Package ‘msgps’

February 20, 2015

Type  Package
Title  Degrees of freedom of elastic net, adaptive lasso and
       generalized elastic net
Version  1.3
Date  2012-5-17
Author  Kei Hirose
Maintainer  Kei Hirose <mail@keihirose.com>
Description  This package computes the degrees of freedom of the lasso,
             elastic net, generalized elastic net and adaptive lasso based
             on the generalized path seeking algorithm. The optimal model
             can be selected by model selection criteria including Mallows’
             Cp, bias-corrected AIC (AICc), generalized cross validation
             (GCV) and BIC.
License  GPL (>= 2)
Repository  CRAN
Date/Publication  2012-05-17 06:51:28
NeedsCompilation  yes

R topics documented:

  msgps ...........................................................................  2
  plot.msgps ....................................................................  4
  predict.msgps .................................................................  5
  summary.msgps ...............................................................  6

Index  8
Description

This package computes the degrees of freedom of the lasso, elastic net, generalized elastic net and adaptive lasso based on the generalized path seeking algorithm. The optimal model can be selected by model selection criteria including Mallows’ Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC.

Usage

```r
msgps(X, y, penalty = "enet", alpha = 0, gamma = 1, lambda = 0.001, tau2, STEP = 20000, STEP.max = 200000, DFtype = "MODIFIED", p.max = 300, intercept = TRUE, stand.coef = FALSE)
```

Arguments

- **x**: predictor matrix
- **y**: response vector
- **penalty**: The penalty term. The "enet" indicates the elastic net:
  \[ \frac{\alpha}{2}||\beta||_2^2 + (1 - \alpha)||\beta||_1. \]
  Note that alpha = 0 is the lasso penalty. The "genet" is the generalized elastic net:
  \[ \log(\alpha + (1 - \alpha)||\beta||_1). \]
  The "alasso" is the adaptive lasso, which is a weighted version of the lasso given by
  \[ w_i||\beta||_1, \]
  where \( w_i = 1/(\hat{\beta}_i)^\gamma \). Here \( \gamma > 0 \) is a tuning parameter, and \( \hat{\beta}_i \) is the ridge estimate with regularization parameter being \( \lambda \geq 0 \).
- **alpha**: The value of \( \alpha \) on "enet" and "genet" penalty.
- **gamma**: The value of \( \gamma \) on "alasso".
- **lambda**: The value of regularization parameter \( \lambda \geq 0 \) for ridge regression, which is used to calculate the weight vector of "alasso" penalty. Note that the ridge estimates can be ordinary least squared estimates when lambda = 0.
- **tau2**: Estimator of error variance for Mallows’ Cp. The default is the unbiased estimator of error variance of the most complex model. When the unbiased estimator of error variance of the most complex model is not available (e.g., the number of variables exceeds the number of samples), tau2 is the variance of response vector.
- **STEP**: The approximate number of steps.
- **STEP.max**: The number of steps in this algorithm can often exceed STEP. When the number of steps exceeds STEP.max, this algorithm stops.
DFtype  "MODIFIED" or "NAIVE". The "MODIFIED" update is much more efficient than "NAIVE" update.
p.max  If the number of selected variables exceeds p.max, the algorithm stops.
intercept  When intercept is TRUE, the result of intercept is included.
stand.coef  When stand.coef is TRUE, the standardized coefficient is displayed.

Author(s)

Kei Hirose
<mail@keihirose.com>

References


See Also
coeff.msgps, plot.msgps, predict.msgps and summary.msgos objects.

Examples

#data
X <- matrix(rnorm(100*8),100,8)
beta0 <- c(3,1.5,0,0,2,0,0,0)
epsilon <- rnorm(100, sd=3)
y <- X %*% beta0 + epsilon
y <- c(y)

#lasso
fit <- msgps(X,y)
summary(fit)
coef(fit) #extract coefficients at t selected by model selection criteria
coef(fit,c(0, 0.5, 2.5)) #extract coefficients at some values of t
predict(fit,X[1:10,]) #predict values at t selected by model selection criteria
predict(fit,X[1:10,],c(0, 0.5, 2.5)) #predict values at some values of t
plot(fit,criterion="cp") #plot the solution path with a model selected by Cp criterion

#elastic net
fit2 <- msgps(X,y,penalty="enet",alpha=0.5)
summary(fit2)

#generalized elastic net
fit3 <- msgps(X,y,penalty="genet",alpha=0.5)
summary(fit3)

#adaptive lasso
fit4 <- msgps(X,y,penalty="alasso",gamma=1,lambda=0)
summary(fit4)
plot.msgps

plot the solution path from a "msgps" object.

Description

This function predicts fitted values from a "msgps" object.

Usage

```r
## S3 method for class 'msgps'
plot(x, criterion="cp", xvar="norm", yvar="coef", yvar.dflasso=TRUE,
     stand.coef=TRUE, plot.step = 1000, col=TRUE,...)
```

Arguments

- `x` Fitted "msgps" model object.
- `criterion` The code criterion plots the value of tuning parameter of each criterion ("cp", "aic", "gcv", "bic"). The code "none" does not depict the tuning parameter.
- `xvar` The type of x variable. "xvar=norm" is \(\max|\beta|/|\beta|\), "xvar=sum" is \(\max|\beta|\), "xvar=step" is the number of steps, and "xvar=t" is tuning parameter.
- `yvar` The type of y variable. "yvar=coef" is the standardized coefficients, and "yvar=df" is the degrees of freedom.
- `yvar.dflasso` For lasso penalty, the degrees of freedom of the lasso (the number of non-zero parameters) is given when "yvar=df" and "yvar.dflasso=TRUE".
- `stand.coef` The standardized coefficients and tuning parameters are depicted if "stand.coef=TRUE".
- `plot.step` The number of steps to plot the solution of df. As `plot.step` increases, the picture will be well-looking whereas the file size of the picture will increase.
- `col` The color option.
- `...` Other graphical parameters to plot

Value

The object returned depends on type.

Author(s)

Kei Hirose
<mail@keihirose.com>

See Also

`coef.msgps`, `predict.msgps` and `summary.msgps` objects.
Examples

```r
#data
X <- matrix(rnorm(100*8),100,8)
beta0 <- c(3,1.5,0,0,2,0,0,0)
epsilon <- rnorm(100,sd=3)
y <- X %*% beta0 + epsilon
y <- c(y)

#fit
fit <- msgps(X,y)
plot(fit,criterion="cp") #plot the solution path with a model selected by Cp criterion
```

**predict.msgps**

**make predictions from a "msgps" object.**

**Description**

This functions predicts fitted values via msgps function.

**Usage**

```r
## S3 method for class 'msgps'
predict(object, X, tuning,...)
## S3 method for class 'msgps'
coef(object, tuning,...)
```

**Arguments**

- **object**
  - Fitted "msgps" model object.
- **X**
  - Matrix of vector of new input \( x \).
- **tuning**
  - Tuning parameter vector \( t \) where predictions are required. If tuning is missing, solutions selected by Cp, bias-corrected AIC (AICC), generalized cross validation (GCV) and BIC are displayed.
- **...**
  - Other parameters

**Value**

The object returned depends on type.

**Author(s)**

Kei Hirose

<mail@keihirose.com>
**Examples**

```r
data
X <- matrix(rnorm(100*8),100,8)
beta0 <- c(3,1.5,0,0,2,0,0,0)
epsilon <- rnorm(100,sd=3)
y <- X %*% beta0 + epsilon
y <- c(y)

#fit
fit <- msgps(X,y)
coef(fit) #extract coefficients at t selected by model selection criteria
coef(fit,c(0, 0.5, 2.5)) #extract coefficients at some values of t
predict(fit,X[1:10,]) #predict values at t selected by model selection criteria
predict(fit,X[1:10,],c(0, 0.5, 2.5)) #predict values at some values of t
```

**summary.msgps**

A summary of "msgps" object.

**Description**

This function summarizes the "msgps" object.

**Usage**

```r
## S3 method for class 'msgps'
summary(object, digits=max(3,getOption("digits") - 3), num.result = 20, 
        coef.result=100,...)
```

**Arguments**

- `object`: Fitted "msgps" model object.
- `digits`: The digits of the output.
- `num.result`: The number of tuning parameter and the corresponding degrees of freedom displayed in this code.
- `coef.result`: If the coef.result exceeds the number of variables, the result of coefficient is not described in this code.
- `...`: Other parameters on summary

**Value**

- `df`: The degrees of freedom for each tuning parameter.
- `tuning.max`: Maximum value of tuning parameter.
- `ms.coef`: The coefficient selected by each model selection criterion.
- `ms.tuning`: The values of tuning parameter of models selected by each model selection criterion.
- `ms.df`: The degrees of freedom selected of models each model selection criterion.
Author(s)

Kei Hirose
<mail@keihirose.com>

Examples

```r
#data
X <- matrix(rnorm(100*8),100,8)
beta0 <- c(3.15,0,2,0,0,0)
epsilon <- rnorm(100,sd=3)
y <- X %*% beta0 + epsilon
y <- c(y)

#fit
fit <- msgps(X,y)
summary(fit)
```
Index

*Topic models
  msgps, 2
  plot.msgps, 4
  predict.msgps, 5
  summary.msgps, 6

aicc.dfgps (msgps), 2

bic.dfgps (msgps), 2

ccoef.dfgps (predict.msgps), 5
ccoef.msgps (predict.msgps), 5
ccoef.step.dfgps (predict.msgps), 5
ccoefmat.dfgps (predict.msgps), 5
cp.dfgps (msgps), 2

dfgps (msgps), 2
gcv.dfgps (msgps), 2

msgps, 2

plot.df (plot.msgps), 4
plot.msgps, 4
predict.msgps, 5
print.msgps (msgps), 2
summary.msgps, 6