*q4*(1 - r4),
  p4*(1 - q4)*r4,
  (1 - p4) + p4*(1 - q4)*(1 - r4),

  p5*q5*r5,
  p5*q5*(1 - r5),
  p5*(1 - q5)*r5,
  (1 - p5) + p5*(1 - q5)*(1 - r5),

  p6*q6*r6,
  p6*q6*(1 - r6),
  p6*(1 - q6)*r6,
  (1 - p6) + p6*(1 - q6)*(1 - r6)
), proact)

mpt2 <- mpt(update(mpt1$spec, .restr=list(q2=q1, q3=q1, q4=q2, q5=q2, q6=q2)), proact)

mpt3 <- mpt(update(mpt1$spec, .restr=list(r2=r1, r3=r1, r4=r2, r5=r2, r6=r2)), proact)

anova(mpt2, mpt1)  # q increases with number of A-B presentations
anova(mpt3, mpt1)  # r remains constant
```
Description

Smith and Bayen (2004) tested the performance of 64 participants in an event-based prospective memory task that was embedded in a color-matching task. On each trial, participants were presented with four colored rectangles followed by a colored word. Their task was to press a key to indicate whether the color of the word matched one of the rectangles. Interspersed among these nontarget words were six target words for which subjects had to remember to press the tilde key (prospective memory response) regardless of the color. Participants received two different instruction types either stressing the importance of the color-matching (CMI) or of the prospective-memory task (PMI).

Usage

data(prospecMemory)

Format

A data frame consisting of five variables:

- instruction: instruction type, either color-matching importance (cmi) or prospective memory importance (pmi).
- item: a factor specifying one of four item types: either a target word that did or did not match the color of the rectangles, or a nontarget word that did or did not match.
- resp: a factor giving the response categories: match, nonmatch, or the prospective memory response (prospec).
- freq: the aggregate response frequencies per condition.
- treeid: an identifier for the single trees of the joint multinomial model.

Source

Examples

```r
## Prospective memory model: identifiability
qr(mptspec("prospec",
  .restr=list(M1=M, M2=M))$par2deriv(runif(6))$deriv)$rank
qr(mptspec("prospec",
  .restr=list(M1=M, M2=M, g=.1, c=.5))$par2deriv(runif(4))$deriv)$rank

## Prospective memory model: goodness of fit
data(prospecMemory)
cmi <- prospecMemory[prospecMemory$instruction == "cmi", ]
```
Broeder and Schuetz (2009) tested the shape of recognition receiver operating characteristics. 75 participants studied 60 words. In a recognition test, 60 words – old and new items mixed – were presented, and participants had to classify them as old or new. The percentage of old items varied in order to manipulate the response bias.

Usage

```r
data(recogROC)
```

Format

A data frame consisting of five variables:

- `p` target: percentage of target (old) items.
- `item`: factor. Target (old) or distractor (new) item.
- `resp`: a factor giving the response category, old or new.
- `freq`: the aggregate response frequencies per condition.
- `treeid`: an identifier for the single trees of the joint multinomial model.
Sources

Examples

```r
## Data from Broeder & Schuetz (2009, Table 1, Exp. 1)
data(recogROC)

## Fit the two-high-threshold model with restrictions
mpt1 <- mpt(mptspec("2HT", .replicates=5,
                   .restr=list(r1=r, r2=r, r3=r, r4=r, r5=r,
                               d1=d, d2=d, d3=d, d4=d, d5=d)), recogROC)
summary(mpt1)  # Table 2

## Hit rate and false alarm rate
hrfa <- data.frame(
  obshr = (recogROC$freq/mpt1$nn)[seq(1, 17, 4)],
  obsfa = (recogROC$freq/mpt1$nn)[seq(3, 19, 4)],
  predhr = mpt1$pcat[seq(1, 17, 4)],
  predfa = mpt1$pcat[seq(3, 19, 4)]
)

## Plot ROC, Figure 5
plot(obshr ~ obsfa, hrfa, xlab="Hit rate", ylab="False alarm rate")
abline(0, 1)
lines(predhr ~ predfa, hrfa, type="l", lty=2)
```

Description

The experiment is described in Riefer and Batchelder (1988). Each of the 75 subjects was presented with either one, two, three, four, or five successive lists of words (15 subjects per group). These words were shown in random order on a computer screen, one word at a time, at a rate of 5 s per word. Each list contained 25 words, consisting of 10 categories (with 2 associate words per category) and five singletons. Subjects were given 1.5 min to recall in writing the 25 words from each individual list. After all of the lists had been presented, a final free-recall test was given in which subjects attempted to recall the words from all of the previous lists. Subjects were given up to 5 min for this final written recall.

The focus here is on the recall of the first-list words during the final recall task. The responses were classified into six categories and pooled across subjects.
Usage

data(retroact)

Format

A data frame consisting of four variables:

- **lists** the number of interpolated lists.
- **treeid** an identifier for the single trees of the joint multinomial model.
- **resp** a factor giving the response category; E1 pair is recalled adjacently, E2 pair is recalled non-adjacently, E3 one word in a pair is recalled, E4 neither word in a pair is recalled, F1 recall of a singleton, F2 non-recall of a singleton.
- **freq** the aggregate recall frequencies per condition.

Source

Examples

data(retroact)

```r
## Fitting individual storage-retrieval models per condition
spec <- mptspec(
  c*r,
  (1 - c)*u^2,
  2*(1 - c)*u*(1 - u),
  c*(1 - r) + (1 - c)*(1 - u)^2,
  u,
  1 - u
)
pars <- sapply(0:4,
  function(x) coef(mpt(spec, retroact$lists == x, j))
)

## Figure 3 in Riefer & Batchelder (1988)
plot(pars["c",] ~ I(0:4), pch=16, type="b", ylim=c(.3, 1),
  xlab="Number of interpolated lists, j",
  ylab="Parameter estimate (Storage-retrieval model)",
  main="Riefer and Batchelder (1988)"
)
points(pars["r",] ~ I(0:4), type="b", lty=2)
text(3, .89, expression("Storage of clusters," ~ hat(c)[j]))
text(3, .46, expression("Retrieval of clusters," ~ hat(r)[j]))

## Testing hypotheses about the parameters
mpt1 <- mpt(mptspec(
  c0*r0,
  (1 - c0)*u0^2,
  2*(1 - c0)*u0*(1 - u0),
  c0*(1 - r0) + (1 - c0)*(1 - u0)^2,
  u0,
  1 - u0
))
```

R code

```r
library(mpt)
retroact <- read.table("retroact.txt", header=TRUE)
summary(retroact)
```
Simulate Responses from MPT Models

Description

Simulates responses from the distribution corresponding to a fitted `mpt` model object.

Usage

```r
# S3 method for class 'mpt'
simulate(object, nsim, seed, pool = TRUE, ...)
```
Arguments

- **object**: an object of class `mpt`, typically the result of a call to `mpt`.
- **nsim, seed**: currently not used.
- **pool**: logical, if TRUE (default), pooled responses (summed across respondents) are returned.
- **...**: further arguments passed to or from other methods. None are used in this method.

Details

Responses are simulated by (repeatedly) applying `rmultinom` with sizes taken from the original sample and probabilities computed from the model object.

Value

A named vector of (pooled) responses. Names identify the tree from which responses were simulated.

See Also

`mpt`, `rmultinom`.

Examples

data(retroact)

mpt1 <- mpt(mptspec(
 c*r,
 (1 - c)*u^2,
 2*(1 - c)*u*(1 - u),
 c*(1 - r) + (1 - c)*(1 - u)^2,
 u,
 1 - u
), retroact[retroact$lists == 1,])

simulate(mpt1)

Perform parametric bootstrap
LR.stat <- replicate(200, deviance(mpt1$spec, simulate(mpt1)))

hist(LR.stat, col="lightgray", border="white", freq=FALSE, breaks=20,
 main="Parametric bootstrap")
curve(dchisq(x, df=1), add=TRUE)
abline(v=deviance(mpt1), lty=2)
World Valence and Source Memory for Vertical Position

Description

Sixty-four participants studied words with positive, negative, or neutral valence displayed at the top or bottom part of a computer screen. Later, these words were presented intermixed with new words, and participants had to classify them as "top," "bottom," or "new." It was of interest if memory is improved in congruent trials, in which word valence and vertical position match (positive-top, negative-bottom), as opposed to incongruent trials.

Usage

data(valence)

Format

A data frame consisting of five components:

- id factor. Participant ID.
- gender factor. Participant gender.
- age Participant age.
- condition factor. In congruent trials, positive words were presented at the top, negative words at the bottom, and vice versa for incongruent trials.
- y a matrix of aggregate response frequencies per participant and condition. The column names indicate each of nine response categories, for example, top.bottom means that words were presented at the top, but participant responded "bottom."

Source

Data were collected at the Department of Psychology, University of Tuebingen, in 2010.

Examples

data(valence)

Fit source-monitoring model to subsets of data
spec <- mptspec("SourceMon", .restr=list(d1=d, d2=d))
names(spec$prob) <- colnames(valence$y)

mpt(spec, valence[valence$condition == "congruent" & valence$gender == "female", "y"])
mpt(spec, valence[valence$condition == "incongruent" & valence$gender == "female", "y"])

Test hypotheses across subsets
val.agg <- aggregate(y ~ gender + condition, valence, sum)
y <- as.vector(t(val.agg[, -c(1:2)]))
spec <- mptspec("SourceMon", .replicates=4,
 .restr=list(d11=d1, d21=d1, d12=d2, d22=d2,
 d13=d3, d23=d3, d14=d4, d24=d4))
mpt1 <- mpt(spec, y)
mpt2 <- mpt(update(spec, .restr=list(d1=d.f, d3=d.f, d2=d.m, d4=d.m)), y)
anova(mpt2, mpt1) # better discrimination in congruent trials

Plot parameter estimates
mat <- matrix(coef(mpt1), 5)
rownames(mat) <- c("D1", "d", "g", "b", "D2")
mat <- mat[c("D1", "D2", "d", "b", "g")]
matplot(mat, type="b", axes=FALSE, ylab="MPT model parameter estimate",
 main="Word valence and source monitoring", ylim=0:1, pch=1:4)
axis(1, 1:5, rownames(mat)); axis(2)
legend("bottomleft", c("female, congruent", "male, congruent",
 "female, incongruent", "male, incongruent"), pch=1:4, bty="n")

vcov.mpt
Description

Returns the covariance matrix or the Fisher information matrix of a fitted mpt model object.

Usage

```r
## S3 method for class 'mpt'
v cov(object, logit = FALSE, what = c("vcov", "fisher"), ...)
```

Arguments

- **object**
an object of class mpt, typically the result of a call to mpt.
- **logit**
logical. Switch between logit and probability scale.
- **what**
character. If vcov (default), the covariance matrix is returned; if fisher, the Fisher information matrix is returned.
- **...**
further arguments passed to or from other methods. None are used in this method.

Details

If logit is false, the covariance matrix is based on the observed Fisher information matrix of the ML estimator on the probability scale. This is equivalent to the equations for the covariance matrix given in Hu and Batchelder (1994) and Hu (1999), although the implementation here is different. If logit is true, the covariance matrix and the estimated information matrix (Elandt-Johnson, 1971) of the ML estimator on the logit scale are obtained by the multivariate delta method (Bishop, Fienberg, and Holland, 1975; Grizzle, Starmer, and Koch, 1969).
Value

A (named) square matrix.

References

See Also

mpt.

Examples

data(retroact)

mpt1 <- mpt(mptspec(
c*r,
(1 - c)*u*2,
2*(1 - c)*u*(1 - u),
c*(1 - r) + (1 - c)*(1 - u)*2,
u,
1 - u
), retroact$lists == 1,])

vcov(mpt1) # covariance matrix (probability scale)
vcov(mpt1, logit = TRUE) # covariance matrix (logit scale)
vcov(mpt1, what = "fisher") # Fisher information
Index

*Topic **datasets**
 - citysize, 2
 - proact, 13
 - prospecMemory, 15
 - recogROC, 16
 - retroact, 17
 - valence, 21

*Topic **models**
 - logLik.mpt, 3
 - mpt, 4
 - mptEM, 7
 - mptspec, 9
 - plot.mpt, 11
 - simulate.mpt, 19
 - vcov.mpt, 22

AIC, 4
 - anova.mpt (mpt), 4

 - citysize, 2
 - coef.mpt (mpt), 4
 - confint.default, 5
 - confint.mpt (mpt), 4

 - deviance.mpt (logLik.mpt), 3

 - logLik.lm, 4
 - logLik.mpt, 3, 6

 - mpt, 3, 4, 4, 8–12, 20, 22, 23
 - mptEM, 5, 6, 7
 - mptspec, 4–6, 9

 - nobs.mpt (logLik.mpt), 3

 - optim, 5, 6

 - plot.mpt, 6, 11
 - predict.mpt (mpt), 4
 - print.mpt (mpt), 4
 - print.mptspec (mptspec), 9

 - print.summary.mpt (mpt), 4
 - proact, 6, 13
 - prospecMemory, 15

 - recogROC, 16
 - residuals.glm, 12
 - residuals.mpt, 6
 - residuals.mpt (plot.mpt), 11
 - retroact, 6, 17
 - rmultinom, 20

 - simulate.mpt, 6, 19
 - summary.mpt (mpt), 4

 - update.mptspec (mptspec), 9

 - valence, 21
 - vcov.mpt, 6, 22

24