Package ‘mutoss’

April 2, 2015

Type Package
Title Unified Multiple Testing Procedures
Version 0.1-10
Author MuToss Coding Team (Berlin 2010), Gilles Blanchard, Thorsten Dickhaus, Niklas Hack, Frank Konietschke, Kornelius Rohmeyer, Jonathan Rosenblatt, Marsel Scheer, Wiebke Werft
Maintainer Kornelius Rohmeyer <rohmeyer@small-projects.de>
Description The Mutoss package and accompanying mutossGUI package are designed to ease the application and comparison of multiple hypothesis testing procedures.
Depends R (>= 2.10.0), mvtnorm
Suggests fdrtool, qvalue, RUnit, lattice
Imports plotrix, multtest (>= 2.2.0), multcomp (>= 1.1-0), methods
License GPL
LazyLoad yes
URL http://mutoss.r-forge.r-project.org/
NeedsCompilation no
Repository CRAN
Date/Publication 2015-04-02 17:52:00

R topics documented:

ABH_pi0_est .. 3
adaptiveBH .. 4
adaptiveSTS ... 5
adjPValuesPlot .. 6
aorc .. 7
augmentation .. 8
BH ... 9
BL ... 11
BlaRoq .. 12
R topics documented:

bonferroni ... 13
BR_pi0_est ... 14
BY ... 15
calculateBetaAdjustment 16
compareMutoss .. 17
ErrorControl-class ... 19
fisher22.marginal .. 19
fisher22_fast ... 20
fisher23.marginal .. 21
fisher23_fast ... 21
ftest.marginal .. 22
gao ... 23
gatherParameters ... 24
gatherStatistics ... 25
hochberg ... 27
holm ... 28
hommel ... 29
indepBR .. 30
jointCDF.orderedUnif ... 31
linearStepUp ... 32
mu.test.class ... 33
mu.test.name .. 34
mu.test.rates .. 34
mu.test.same.data .. 35
mu.test.type .. 36
multcomp.wrapper ... 36
multiple.down ... 38
multiple.down.adjust 39
Mutoss-class ... 39
mutoss.apply .. 40
mutoss.models .. 41
mutoss.plotCI .. 42
MutossMethod-class .. 42
notterman .. 43
nparcomp ... 43
nparcomp.wrapper ... 45
onesamp.marginal ... 46
oracleBH ... 47
paired.marginal ... 48
printRejected ... 49
pval2locfdr .. 50
pval2qval .. 51
pValuesPlot .. 52
Qvalue .. 52
ranktruncated .. 53
regwq .. 54
reject .. 56
requireLibrary ... 56
Description

The Lowest Slope Line (LSL) method of Hochberg and Benjamini for estimating pi0 is applied to pValues. This method for estimating pi0 is motivated by the graphical approach proposed by Schweder and Spjotvoll (1982), as developed and presented in Hochberg and Benjamini (1990).

Usage

```r
ABH_pi0_est(pValues)
```

Arguments

- `pValues` The raw p-values for the marginal test problems

Value

- `pi0.ABH` The estimated proportion of true null hypotheses.

Author(s)

WerftWiebke

References

Examples

```r
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- ABH_pi0_est(my.pvals)
```

Description

The adaptive Benjamini-Hochberg step-up procedure is applied to pValues. It controls the FDR at level alpha for independent or positive regression dependent test statistics.

Usage

```r
adaptiveBH(pValues, alpha, silent=FALSE)
```

Arguments

- `pValues`: The used raw pValues.
- `alpha`: The level at which the FDR shall be controlled.
- `silent`: If true any output on the console will be suppressed.

Details

In the adaptive Benjamini-Hochberg step-up procedure the number of true null hypotheses is estimated first as in Hochberg and Benjamini (1990), and this estimate is used in the procedure of Benjamini and Hochberg (1995) with \(\alpha' = \alpha \frac{m}{m_0} \).

Value

A list containing:

- `adjPValues`: A numeric vector containing the adjusted pValues
- `criticalValues`: A numeric vector containing critical values used in the step-up-down test
- `rejected`: A logical vector indicating which hypotheses are rejected
- `pi0`: An estimate of the proportion of true null hypotheses among all hypotheses \(\pi_0 = \frac{m_0}{m} \).
- `errorControl`: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

WerftWiebke
References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- adaptiveBH(p, alpha)
result <- adaptiveBH(p, alpha, silent=TRUE)
```

```
```

Description

Usage

```r
adaptiveSTS(pValues, alpha, lambda=0.5, silent=FALSE)
```

Arguments

- `pValues`: The used raw pValues.
- `alpha`: The level at which the FDR shall be controlled.
- `lambda`: The tuning parameter for the estimation procedure (defaults to 0.5)
- `silent`: If true any output on the console will be suppressed.

Details

The adaptive STS procedure uses a conservative estimate of pi0 which is plugged in a linear step-up procedure. The estimation of pi0 requires a parameter (lambda) which is set to 0.5 by default. Note that the estimated pi0 is truncated at 1 as suggested by the author, so the implementation of the procedure is not entirely supported by the proof in the reference.
adjPValuesPlot

Value

A list containing:

- adjPValues: A numeric vector containing the adjusted p-values
- rejected: A logical vector indicating which hypotheses are rejected
- criticalValues: A numeric vector containing critical values used in the step-up-down test
- errorControl: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

Werft Wiebke

References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- adaptiveSTS(p, alpha, lambda=0.5)
result <- adaptiveSTS(p, alpha, lambda=0.5, silent=TRUE)
```

adjPValuesPlot

A function plotting adjusted p-values...

Description

A function plotting adjusted p-values

Usage

adjPValuesPlot(adjPValues, alpha)

Arguments

- adjPValues: A numeric containing the adjusted p-values to plot.
- alpha: A numeric containing the overall type I error rate alpha.

Author(s)

MuToss-Coding Team
aorc

Step-up-down test based on the asymptotically optimal rejection curve.

Description

Performs a step-up-down test on pValues. The critical values are based on the asymptotically optimal rejection curve. To have finite FDR control, an automatic adjustment of the critical values is done (see details for more).

Usage

```r
aorc(pValues, alpha, startIDX_SUD=length(pValues), betaAdjustment, silent=FALSE)
```

Arguments

- `pValues` pValues to be used. They are assumed to be stochastically independent.
- `alpha` The level at which the FDR shall be controlled.
- `startIDX_SUD` The index at which critical value the step-up-down test starts. Default is `length(pValues)` and thus the function `aorc()` by default behaves like an step-up test.
- `betaAdjustment` A numeric value to adjust the asymptotically optimal rejection curve for the finite sample case. If `betaAdjustment` is not set an algorithm will calculate it, but this can be time-consuming.
- `silent` If true any output on the console will be suppressed.

Details

The graph of the function \(f(t) = \frac{t}{t(1 - \alpha) + \alpha} \) is called the asymptotically optimal rejection curve. Denote by \(\text{finv}(t) \) the inverse of \(f(t) \). Using the critical values \(\text{finv}(i/n) \) for \(i = 1, ..., n \) yields asymptotic FDR control. To ensure finite control it is possible to adjust \(f(t) \) by a factor. The function `calculateBetaAdjustment()` calculates a beta such that \((1 + \beta / n) \times f(t) \) can be used to control the FDR for a given finite sample size. If the parameter `betaAdjustment` is not provided, `calculateBetaAdjustment()` will be called automatically.

Value

A list containing:

- `adjPValues` A numeric vector containing the adjusted pValues
- `rejected` A logical vector indicating which hypotheses are rejected
- `criticalValues` A numeric vector containing critical values used in the step-up-down test
- `errorControl` A Mutoss S4 class of type `errorControl`, containing the type of error (FDR) controlled by the function and the level `alpha`.
augmentation

Author(s)
MarselScheer

References

Examples

```r
## Not run: # Takes more than 6 seconds therefor CRAN should not check it:
set.seed(1)
rr <- c(runif(10), runif(10, 0, 0.01))
result <- aor(r, 0.05)
result <- aor(r, 0.05, startIDX_SUD = 1) ## step-down
result <- aor(r, 0.05, startIDX_SUD = length(r)) ## step-up
## End(Not run)
```

augmentation

Wrapper function to the augmentation methods of the multtest package.

Description

Wrapper function to the augmentation methods of the multtest package.

Usage

```r
augmentation(adjPValues, newErrorControl, newK, newQ, silent=FALSE)
```

Arguments

- `adjPValues` a vector of p-values that are *already* adjusted for FWER
- `newErrorControl` new error control type to adjust for. One of ("gFWER", "FDX", "FDR")
- `newK` k-parameter if newErrorControl is "gFWER"
- `newQ` q-parameter if newErrorControl is "FDX"
- `silent` if true any output on the console will be suppressed.

Details

The augmentation method turns a vector of p-values which are already adjusted for FWER control into p-values that are adjusted for gFWER, FDX or FDR. The underlying idea (for gFWER and FDX) is that the set of hypotheses rejected at a given level alpha under FWER can be "augmented" by rejecting some additional hypotheses while still ensuring (strong) control of the desired weaker type I criterion. For FDR, it uses the fact that FDX control for q=alpha=1-sqrt(1-beta) entails FDR control at level beta.
Use of these augmentation methods is recommended only in the situation where FWER-controlled p-values are directly available from the data (using some specific method). When only marginal p-values are available, it is generally preferable to use other adjustment methods directly aimed at the intended criterion (as opposed to first adjust for FWER, then augment)

Note: in the multtest package, two methods ("restricted" and "conservative") are available for FDR augmentation. Here the 'restricted' method is forced for FDR augmentation since it is in fact always valid and better than "conservative" (M. van der Laan, personal communication) with respect to power.

Value
A list containing:

adjPValues A numeric vector containing the new adjusted pValues
rejected A logical vector indicating which hypotheses are rejected. Currently always NULL.
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)
KornRohm, GillesBlanchard

References

Examples
Not run: TODO NH (MS) EXAMPLE PROBLEM
p <- c(rnorm(50), runif(50, 0, 0.01))
fwer_adj <- bonferroni(p) # adjust for FWER using Bonferroni correction
fdx_adj <- augmentation(fwer_adj$adjPValues, "FDX", q=0.1, silent = TRUE) # augment to FDX (q=0.1)

End(Not run)

BH
Benjamini-Hochberg (1995) linear step-up procedure

Description
Benjamini-Hochberg's Linear Step-Up Procedure. The procedure controls the FDR when the test statistics are stochastically independent or satisfy positive regression dependency (PRDS) (see Benjamini and Yekutieli 2001 for details). The Benjamini-Hochberg (BH) step-up procedure considers ordered pValues \(P_i \). It defines \(k \) as the largest \(i \) for which \(P_i \leq i \alpha/m \) and then rejects all associated hypotheses \(H_i \) for \(i=1,...,k \). In their seminal paper, Benjamini and Hochberg (1995)
show that for 0 ≤ m_0 ≤ m independent pValues corresponding to true null hypotheses and for any joint distribution of the m_1 = m-m_0 p-values corresponding to the non null hypotheses, the FDR is controlled at level (m_0/m)*alpha. Under the assumption of the PRDS property, (for details see Benjamini and Yekutieli 2001). In Benjamini et al. (2006) the BH procedure is improved by adaptive procedures which use an estimate of m_0 and apply the BH method at level alpha'=alpha*m/m_0, to fully exhaust the desired level alpha (see Adaptive Benjamini Hochberg and Two Stage Benjamini Yekutieli).

Usage

BH(pValues, alpha, silent=FALSE)

Arguments

pValues The used unadjusted pValues.
alpha The level at which the FDR shall be controlled.
silent If true any output on the console will be suppressed.

Value

A list containing:
adjPValues A numeric vector containing the adjusted pValues
criticalValues A numeric vector containing critical values used in the step-up test
rejected A logical vector indicating which hypotheses are rejected
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

Werft Wiebke

References

Examples

alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BH(p, alpha)
result <- BH(p, alpha, silent=TRUE)
Benjamini-Liu (1999) step-down procedure

Description

Benjamini-Liu’s step-down procedure is applied to pValues. The procedure controls the FDR if the corresponding test statistics are stochastically independent.

Usage

BL(pValues, alpha, silent=FALSE)

Arguments

pValues Numeric vector of p-values
alpha The level at which the FDR is to be controlled.
silent If true any output on the console will be suppressed.

Details

The Benjamini-Liu (BL) step-down procedure neither dominates nor is dominated by the Benjamini-Hochberg (BH) step-up procedure. However, in Benjamini and Liu (1999) a large simulation study concerning the power of the two procedures reveals that the BL step-down procedure is more suitable when the number of hypotheses is small. Moreover, if most hypotheses are far from the null then the BL step-down procedure is more powerful than the BH step-up method. The BL step-down method calculates critical values according to Benjamin and Liu (1999), i.e., \(c_i = 1 - (1 - \min(1, (m^*\alpha)/((m-i+1)))^{(1/(m-i+1))) \) for \(i = 1,\ldots,m \), where \(m \) is the number of hypotheses tested. Then, let \(k \) be the smallest \(i \) for which \(P_{(i)} > c_i \) and reject the associated hypotheses \(H_1,\ldots,H_{k-1} \).

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues.
criticalValues A numeric vector containing critical values used in the step-up-down test.
rejected A logical vector indicating which hypotheses are rejected.
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level \(\alpha \).

Author(s)

Werft Wiebke

References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BL(p, alpha)
result <- BL(p, alpha, silent=TRUE)
```

Description

Usage

```r
BlaRoq(pValues, alpha, pii, silent=FALSE)
```

Arguments

- `pValues` pValues to be used. They can have arbitrary dependence.
- `alpha` the level at which the FDR should be controlled
- `pii` Prior for the proportion of true null hypotheses, same size as `pValues`
- `silent` if true any output on the console will be suppressed.

Details

A generalization of the Benjamini-Yekutieli procedure, taking as an additional parameter a distribution `pii` on [1..k] (k is the number of hypotheses) representing prior belief on the number of hypotheses that will be rejected.

It is a step-up Procedure with critical values C_i defined as $\frac{\alpha}{k} \times \sum_{j=1}^{i} j \times pii[j]$. For any fixed prior `pii`, the FDR is controlled at level α for arbitrary dependence structure of the p-Values. The particular case of the Benjamini-Yekutieli step-up is recovered by taking `pii[i]` proportional to $1/i$.

If `pii` is missing, a default prior distribution proportional to $\exp(-i/(0.15*k))$ is taken. It should perform better than the BY procedure if more than about 0.05 to 0.1 of hypotheses are rejected, and worse otherwise.

Note: the procedure automatically normalizes the prior `pii` to sum to one if this is not the case.
bonferroni

Value

A list containing:

- adjPValues: A numeric vector containing the adjusted pValues
- rejected: A logical vector indicating which hypotheses are rejected
- criticalValues: A numeric vector containing critical values used in the step-up test
- errorControl: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

GillesBlanchard, HackNiklas

References

Bonferroni correction...

Description

Bonferroni correction

Usage

bonferroni(pValues, alpha, silent=FALSE)

Arguments

- pValues: A numeric vector containing the unadjusted pValues. No assumption is made on the dependence structure.
- alpha: The overall type I error at which the FWER shall be controlled (optional).
- silent: logical scalar. If TRUE no output is generated.

Details

The classical Bonferroni correction outputs adjusted p-values, ensuring strong FWER control under arbitrary dependence of the input p-values. It simply multiplies each input p-value by the total number of hypotheses (and ceils at value 1).

It is recommended to use Holm’s step-down instead, which is valid under the exact same assumptions and more powerful.
Value

A list containing:

adjPValues A numeric vector containing the new adjusted pValues
rejected (if alpha is given) A logical vector indicating which hypotheses are rejected
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)

MuToss-Coding Team

References

BR_pi0_est

Estimate of pi0 using the one-step Blanchard-Roquain procedure

Description

The proportion of true nulls is estimated using the Blanchard-Roquain 1-stage procedure with parameter \((\alpha, \lambda) \) via the formula

\[
\hat{\pi}_0 = \frac{m - R(\alpha, \lambda) + 1}{m(1 - \lambda \alpha)}
\]

where \(R(\alpha, \lambda) \) is the number of hypotheses rejected by the BR 1-stage procedure, \(\alpha \) is the FDR level for this procedure and \(\lambda \) a parameter belonging to \((0, 1/\alpha)\) with default value 1. Independence of p-values is assumed. This estimate may in some cases be larger than 1; it is truncated to 1 if the parameter truncated=TRUE. The estimate is used in the Blanchard-Roquain 2-stage step-up (using the non-truncated version).

Usage

```r
BR_pi0_est(pValues, alpha, lambda=1, truncate=TRUE)
```

Arguments

- **pValues** The raw p-values for the marginal test problems (assumed to be independent)
- **alpha** The FDR significance level for the BR procedure
- **lambda** (default 1) The parameter for the BR procedure, should belong to \((0, 1/\alpha)\)
- **truncate** (logical, default TRUE) if TRUE, output estimated is truncated to 1

Details

\[
\hat{\pi}_0 = \frac{m - R(\alpha, \lambda) + 1}{m(1 - \lambda \alpha)}
\]

where \(R(\alpha, \lambda) \) is the number of hypotheses rejected by the BR 1-stage procedure, \(\alpha \) is the FDR level for this procedure and \(\lambda \) a parameter belonging to \((0, 1/\alpha)\) with default value 1. Independence of p-values is assumed. This estimate may in some cases be larger than 1; it is truncated to 1 if the parameter truncated=TRUE. The estimate is used in the Blanchard-Roquain 2-stage step-up (using the non-truncated version).
BY

By Benjamini-Yekutieli (2001) step-up procedure

Description
The Benjamini-Yekutieli step-up procedure is applied to pValues. The procedure ensures FDR control for any dependency structure.

Usage
BY(pValues, alpha, silent=FALSE)

Arguments
pValues The used unadjusted pValues.
alpha The level at which the FDR shall be controlled.
silent If true any output on the console will be suppressed.

Details
The critical values of the Benjamini-Yekutieli (BY) procedure are calculated by replacing the alpha of the Benjamini-Hochberg procedure by alpha/sum(1/1:m)), i.e., c(i)=i*alpha/(m*(sum(1/1:m))) for i=1,...,m. For large number m of hypotheses the critical values of the BY procedure and the BH procedure differ by a factor log(m). Benjamini and Yekutieli (2001) showed that this step-up procedure controls the FDR at level alpha*m/m0 for any dependency structure among the test statistics.

Value
A list containing:
adjPValues A numeric vector containing the adjusted pValues
criticalValues A numeric vector containing critical values used in the step-up-down test
rejected A logical vector indicating which hypotheses are rejected
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.
calculateBetaAdjustment

Author(s)

WerftWiebke

References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- BY(p, alpha)
result <- BY(p, alpha, silent=TRUE)
```

Description

Calculates the beta to adjust the asymptotically optimal rejection curve used by the function aorc() for a finite sample size. Then aorc(..., betaAdjustment = beta) controls the FDR also in the finite sample situation.

Usage

```r
calculateBetaAdjustment(n, startIDX_SUD, alpha, silent=FALSE, initialBeta=1, maxBinarySteps=50, tolerance=1e-04)
```

Arguments

- `n`: Number of tests for which the adjusted beta should be calculated.
- `startIDX_SUD`: Starting index of the step-up-down procedure.
- `alpha`: The level at which the FDR shall be controlled.
- `silent`: If true any output on the console will be suppressed.
- `initialBeta`: Initial beta.
- `maxBinarySteps`: Maximum number of steps that will be performed.
- `tolerance`: The tolerance to search for an upper FDR bound element in [alpha - tolerance, alpha]
Details

The asymptotically optimal rejection curve, denoted by f(t), does not provide finite control of the FDR. `calculateBetaAdjustment()` calculates a factor, denoted by beta, such that \((1 + \beta/n) \cdot f(t)\) provides finite control of the FDR.

The beta is calculated with the bisection approach. Assume there are beta1 and beta2 such that choosing beta1 controls the FDR and beta2 not, then the optimal beta lies in [beta2, beta1]. If the choice (beta2 + beta1)/2 controls the FDR, the optimal FDR lies in [(beta2 + beta1)/2, beta1] and so on.

Value

The adjustment factor that is needed to ensure control of the FDR with the adjusted asymptotically optimal rejection curve at the specified level and sample size.

Author(s)

MarselScheer

compareMutoss

Functions for comparing outputs of different procedures.

Description

Functions for comparing outputs of different procedures.

Usage

```r
compareMutoss(...)  
mu.compare.adjusted(comparison.list, identify.check=F)  
mu.compare.critical(comparison.list, identify.check=F)  
mu.compare.summary(comparison.list)
```

Arguments

- `...` An arbitrary number of Mutoss class objects.
- `comparison.list` The output of the `compareMutoss` function.
- `identify.check` Logical parameter specifying if hypotheses should be identified on the output plots.

Details

These functions are used to compare the results of different multiple comparisons procedures stored as Mutoss class objects. `compareMutoss` takes as input an arbitrary number of Mutoss objects and arranges them in a simple list objects (non S4). `mu.compare.adjusted`, `mu.compare.critical` and `mu.compare.summary` take the output of the `compareMutoss` and plots or summerize the results textually or graphically.
Value

`compareMutoss` Returns a list with the following components:

- **types**: Character vector of error types corresponding to each procedure.
- **rates**: Numeric vector of error rates used for each procedure.
- **pi.nulls**: Numeric vector of estimates of the proportion of true null hypothesis if available.
- **raw.pValues**: The raw p-values used for each procedure.
- **adjusted.pvals**: Data frame with columns holding procedure specific adjusted p values.
- **criticalValue**: Data frame with columns holding the critical values corresponding to each procedure and error rate.
- **rejections**: Data frame with columns holding logical vectors of rejected hypotheses (TRUE for rejected).

Example

```r
mu.compare.adjusted
Creates a plot with the adjusted p-values for each procedure.
mu.compare.critical
Creates a plot with the critical values for each procedure and error rate.
mu.compare.summary
Creates a short textual summary for comparing results of different procedures.
```

Author(s)

Jonathan Rosenblatt

Examples

```r
# TODO: EXAMPLE PROBLEMS
## Not run:
\dontrun{creating several Mutoss class objects}
mu.test.obj.1 <- mutoss.apply(new(Class="Mutoss",
pValues=runif(10)),
f=bonferroni,
label="Bonferroni Correction",
alpha=0.05,
silent=T)
mu.test.obj.2 <- mutoss.apply(new(Class="Mutoss",
pValues=runif(10)),
f=holm,
label="Holm's step-down procedure",
alpha=0.05,
silent=T)
mu.test.obj.3 <- mutoss.apply(new(Class="Mutoss",
pValues=runif(10)),
f=aorc,
label="Asymptotically optimal rejection curve",
alpha=0.05,
startIndex.SUD = 1,
silent=T)
\dontrun{Trying to coercing a non-Mutoss object}
```
ErrorControl-class

Class ErrorControl

Description

This class holds the information related to the error rate

Slots

type: a character specifying the error rate. For example FWER, FDR, ...
alpha: the level at which the error rate shall be controlled
k: an additional parameter for generalised FWER
q: an additional parameter for FDX (false discovery exceedance)

Author(s)

MuToss-Coding Team

fisher22.marginal

Fisher (2x2) table association analysis for calculating all marginal p-values...

Description

Fisher (2x2) table association analysis for calculating all marginal p-values

Usage

fisher22.marginal(data, model)
Arguments

data
A tensor of dimension (2x2xm) where m is the number of endpoints (genes, etc.)

model
A model object indicating that this type of analysis shall be performed

Value
A list containing the m marginal p-values

Author(s)
ThorstenDickhaus

fisher22_fast
Fisher (2x2) table association analysis for calculating one (marginal) p-value...

Description
Fisher (2x2) table association analysis for calculating one (marginal) p-value

Usage
fisher22_fast(obs, epsilon)

Arguments
obs
The observed (2x2) table

epsilon
A threshold for comparing real numbers to zero

Value
A list containing:

nonrand_p
The non-randomized (conservative) p-value

rand_p
The randomized (non-conservative) p-value

prob_table
The conditional probability of the observed table (given the marginals)

Author(s)
ThorstenDickhaus
Description

Fisher-type (2x3) table association analysis for calculating all marginal p-values

Usage

```r
cisher23.marginal(data, model)
```

Arguments

- `data` A tensor of dimension (2x3xm) where m is the number of endpoints (genes, etc.)
- `model` A model object indicating that this type of analysis shall be performed

Value

A list containing the m marginal p-values

Author(s)

ThorstenDickhaus

Description

Fisher-type (2x3) table association analysis for calculating one (marginal) p-value

Usage

```r
cisher23_fast(oobs, epsilon)
```

Arguments

- `obs` The observed (2x3) table
- `epsilon` A threshold for comparing real numbers to zero
Value

A list containing:

- **nonrand_p**: The non-randomized (conservative) p-value
- **rand_p**: The randomized (non-conservative) p-value
- **prob_table**: The conditional probability of the observed table (given the marginals)

Author(s)

Thorsten Dickhaus

ftest.marginal
Marginal F test

Description

The robust version uses the Kruskal-Wallis test; otherwise a F-test will be performed.

Usage

`ftest.marginal(data, model, robust)`

Arguments

- **data**: the data set
- **model**: the result of a call to `ftest.model(classlabel)`
- **robust**: a logical variable indicating whether a F-test or a Kruskal-Wallis test should be used.

Details

A classlabel needs to be provided to distinguish k sample groups.

Value

- **pValues**: A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

Xin Gao’s non-parametric multiple test procedure is applied to Data.

Description

Xin Gao’s non-parametric multiple test procedure is applied to Data. The procedure controls the FWER in the strong sense. Here, only the Many-To-One comparisons are computed.

Usage

gao(formula, data, alpha=0.05, control=NULL, silent=FALSE)
gao.wrapper(model, data, alpha, control)

Arguments

- **formula**: Formula defining the statistical model, containing the response and the factors
- **model**: Model with formula, containing the response and the factors
- **data**: Dataset containing the response and the grouping factor
- **alpha**: The level at which the FWER shall be controlled. By default it is alpha=0.05.
- **silent**: If true any output on the console will be suppressed.
- **control**: The control group for the Many-To-One comparisons. By default it is the first group in lexicographical order.

Details

This function computes Xin Gao’s nonparametric multiple test procedures in an unbalanced one way layout. It is based upon the following purely nonparametric effects: Let F_i denote the distribution function of sample $i, i = 1, \ldots, a$, and let G denote the mean distribution function of all distribution functions ($G = \frac{1}{a} \sum_i F_i$). The effects $p_i = \int G d F_i$ are called unweighted relative effects. If $p_i > 1/2$, the random variables from sample i tend (stochastically) to larger values than any randomly chosen number from the whole experiment. If $p_i = 1/2$, there is no tendency to smaller nor larger values. However, this approach tests the hypothesis $H_0^F : F_1 = F_j, j = 2, \ldots, a$ formulated in terms of the distribution functions, simultaneously.

Value

A list containing:

- **adjPValues**: A numeric vector containing the adjusted pValues
- **rejected**: A logical vector indicating which hypotheses are rejected
- **confIntervals**: A matrix containing the estimates and the lower and upper confidence bound
- **errorControl**: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.
Author(s)

Frank Konietschke

References

Examples

```r
x = c(rnorm(40))
f1 = c(rep(1, 10), rep(2, 10), rep(3, 10), rep(4, 10))
my.data <- data.frame(x, f1)
result <- gao(x = f1, data = my.data, alpha = 0.05, control = 2, silent = FALSE)
result <- gao(x = f1, data = my.data, alpha = 0.05, control = 2, silent = TRUE)
result <- gao(x = f1, data = my.data, alpha = 0.05)
```

gatherParameters

Extracts the parameters from the simulation()-Object

Description

Basically, it is a helper function for gatherStatistics(). It extracts the parameters from the simObject$results and creates a data.frame from this. Every used parameter gets its own column. Every row corresponds to one object in simObject$results. If a object A from simObject$results does not contain a parameter P that another object B does, then the row for object A will have "" in the column for the parameter P.

Usage

gatherParameters(simObject)

Arguments

simObject An object returned by simulation()

Value

A data.frame with rows for every object in simObject$results and columns for the used parameter.

Author(s)

Marsel Scheer
gatherStatistics

Examples
this function generates pValues
myGen <- function(n, n0) {
 list(procInput=list(pValues = c(runif(n-n0, 0, 0.01), runif(n))), groundTruth = c(rep(FALSE, times=n-n0), rep(TRUE, times=n0)))
}

need some simulation()-Object I can work with
sim <- simulation(replications = 3, list(funName="myGen", fun=myGen, n=200, n0=c(50,100)),
list(list(funName="BH", fun=function(pValues, alpha) BH(pValues, alpha, silent=TRUE), alpha=c(0.25, 0.5)),
list(funName="holm", fun=holm, alpha=c(0.25, 0.5),silent=TRUE)))
gatherParameters(sim)

gatherStatistics

Gathering statistics from simulation()-Object

Description
This function facilitates gathering statistics from the object returned by simulation().

Usage
gatherStatistics(simObject, listOfStatisticFunctions,
listOfAvgFunctions)

Arguments
simObject An object returned by simulation()
listOfStatisticFunctions List of statistics that shall be calculated for the elements in simObject
listOfAvgFunctions List of functions that will be used to summarize/average the calculated statistics
for all elements in simObject$results with the same parameter constellation. If this argument is missing no averaging will be done. Instead the resulting
data.frame will keep one row for every object in simObject$results.

Details
For every simulation()-Object in simObject$results all statistics in listOfStatisticFunctions are cal-
culated. If in addition listOfAvgFunctions is provided then the statistics of the objects that have the
same parameter constellation are averaged by the functions in listOfAvgFunctions. The resulting
data.frame will then keep only one row for every parameter constellation.
gatherStatistics

Value

statisticDF A data frame that can be of two different kinds.

If listOfAvgFunctions is provided, then the resulting data frame will have a row for every parameter constellation that occurs in the simObject$results. There will be columns for every parameter used. Also length(listOfAvgFunctions) * length(listOfStatisticFunctions) additional columns will be created. Every statistic is calculated for every applied procedure and then all values that belong to a specific parameter constellation are "averaged" by applying all function from listOfAvgFunctions. For example, suppose FDP is a function from listOfStatisticFunctions that calculates the realized false discovery proportion, that is number of true hypotheses that were rejected divided by the number of all rejected hypotheses. Also suppose mean and sd are functions in listOfAvgFunctions, then the mean and the standard deviation of the statistic FDP are calculated.

If listOfAvgFunctions is not provided, then the resulting data frame will have a row for every simObject$results. Every parameter will have its own column. Additional columns for every function in listOfStatisticFunction will be created.

Author(s)

MarselScheer

Examples

```r
# this function generates pValues
myGen <- function(n, n0) {
  list(procInput=list(pValues = c(runif(n-n0, 0, 0.01), runif(n0))),
       groundTruth = c(rep(FALSE, times=n-n0), rep(TRUE, times=n0)))
}

# need some simulation() Object I can work with
sim <- simulation(replications = 10, list(funName="myGen", fun=myGen, n=200, n0=c(50,100)),
                  list(list(funName="BH", fun=function(pValues, alpha) BH(pValues, alpha, silent=TRUE),
                          alpha=c(0.25, 0.5)),
                       list(funName="holm", fun=holm, alpha=c(0.25, 0.5),silent=TRUE)))

# Make my own statistic function
NumberOfTypeError <- function(data, result) sum(data$groundTruth * result$rejected)

# Get now for every object in sim$results one row with the number of Type 1 Errors
result.all <- gatherStatistics(sim, list(NumOfTypeErr = NumberOfTypeError))

# Average over all sim$results Objects with common parameters
result1 <- gatherStatistics(sim, list(NumOfTypeErr = NumberOfTypeError), list(MEAN = mean))
print(result1)
result2 <- gatherStatistics(sim, list(NumOfTypeErr = NumberOfTypeError),
                             list(q05 = function(x) quantile(x, probs=0.05),
                                 MEAN = mean, q95 = function(x) quantile(x, probs=0.95))
print(result2)
```
create some plots
require(lattice)
histogram(~NumOfType1Err | method*alpha, data = result.all$statisticDF)
barchart(NumOfType1Err.MEAN ~ method | alpha, data = result2$statisticDF)

hochberg

Description

The Hochberg step-up procedure is based on marginal p-values. It controls the FWER in the strong sense under joint null distributions of the test statistics that satisfy Simes' inequality.

Usage

```r
hochberg(pValues, alpha, silent=FALSE)
```

Arguments

- **pValues**: The used raw pValues.
- **alpha**: The level at which the FDR shall be controlled.
- **silent**: If true any output on the console will be suppressed.

Details

The Hochberg procedure is more powerful than Holm's (1979) procedure, but the test statistics need to be independent or have a distribution with multivariate total positivity of order two or a scale mixture thereof for its validity (Sarkar, 1998). Both procedures use the same set of critical values \(c(i) = \alpha/(m-i+1) \). Whereas Holm's procedure is a step-down version of the Bonferroni test, and Hochberg's is a step-up version of the Bonferroni test. Note that Holm's method is based on the Bonferroni inequality and is valid regardless of the joint distribution of the test statistics.

Value

A list containing:

- **adjPValues**: A numeric vector containing the adjusted pValues
- **rejected**: A logical vector indicating which hypotheses are rejected
- **criticalValues**: A numeric vector containing critical values used in the step-up-down test
- **errorControl**: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level \(\alpha \).

Author(s)

WerftWiebke
References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- hochberg(p, alpha)
result <- hochberg(p, alpha, silent=TRUE)
```

`holm`
Holm’s (1979) step-down-procedure

Description

Holm’s step-down-procedure is applied to pValues. It controls the FWER in the strong sense under arbitrary dependency.

Usage

`holm(pValues, alpha, silent=FALSE)`

Arguments

- **pValues**: pValues to be used. They can have arbitrary dependency structure.
- **alpha**: The level at which the FWER shall be controlled
- **silent**: If true any output on the console will be suppressed.

Details

Holm’s procedure uses the same critical values as Hochberg’s procedure, namely \(c(i) = \alpha/(m-i+1) \), but is a step-down version while Hochberg’s method is a step-up version of the Bonferroni test. Holm’s method is based on the Bonferroni inequality and is valid regardless of the joint distribution of the test statistics, whereas Hochberg’s method relies on the assumption that Simes’ inequality holds for the joint null distribution of the test statistics. If this assumption is met, Hochberg’s step-up procedure is more powerful than Holm’s step-down procedure.
Value

A list containing:

- `adjPValues`: A numeric vector containing the adjusted pValues
- `rejected`: A logical vector indicating which hypotheses are rejected
- `criticalValues`: A numeric vector containing critical values used in the step-down test
- `errorControl`: A Mutoss S4 class of type `errorControl`, containing the type of error controlled by the function and the level `alpha`.

Author(s)

MarselScheer

References

Examples

```r
r <- c(runif(50), runif(50, 0, 0.01))
result <- hommel(r, 0.05)
result <- hommel(r, 0.05, silent = TRUE)
```

hommel
Hommel’s (1988) step-up-procedure

Description

Hommel’s step-up-procedure.

Usage

```r
hommel(pValues, alpha, silent=FALSE)
```

Arguments

- `pValues`: pValues to be used. They need a independent structure.
- `alpha`: The level at which the FWER should be controlled
- `silent`: Logical. If true, any output on the console will be suppressed.
Details

The method is applied to p-values. It controls the FWER in the strong sense when the hypothesis tests are independent or when they are non-negatively associated.

The method is based upon the closure principle and the Simes test.

Value

A list containing:

- adjPValues: A numeric vector containing the adjusted pValues
- rejected: A logical vector indicating which hypotheses are rejected
- criticalValues: A numeric vector containing critical values used in the step-up-down test.
- errorControl: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

HackNiklas

References

Examples

```r
pval <- c(runif(50), runif(50, 0, 0.01))
result <- hommel(pval, 0.05)
result <- hommel(pval, 0.05, silent = TRUE)
```

Description

Blanchard-Roquain (2009) 1-stage adaptive step-up

Usage

```r
indepBR(pValues, alpha, lambda=1, silent=FALSE)
```

Arguments

- pValues: the used p-values (assumed to be independent)
- alpha: the level at which the FDR should be controlled.
- lambda: parameter of the procedure, should belong to (0, 1/alpha) (lambda=1 default)
- silent: if true any output on the console will be suppressed.
Details

This is a step-up procedure with critical values

\[C_i = \alpha \cdot \min(i \cdot (1 - \lambda \cdot \alpha) / (m - i + 1), \lambda) \]

where \(\alpha \) is the level at which FDR should be controlled and \(\lambda \) an arbitrary parameter belonging to \((0, 1/\alpha)\) with default value 1. This procedure controls FDR at the desired level when the p-values are independent.

Value

A list containing:

- \(\text{rejected} \): A logical vector indicating which hypotheses are rejected
- \(\text{criticalValues} \): A numeric vector containing critical values used in the step-up-down test
- \(\text{errorControl} \): A Mutoss S4 class of type \text{errorControl}, containing the type of error controlled by the function and the level \(\alpha \).

Author(s)

Gilles Blanchard

References

Value

The return value is the following probability \(P(U_{(1:n)} \leq vec[1], ..., U_{(n:n)} \leq vec[n]) \), where \(U_1, ..., U_n \) are assumed to be iid uniformly distributed on \([0,1]\). The i-th ordered value is denoted by \(U_{(i:n)} \) and \(n \) equals \text{length}(vec).

Author(s)

MarselScheer

References

linearStepUp
*Linear Step Up Service Function...

Description

Linear Step Up Service Function

Usage

linearStepUp(sorted, q, m, adjust=FALSE, m0=m, pi0, constant=1)

Arguments

- **sorted**
 Numeric vector of sorted pvalues
- **q**
 Error rate to control for.
- **m**
 Number of hypothesis tested.
- **adjust**
 Logical value for p-value adjustmet (unusable).
- **m0**
 Known or estimated number of true null hypotheses.
- **pi0**
 Known or estimated proportion of true null hypothesis. Is redundant when \(m0 \) is specified.
- **constant**
 A Scaling constant for the denominator of the critical values.

Details

A Mutoss service function called by other procedures.
Value

A list containing the following objects:

- **Cutoff**: The largest p-value of rejected hypotheses.
- **Pvals**: A data frame containing the original p-values, critical values, adjusted p-values and rejections.

Author(s)

JonathanRosenblatt

mu.test.class

Test for compatible classes for comparison...

Description

Test for compatible classes for comparison

Usage

```r
mu.test.class(classes)
```

Arguments

- **classes**: A list of class names.

Details

Internal function of muToss package. Takes list of classes and tests if they are all muToss.

Value

True if all classes are muToss. False otherwise.

Author(s)

MuToss-Coding Team.
mu.test.name

Tests if all hypotheses have the same names.

Description

Tests if all hypotheses have the same names.

Usage

```
mu.test.name(hyp.names)
```

Arguments

- `hyp.names` Character vector of hypotheses names.

Details

Internal muToss function.

Value

Gives a notice when hypotheses names in different procedures are found different.

Author(s)

MuToss-Coding Team

mu.test.rates

Tests that different procedures used the same error rates.

Description

Tests that different procedures used the same error rates.

Usage

```
mu.test.rates(rates)
```

Arguments

- `rates` Numeric vector error rates extracted from muToss objects.

Details

Internal muToss function.
Value

A notice if error rates differ.

Author(s)

MuToss-Coding Team.

mu.test.same.data

Tests if the same pvalues were used by different procedures.

Description

Tests if the same pvalues were used by different procedures.

Usage

`mu.test.same.data(pvals)`

Arguments

- `pvals` Data frame of p-values used by each procedure.

Details

Internal muToss function.

Value

Stops if different data was used by different procedures.

Author(s)

MuToss-Coding Team
multcom.wrapper

Simultaneous confidence intervals for arbitrary parametric contrasts in unbalanced one-way layouts.

Description
Simultaneous confidence intervals for arbitrary parametric contrasts in unbalanced one-way layouts. The procedure controls the FWER in the strong sense.

Usage
multcomp.wrapper(model, hypotheses, alternative, rhs=0, alpha, factorC)
Arguments

model a fitted model, for example an object returned by lm, glm, or aov etc. It is assumed that coef and vcov methods are available for model.
hypotheses a specification of the linear hypotheses to be tested.
alternative a character string specifying the alternative hypothesis, must be one of 'two.sided' (default), 'greater' or 'less'.
rhs an optional numeric vector specifying the right hand side of the hypothesis.
alpha the significance level
factorC character string, specifying the factor variable of interest

Details

this function, it is possible to compute simultaneous confidence for arbitrary parametric contrasts in the unbalanced one way layout. Moreover, it computes p-values. The simultaneous confidence intervals are computed using multivariate t-distribution.

Value

A list containing:
adjPValues A numeric vector containing the adjusted pValues
rejected A logical vector indicating which hypotheses are rejected
confIntervals A matrix containing the estimates and the lower and upper confidence bound
errorControl A MuToss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)

MuToss-Coding Team

Examples

data(warpbreaks)
Tukey contrast on the levels of the factor 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
 hypotheses = "Tukey", alternative="two.sided", factorC="tension",alpha=0.05)

Williams contrast on 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
 hypotheses= "Williams", alternative="two.sided",alpha=0.05,factorC="tension")

Userdefined contrast matrix
K <-matrix(c(-1,0,1,-1,1,0, -1,0.5,0.5),ncol=3,nrow=3,byrow=TRUE)
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks),
 hypotheses=K, alternative="two.sided",alpha=0.05,factorC="tension")

Two-way anova
multiple.down

Description

A p-value procedure which controls the FDR for independent test statistics.

Usage

multiple.down(pValues, alpha)

Arguments

pValues A numeric vector of p-values
alpha The FDR error rate to control

Details

A non-linear step-down p-value procedure which control the FDR for independent test statistics and enjoys more power then other non-adaptive procedure such as the linear step-up (BH). For the case of non-independent test statistics, non-adaptive procedures such as the linear step-up (BH) or the all-purpose conservative Benjamini-Yekutieli (2001) are recommended.

Value

A list containing:

rejected A logical vector indicating which hypotheses are rejected
criticalValues A numeric vector containing critical values used in the step-up-down test.
adjPValues A numeric vector containing adjusted p-values.
pi0 An estimate of the proportion of true null hypotheses among all hypotheses (pi0=m0/m).
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.
multiple.down.adjust

Author(s)

Jonathan Rosenblatt

Examples

```r
pvals<- runif(100)^2
alpha<- 0.2
result<- multiple.down(pvals, alpha)
plot(result[['criticalValues']]~pvals)
plot(result[['adjPValues']]~pvals)
abline(v=alpha)
```

Description

A service function used by multiple.down

Usage

```r
multiple.down.adjust(sorted, m)
```

Arguments

- `sorted` A sorted pvalue vector.
- `m` The number of hypotheses tested.

Author(s)

Jonathan Rosenblatt

Mutoss-class

Class Mutoss

Description

A Mutoss object can store the input for a multiple test procedure and also the output.
Slots

data: Raw data used in model
model: link function, error family and design
description: a general description
statistic: for Z, T or F statistics
hypotheses: of class ANY
hypNames: identifiers for the hypotheses tested
criticalValues: procedure-specific critical values
pValues: raw p-values
adjPValues: procedure-specific adjusted p-values
errorControl: A Mutoss S4 class of type errorControl
rejected: Logical vector of the output of a procedure at a given error rate
qValues: Storey’s estimates of the supremum of the pFDR
locFDR: Efron’s local fdr estimates
pi0: Estimate of the proportion of null hypotheses
confIntervals: Confidence intervals for selected parameters
commandHistory: commandHistory

Author(s)

MuToss-Coding Team

mutossapply

Applies a function to a Mutoss object.

Description

Applies a function to a Mutoss object.

Usage

mutossapply(mutossObj, f, label = deparse(substitute(f)), recordHistory = TRUE, ...)

Arguments

mutossObj the Mutoss object the function should be applied to
f the function that should be applied
label the label affixed to all slots of the Mutoss object that are changed by the procedure, defaults to the name of parameter f
recordHistory if true, the calling command is concatenated verbatim to the commandHistory slot... additional parameters that are passed to the function
mutoss.models

Details

This function is intended for applying functions for multiplicity control on Mutoss class objects using the console and not the Mutoss GUI.

Value

A Mutoss object after applying the given function

mutossObj Object of S4 class Mutoss

Author(s)

Kornelius Rohmeyer

Examples

newObjectBonf <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
 f=bonferroni, label="Bonferroni Correction", alpha=0.05)

Not run: TODO: EXAMPLE PROBLEM
newObjectHolm <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
 f=holm, label="Holm's step-down-procedure", alpha=0.05, silent=T)

newObjectAORC <- mutoss.apply(new(Class="Mutoss", pValues=runif(10)),
 f=aorc, label="Asymptotically optimal rejection curve", alpha=0.05, startIDX_SUD = 1, silent=T)

End(Not run)

mutoss.models Mutoss Models

Description

Fisher-type (2x3) table as model for marginal hypotheses testing problems, Fisher (2x2) table as model for marginal hypotheses testing problems and others...

Value

A list containing the model description
mutoss.plotCI

Description
Plots the confidence intervals

Usage
mutoss.plotCI(mat)

Arguments
mat Matrix containing the confidence interval limits. TODO specify the matrix layout.

mutossmethodMclass

Class MutossMethod

Description
A MutossMethod object describes a method that is applicable to Mutoss objects.

Slots
label: A character string that contains the label that will be shown in menus.
errorControl: One of the following character strings: FWER, FWER.weak, FDR, FDX, gFWER, perComparison.
callFunction: A character string that contains the name of the Mutoss-compatible function.
output: A character vector of the possible output of the function.
info: A character string with info text. Should contain small description, author, reference etc..
assumptions: A character vector of assumptions for this method.
parameters: A list of optional description of parameters - see MuToss developer handbook.
list: For extensions a list where you can put all your miscellaneous stuff.
Description

The `notterman` data set is a data.frame containing 18 paired samples of 7457 gene expression values from Notterman et al. (2001).

The vector `notterman.grpLabel` contains 36 labels of type `tumor` or `normal` specifying the type of tissue for each column of the `notterman` data set.

The vector `T.Test.tumor.vs.normal` contains the resulting 7457 numeric p-values from the 7457 t-tests applied to each row of the data set.

Usage

```r
notterman
notterman.grpLabel
t.T.Test.tumor.vs.normal
```

Format

- `notterman` - A data.frame containing 36 columns with 7457 observations
- `notterman.grpLabel` - A vector containing 36 labels of type `tumor` or `normal`
- `T.Test.tumor.vs.normal` - A vector containing 7457 numeric p-values

Source

nparcomp

Simultaneous confidence intervals for relative contrast effects...

Description

Simultaneous confidence intervals for relative contrast effects The procedure controls the FWER in the strong sense.

Usage

```r
nparcomp(formula, data, type=c("UserDefined", "Tukey", "Dunnett", "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Marcus", "UmbrellaWilliams"), control=NULL, conflevel=0.95, alternative=c("two.sided", "less", "greater"), rounds=3, correlation=FALSE, asy.method=c("logit", "probit", "normal", "mult.t"), plot.simci=FALSE, info=TRUE, contrastMatrix=NULL)
```
Arguments

formula A two-sided 'formula' specifying a numeric response variable and a factor with more than two levels. If the factor contains less than 3 levels, an error message will be returned.
data A dataframe containing the variables specified in formula.
type Character string defining the type of contrast. It should be one of "Tukey", "Dunnett", "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Marcus".
control Character string defining the control group in Dunnett comparisons. By default it is the first group by lexicographical ordering.
confllevel The confidence level for the 1 - confllevel confidence intervals. By default it is 0.05.
alternative Character string defining the alternative hypothesis, one of "two.sided", "less" or "greater".
rounds Number of rounds for the numeric values of the output. By default it is rounds=3.
correlation Correlation A logical whether the estimated correlation matrix and covariance matrix should be printed.
asy.method character string defining the asymptotic approximation method, one of "logit", for using the logit transformation function, "probit", for using the probit transformation function, "normal", for using the multivariate normal distribution or "mult.t" for using a multivariate t-distribution with a Satterthwaite Approximation.
plot.simci A logical indicating whether you want a plot of the confidence intervals.
info A logical whether you want a brief overview with informations about the output.
contrastMatrix arbitrary contrast matrix given by the user.

Details

With this function, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes adjusted p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues
rejected A logical vector indicating which hypotheses are rejected
confIntervals A matrix containing the estimates and the lower and upper confidence bound.
nparcomp.wrapper

errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)
Frank Konietschke

Examples

Not run: # TODO Check this example and set a seed!
grp <- rep(1:5,10)
x <- rnorm(50, grp)
dataframe <- data.frame(x, grp)

Williams Contrast
nparcomp(x ~ grp, data=dataframe, asy.method = "probit",
type = "Williams", alternative = "two.sided", plot.simci = TRUE, info = TRUE)

Dunnett Contrast
nparcomp(x ~ grp, data=dataframe, asy.method = "probit", control=1,
type = "Dunnett", alternative = "two.sided", plot.simci = TRUE, info = TRUE)

Dunnett dose 3 is baseline
nparcomp(x ~ grp, data=dataframe, asy.method = "probit",
type = "Dunnett", control = "3",alternative = "two.sided",
plot.simci = TRUE, info = TRUE)

End(Not run)

nparcomp.wrapper Simultaneous confidence intervals for relative contrast effects...

Description
Simultaneous confidence intervals for relative contrast effects The procedure controls the FWER in the strong sense.

Usage
nparcomp.wrapper(model, data, hypotheses, alpha, alternative,
asy.method)

Arguments
model A two-sided formula specifying a numeric response variable and a factor with more than two levels.
data A dataframe containing the variables specified the model
hypotheses Character string defining the type of contrast. It should be one of "Tukey", "Dunnett", "Sequen", "Williams", "Changepoint", "AVE", "McDermott", "Marcus".
alpha | the significance level
alternative | Character string defining the alternative hypothesis, one of "two.sided", "less" or "greater"
asy.method | A character string defining the asymptotic approximation method, one of "logit", for using the logit transformation function, "probit", for using the probit transformation function, "normal", for using the multivariate normal

Details

With this function, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes adjusted p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers.

Value

A list containing:

adjPValues | A numeric vector containing the adjusted pValues
rejected | A logical vector indicating which hypotheses are rejected
confIntervals | A matrix containing the estimates and the lower and upper confidence bound
errorControl | A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)

FrankKonietschke

onesamp.marginal Marginal one sample test

Description

The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a t-test will be performed.

Usage

onesamp.marginal(data, robust, alternative, psi0)
oracleBH

Arguments

- **data**
 - the data set
- **robust**
 - a logical variable indicating whether a t-test or a Wilcoxon-Mann-Whitney test should be used.
- **alternative**
 - a character string specifying the alternative hypothesis, must be one of `two.sided`, `greater` or `less`
- **psiP**
 - a numeric that defines the hypothesized null value

Value

- **pValues**
 - A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

Mann, H. and Whitney, D. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:50-60

oracleBH

`Bejamini-Hochberg (2000) oracle linear step-up Procedure...`

Description

Usage

`oracleBH(pValues, alpha, psiP, silent=FALSE)`

Arguments

- **pValues**
 - pValues to be used
- **alpha**
 - the level at which the FWER should be controlled
- **psiP**
 - miraculously known number of true null hypotheses
- **silent**
 - Logical, if true any output on the console will be suppressed.
Details

Knowledge of the number of true null hypotheses (m0) can be very useful to improve upon the performance of the FDR controlling procedure. For the oracle linear step-up procedure we assume that m0 were given to us by an ‘oracle’, the linear step-up procedure with q0 = q*m/m0 would control the FDR at precisely the desired level q in the independent and continuous case, and would then be more powerful in rejecting hypotheses for which the alternative holds.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues
rejected A logical vector indicating which hypotheses are rejected
criticalValues A numeric vector containing critical values used in the step-up-down test.
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

HackNiklas

Examples

```r
pval <- c(runif(50), runif(50, 0, 0.01))
result <- oracleBH(pValues=pval, alpha=0.05, psi0=0.85)
```

paired.marginal Marginal paired two sample test

Description

The robust version uses the Wilcoxon signed rank test, otherwise a paired t-test will be performed.

Usage

```r
paired.marginal(data, model, robust, alternative, psi0, equalvar)
```

Arguments

data the data set
model the result of a call to paired.model(classlabel)
robust a logical variable indicating whether a paired t-test or a Wilcoxon signed rank test should be used.
alternative a character string specifying the alternative hypothesis, must be one of two.sided, greater or less
psi0 a numeric that defines the hypothesized null value
equalvar a logical variable indicating whether to treat the two variances as being equal
Details

A vector of class labels needs to be provided to distinguish the two paired groups. The arrangement of group indices does not matter, as long as the columns are arranged in the same corresponding order between groups. For example, if group 1 is coded as 0 and group 2 is coded as 1, for 3 pairs of data, it does not matter if the class label is coded as (0,0,0,1,1,1) or (1,1,1,0,0,0) or (0,1,0,1,0,1) or (1,0,1,0,1,0), the paired differences between groups will be calculated as group 2 - group 1.

Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

printRejected

Internal MuTossProjekt-Function

Description

Generates standard output for pValues, rejected and adjusted pValues.

Usage

printRejected(rejected, pValues=NULL, adjPValues=NULL)

Arguments

rejected logical Vector indicating which pValue is rejected.
pValues the used pValues.
adjPValues the adjusted pValues.

Details

It generates an output on the console with the number of hypotheses (number of pValues) and the number of rejected hypotheses (number of rejected pValues). Further a data.frame is constructed, one column containing the rejected pValues, one the index number of the rejected pValues and if given one column with the corresponding adjusted pValues.

Author(s)

Marsel Scheer
pval2locfdr
Strimmer et al.'s fdrtool-based local fdr

Description

The function `pval2locfdr` takes a vector of p-values and estimates for each case the local fdr.

Usage

```r
pval2locfdr(pvalues, cutoff)
```

Arguments

- `pvalues`: pValues to be used.
- `cutoff`: The local fdr cutoff for rejection. Hypotheses with local fdr smaller than `cutoff` will be rejected.

Value

A list containing:

- `locfdr`: Numeric vector with local FDR values for each case
- `rejected`: Logical vector indicating rejection/retention for each hypothesis when a cutoff is supplied.

Author(s)

JonathanRosenblatt

References

Examples

```r
pvals<- runif(1000)^2
pval2locfdr(pvals)
pval2locfdr(pValues=pvals, cutoff=0.4)
```
Description

The function `pval2qval` takes a vector of p-values and estimates for each case the tail area-based FDR, which can be regarded as a p-value corrected for multiplicity. This is done by calling the `fdrtool` function. If a cutoff is supplied, a vector of rejected hypotheses will be returned as well.

Usage

```r
pval2qval(pValues, cutoff)
```

Arguments

- `pValues` Numeric vector of p-values to be used.
- `cutoff` The positive FDR cutoff for rejection. Hypotheses with qValues smaller then `cutoff` will be rejected.

Value

A list containing:

- `qValues` A numeric vector with one q-value for each hypothesis.
- `rejected` A logical vector indicating rejection/retention for each hypothesis when `cutoff` is supplied.

Author(s)

Jonathan Rosenblatt

References

Examples

```r
pvals<- runif(1000)^2
pval2qval(pvals)
pval2qval(pValues=pvals, cutoff=0.1)
```
A function plotting p-values...

Description
A function plotting p-values

Usage
pValuesPlot(pValues)

Arguments
pValues A numeric containing the pValues to plot.

Author(s)
MarselScheer

Storey’s (2001) q-value Procedure...

Description
Storey’s (2001) q-value Procedure

Usage
Qvalue(pValues, lambda=seq(0, 0.9, 0.05), pi0.method="smoother", fdr.level=NULL, robust=FALSE, smooth.df=3, smooth.log.pi0=FALSE, silent=FALSE)

Arguments
pValues pValues to be used (only necessary input)
lambda Value of the tuning parameter to be used
pi0.method Method for automatically choosing tuning parameter in the estimation of pi_0. Either 'smoother' or 'bootstrap'
fdr.level Level at which to control the FDR
robust Logical, whether to make estimate more robust for small p-values.
smooth.df Number of degrees of freedom to use when estimating pi_0 with the smoother.
smooth.log.pi0 Logical, if TRUE and pi0.method = 'smoother', pi0 will be estimated by applying a smoother to a scatterplot of log(pi_0) estimates against the tuning parameter lambda.
silent logical scalar. If TRUE no output is generated.
Details

The Qvalue procedure estimates the q-values for a given set of p-values. The q-value of a test measures the proportion of false positive incurred when that particular test is called significant. It gives the scientist a hypothesis testing error measure for each observed statistic with respect to the pFDR.

Note: If no options are selected, then the method used to estimate π₀ is the smoother method described in Storey and Tibshirani (2003). The bootstrap method is described in Storey, Taylor and Siegmund (2004).

Value

A list containing:

- **qValues**: A vector of the estimated q-values
- **π₀**: An estimate of the proportion of null hypotheses
- **errorControl**: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)

HackNiklas

References

Examples

```r
pval <- c(runif(50), runif(50, 0, 0.01))
result <- Qvalue(pval)
result <- Qvalue(pval, lambda=0.5)
```

Description

Rank truncated p-Value procedure The program computes the exact distribution and with it the p-Value

Usage

```r
ranktruncated(pValues, K, silent=FALSE)
```
Arguments

- `pvalues` Vector of p-Values (not sorted)
- `K` the number of hypotheses / p-Values being in w
- `silent` If true any output on the console will be suppressed.

Details

This function computes the exact distribution of the product of at most K significant p-values of L > K observed p-values. Thus, one gets the pvalue from the exact distribution. This has certain advantages for genomewide association scans: K can be chosen on the basis of a hypothesised disease model, and is independent of sample size. Furthermore, the alternative hypothesis corresponds more closely to the experimental situation where all loci have fixed effects.

Value

- `Used.pValue`: List information about the used pValues; `RTP`: Test statistic and pValue

Author(s)

- Frank Konietschke

References

Examples

```r
pvalues <- runif(10)
result <- ranktruncated(pvalues, K=2, silent=FALSE)  # take the K=2 smallest pvalues
result <- ranktruncated(pvalues, K=2, silent=TRUE)  # take the K=2 smallest pvalues
result <- ranktruncated(pvalues, K=5, silent=TRUE)  # take the K=5 smallest pvalues
```

REGWQ - Ryan / Einot and Gabriel / Welsch test procedure...

Description

REGWQ - Ryan / Einot and Gabriel / Welsch test procedure This function computes REGWQ test for given data including p samples. It is based on a stepwise or layer approach to significance testing. Sample means are ordered from the smallest to the largest. The largest difference, which involves means that are r = p steps apart, is tested first at α level of significance; if significant, means that are r < p steps apart are tested at a different α level of significance and so on.

Compare to the Student- Newman-Keuls test, the α levels are adjusted for the p-1 different layers by the formula

\[\alpha_p = \alpha, \text{if p=k or p=k-1, } \alpha_p = 1 - (1 - \alpha)^{p/k} \text{ otherwise.} \]

It might happen that the quantiles are not descending in p. In this case, they are adapted by \[c_k = max_{2 \leq r \leq k} c_r, k = 2, \ldots, p. \]

The REGWQ procedure, like Tukey’s procedure, requires equal sample n’s. However, in this algorithm, the procedure is adapted to unequal sample sized which can lead to still conservative test decisions.
Usage

regwq(formula, data, alpha, MSE=NULL, df=NULL, silent=FALSE)

Arguments

formula Formula defining the statistical model containing the response and the factors
data dataset containing the response and the grouping factor
alpha The level at which the error should be controlled. By default it is alpha=0.05.
MSE Optional for a given variance of the data
df Optional for a given degree of freedom
silent If true any output on the console will be suppressed.

Value

A list containing:

adjPValues A numeric vector containing the adjusted pValues
rejected A logical vector indicating which hypotheses are rejected
statistics A numeric vector containing the test-statistics
confIntervals A matrix containing only the estimates
errorControl A Mutoss S4 class of type errorControl, containing the type of error controlled by the function.

Author(s)

Frank Konietschke

References

Examples

x = rnorm(50)
grp = c(rep(1:5,10))
dataframe <- data.frame(x,grp)
result <- regwq(x~grp, data=dataframe, alpha=0.05,MSE=NULL, df=NULL, silent = TRUE)
result <- regwq(x~grp, data=dataframe, alpha=0.05,MSE=NULL, df=NULL, silent = FALSE)
result <- regwq(x~grp, data=dataframe, alpha=0.05,MSE=1, df=Inf, silent = FALSE) # known variance
result <- regwq(x~grp, data=dataframe, alpha=0.05,MSE=1, df=1000, silent = FALSE) # known variance
Description

Returns the highest rejected p-value and its index given some critical values.

Usage

```
reject(sorted, criticals)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted</td>
<td>Sorted p-values</td>
</tr>
<tr>
<td>criticals</td>
<td>Critical values</td>
</tr>
</tbody>
</table>

Value

A list with elements

```
cutoff       # highest rejected p-value
cut.index    # index of highest rejected p-value
```

Description

Tries to load a package. If this package does not exist, it will ask the user whether the package should be installed and loaded. If the user negates, we will raise an error via stop.

Usage

```
requireLibrary(package)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>package</td>
<td>Package to load</td>
</tr>
</tbody>
</table>

Value

NULL

Author(s)

MuToss-Coding Team
Description

Rom's step-up-procedure is applied to pValues. The procedure controls the FWER in the strong sense if the pValues are stochastically independent.

Usage

rom(pValues, alpha, silent=FALSE)

Arguments

- **pValues**: pValues to be used. They are assumed to be stochastically independent.
- **alpha**: the level at which the FWER shall be controlled.
- **silent**: if true any output on the console will be suppressed.

Details

This function calculates the critical values by the formula given in Finner, H. and Roters, M. (2002) based on the joint distribution of order statistics. After that a step-up test is performed to reject hypotheses associated with pValues.

Since the formula for the critical values is recursive, the calculation of adjusted pValues is far from obvious and is not implemented here.

Value

A list containing:

- **adjPValues**: A numeric vector containing the adjusted pValues
- **rejected**: A logical vector indicating which hypotheses are rejected.
- **criticalValues**: A numeric vector containing critical values used in the step-up-down test.
- **errorControl**: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

Marsel Scheer

References

Examples

r <- c(runif(50), runif(50, 0, 0.01))
result <- rom(r, 0.05)
result <- rom(r, 0.05, silent = TRUE)

Description

A general step-down procedure.

Usage

SD(pValues, criticalValues)

Arguments

pValues pValues to be used.
criticalValues criticalValues for the step-down procedure

Details

Suppose we have n pValues and they are already sorted. The procedure starts with comparing pValues[1] with criticalValues[1]. If pValues[1] <= criticalValues[1], then the hypothesis associated with pValues[1] is rejected and the algorithm carries on with second smallest pValue and criticalValue in the same way. The algorithm stops rejecting at the first index i for which pValues[i] > criticalValues[i]. Thus pValues[j] is rejected if and only if pValues[i] <= criticalValues[i] for all i <= j.

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MarselScheer
Description

The classical Sidak correction returns adjusted p-values, ensuring strong FWER control under the assumption of independence of the input p-values. It only uses the fact that the probability of no incorrect rejection is the product over true nulls of those marginal probabilities (using the assumed independence of p-values).

Usage

```
sidak(pValues, alpha, silent=FALSE)
```

Arguments

- `pValues`: pValues to be used.
- `alpha`: The level at which the FWER shall be controlled (optional).
- `silent`: logical scalar. If TRUE no output is generated.

Details

The procedure is more generally valid for positive orthant dependent test statistics.

It is recommended to use the step-down version of the Sidak correction instead (see SidakSD), which is valid under the exact same assumptions but is more powerful.

Value

A list containing:

- `adjPValues`: A numeric vector containing the adjusted pValues
- `rejected`: (if alpha is given) A logical vector indicating which hypotheses are rejected
- `errorControl`: A MuToss S4 class of type `errorControl`, containing the type of error controlled by the function.

Author(s)

MuToss-Coding Team

References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- sidak(p)
result <- sidak(p, alpha)
result <- sidak(p, alpha, silent=TRUE)
```

Description

The Sidak-like (1987) step-down procedure is an improvement over the Holm’s (1979) step-down procedure. The improvement is analogous to Sidak’s correction over the original Bonferroni procedure. This Sidak-like step-down procedure assumes positive orthant dependent test statistics.

Usage

```r
SidakSD(pValues, alpha, silent=FALSE)
```

Arguments

- `pValues`: The used raw pValues.
- `alpha`: The level at which the FWER shall be controlled.
- `silent`: If true any output on the console will be suppressed.

Value

A list containing:

- `adjPValues`: a numeric vector containing the adjusted pValues
- `rejected`: a logical vector indicating which hypotheses are rejected
- `criticalValues`: a numeric vector containing critical values used in the step-up-down test
- `errorControl`: A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level alpha.

Author(s)

WerftWiebke

References

Examples

```r
alpha <- 0.05
p <- c(runif(10, min=0, max=0.01), runif(10, min=0.9, max=1))
result <- SidakSD(p, alpha)
result <- SidakSD(p, alpha, silent=TRUE)
```

Description

This function generates data according to a specified function and parameters and then applies specified procedures to the generated data. The generated data is stored in $data and the results are stored in $results. In order to recognize which results and generated data belong together every result contains an element $data.set.number. The data generating function must return a list which contains a list $procInput. Every element in $procInput will be used as an input parameter for the procedures provided by listProcedures.

Usage

```r
simulation(replications, DataGen, listProcedures, discardProcInput=FALSE)
```

Arguments

- `replications` The number of replications. This means how many simulation runs will be performed.
- `DataGen` A list that contains the function and parameters for generating data which will be analyzed by the procedures in listProcedures. It must contain the elements $funName (character) $fun (function)
- `listProcedures` A list of lists which contains the procedures with their parameters for the simulation.
- `discardProcInput` A list of lists which contains the procedures with their parameters

Value

A list with 2 elements. $data contains the objects generated by DataGen. $results contains the objects generated by the procedures augmented by the data set number and the parameter constellation.

Author(s)

MarselScheer
Examples

```r
# this function generates pValues
myGen <- function(n, n0) {
  list(procInput=list(pValues = c(runif(n-n0, 0, 0.01), runif(n0))),
       groundTruth = c(rep(FALSE, times=n-n0), rep(TRUE, times=n0)))
}

sim <- simulation(replications = 10, list(funName="myGen", fun=myGen, n=200, n0=c(50,100)),
                   list(list(funName="BH",
                             fun=function(pValues, alpha) BH(pValues, alpha, silent=TRUE), alpha=c(0.25, 0.5)),
                             list(funName="holm", fun=holm, alpha=c(0.25, 0.5), silent=TRUE)))

# the following happen:
# Call myGen(200,50) and append result to sim$data
# Apply bonferroni and holm each with alpha 0.25 and 0.5 to this data set
# Append the results to sim$results
# Repeat this 10 times.
# Call myGen(200, 100) and append result to sim$data
# Apply bonferroni and holm each with alpha 0.25 and 0.5 to this data set
# Append the results to sim$results
# Repeat this 10 times.

length(sim$data)
length(sim$results)

# we now reproduce the 6th item in results
print(sim$results[[6]]$data.set.number)
print(sim$results[[6]]$parameters)

all(BH(sim$data[[2]]$procInput$pValues, 0.5, silent=TRUE)$adjPValues == sim$results[[6]]$adjPValues)

# Just calculating some statistics and making some plots
NumberOfType1Error <- function(data, result) sum(data$groundTruth * result$rejected)
result.all <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error))
result <- gatherStatistics(sim, list(NumOfType1Err = NumberOfType1Error),
                           list(median=median, mean=mean, sd=sd))
print(result)
require(lattice)
histogram(~NumOfType1Err | method*alpha, data = result.all$statisticDF)
barchart(NumOfType1Err.median + NumOfType1Err.mean ~ method | alpha, data = result$statisticDF)
```

Description

Student - Newman - Keuls rejective test procedure. The procedure controls the FWER in the WEAK sense.
Usage

```r
snk(formula, data, alpha, MSE=NULL, df=NULL, silent=FALSE)
snk.wrapper(model, data, alpha, silent=FALSE)
```

Arguments

- `formula`: Formula defining the statistical model containing the response and the factor levels.
- `model`: Model with formula, containing the response and the factor levels
- `data`: dataset containing the response and the grouping factor.
- `alpha`: The level at which the error should be controlled. By default it is alpha=0.05.
- `MSE`: Optional for a given variance of the data.
- `df`: Optional for a given degree of freedom.
- `silent`: If true any output on the console will be suppressed.

Details

This function computes the Student-Newman-Keuls test for given data including p samples. The Newman-Keuls procedure is based on a stepwise or layer approach to significance testing. Sample means are ordered from the smallest to the largest. The largest difference, which involves means that are \(r = p \) steps apart, is tested first at \(\alpha \) level of significance; if significant, means that are \(r = p - 1 \) steps apart are tested at \(\alpha \) level of significance and so on. The Newman-Keuls procedure provides an \(r \)-mean significance level equal to \(\alpha \) for each group of \(r \) ordered means, that is, the probability of falsely rejecting the hypothesis that all means in an ordered group are equal to \(\alpha \). It follows that the concept of error rate applies neither on an experimentwise nor on a per comparison basis—the actual error rate falls somewhere between the two. The Newman-Keuls procedure, like Tukey’s procedure, requires equal sample n’s. However, in this algorithm, the procedure is adapted to unequal sample sized which can lead to still conservative test decisions.

It should be noted that the Newman-Keuls and Tukey procedures require the same critical difference for the first comparison that is tested. The Tukey procedure uses this critical difference for all the remaining tests, whereas the Newman-Keuls procedure reduces the size of the critical difference, depending on the number of steps separating the ordered means. As a result, the Newman-Keuls test is more powerful than Tukey’s test. Remember, however, that the Newman-Keuls procedure does not control the experimentwise error rate at \(\alpha \).

Value

A list containing:

- `adjPValues`: A numeric vector containing the adjusted pValues
- `rejected`: A logical vector indicating which hypotheses are rejected
- `statistics`: A numeric vector containing the test-statistics
- `confIntervals`: A matrix containing only the estimates
- `errorControl`: A Mutoss S4 class of type `errorControl`, containing the type of error controlled by the function.
Author(s)
Frank Konietschke

References

Examples
```r
x = rnorm(50)
grp = c(rep(1:5,10))
dataframe <- data.frame(x,grp)
result <- snk(x~grp, data=dataframe, alpha=0.05,MSE=NULL, df=NULL, silent = TRUE)
result <- snk(x~grp, data=dataframe, alpha=0.05,MSE=NULL, df=NULL, silent = FALSE)
result <- snk(x~grp, data=dataframe, alpha=0.05, MSE=1, df=Inf, silent = FALSE) # known variance
result <- snk(x~grp, data=dataframe, alpha=0.05, MSE=1, df=1000, silent = FALSE) # known variance
```

storey_pi0_est Storey-Taylor-Siegmund estimation of pi0 (finite sample version)

Description
The Storey-Taylor-Siegmund procedure for estimating pi0 is applied to pValues. The formula is equivalent to that in Schweder and Spjotvoll (1982), page 497, except the additional '+1' in the nominator that introduces a conservative bias which is proven to be sufficiently large for FDR control in finite families of hypotheses if the estimation is used for adjusting the nominal level of a linear step-up test.

Usage
```r
storey_pi0_est(pValues, lambda)
```

Arguments
- **pValues**: The raw p-values for the marginal test problems
- **lambda**: A tuning parameter in the interval (0, 1)

Value
A list containing:
- **pi0**: A numeric number containing the estimated value of pi0
- **lambda**: A numeric number containing the tuning parameter for the estimation

Author(s)
MarselScheer
References

Examples

```r
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- storey_pi0_est(my.pvals, 0.5)
```

Description

A general step-up procedure.

Usage

`SU(pValues, criticalValues)`

Arguments

- `pValues`: pValues to be used.
- `criticalValues`: criticalValues for the step-up procedure

Details

Suppose we have n pValues and they are already sorted. The procedure starts with comparing `pValues[n]` with `criticalValues[n]`. If `pValues[n] > criticalValues[n]`, then the hypothesis associated with `pValues[n]` is retained and the algorithm carries on with the next pValue and criticalValue, here for example `pValues[n-1]` and `criticalValues[n-1]`. The algorithm stops retaining at the first index i for which `pValues[i] <= criticalValues[i]`. Thus `pValues[j]` is rejected if and only if their exists an index i with j <= i and `pValues[i] <= criticalValues[i]`.

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MarselScheer
Description

A general step-up-down procedure.

Usage

`SUD(pValues, criticalValues, startIDX_SUD)`

Arguments

- `pValues`:
 pValues to be used.
- `criticalValues`:
 criticalValues for the step-up-down procedure
- `startIDX_SUD`:
 the index (between 1 and length(pValues)) used for the first comparison of pValues[startIDX_SUD] and criticalValues[startIDX_SUD]. Depending on the result of this comparison the algorithm decides to proceed in step-up or step-down manner.

Details

Suppose we have n pValues and they are already sorted. The procedure compares pValues[startIDX_SUD] with criticalValues[startIDX_SUD] and then proceeds in step-up or step-down manner, depending on the result of this initial comparison.

If pValues[startIDX_SUD] <= criticalValues[startIDX_SUD], then the procedure rejects the hypotheses associated with pValues[1], ..., pValues[startIDX_SUD] and carries on in a step-down manner from startIDX_SUD to n to reject additional hypotheses.

If pValues[startIDX_SUD] > criticalValues[startIDX_SUD], then the procedure retains hypotheses associated with pValues[startIDX_SUD], ..., pValues[n] and carries on in a step-up manner with pValues[startIDX_SUD - 1], ..., pValues[1].

If startIDX_SUD equals n the algorithm behaves like a step-up procedure.

If startIDX_SUD equals 1 the algorithm behaves like a step-down procedure.

Value

rejected logical vector indicating if hypotheses are rejected or retained.

Author(s)

MuToss-Coding Team
Two-step estimation method of Benjamini, Krieger and Yekutieli for estimating π_0

Description

The two-step estimation method of Benjamini, Krieger and Yekutieli for estimating π_0 is applied to p-values. It consists of the following two steps: Step 1. Use the linear step-up procedure at level $\alpha' = \alpha/(1+\alpha)$. Let r_1 be the number of rejected hypotheses. If $r_1=0$ do not reject any hypothesis and stop; if $r_1=m$ reject all m hypotheses and stop; otherwise continue. Step 2. Let $m_0 = (m - r_1)$ and $\hat{\pi}_0 = m_0/m$.

Usage

```
TSBK_Y_pi0_est(pValues, alpha)
```

Arguments

- `pValues`: The raw p-values for the marginal test problems
- `alpha`: The parameter (to be interpreted as significance level) for the procedure

Value

```
pi0.TSBKY
```

The estimated proportion of true null hypotheses.

Author(s)

WerftWiebke

References

Examples

```
my.pvals <- c(runif(50), runif(50, 0, 0.01))
result <- TSBKY.pi0_est(my.pvals, 0.1)
```
tukey.wrapper

Tukey HSD test and simultaneous confidence intervals for all pairs comparisons...

Description

Tukey HSD test and simultaneous confidence intervals for all pairs comparisons in factorial designs. The procedure controls the FWER in the strong sense.

Usage

```r
tukey.wrapper(model, alpha, factorC)
```

Arguments

- **model**: A fitted model, for example an object returned by `lm`, `glm`, or `aov` etc. It is assumed that `coef` and `vcov` methods are available for `model`. Usually, it is an `aov` fit.
- **alpha**: The significance level.
- **factorC**: Specifies a factor.

Details

This function, it is possible to compute all pairs comparisons for expectations and simultaneous confidence intervals in factorial linear models. Hereby, the all-pairs comparisons can be performed for user given effects. The overall variance is estimated by the linear model as well as the degree of freedom used by the studentized range distribution.

Value

A list containing:

- **adjPValues**: A numeric vector containing the adjusted pValues.
- **rejected**: A logical vector indicating which hypotheses are rejected.
- **confIntervals**: A matrix containing the estimates and the lower and upper confidence bound.
- **errorControl**: A Mutoss S4 class of type `errorControl`, containing the type of error controlled by the function.

Author(s)

Frank Konietschke et al.
Examples

data(warpbreaks)
 # Tukey contrast on the levels of the factor "Tension"
 tukey.wrapper(aov(breaks ~ tension, data = warpbreaks), factorC="tension", alpha=0.05)

 # Two-way anova with interaction
 tukey.wrapper(aov(breaks ~ tension+wool, data = warpbreaks), alpha=0.05, factorC="tension")
 # Two-way anova without interaction
 tukey.wrapper(aov(breaks ~ tension+wool, data = warpbreaks), alpha=0.05, factorC="tension")
 tukey.wrapper(aov(breaks ~ tension, data = warpbreaks), alpha=0.05, factorC="tension")

data(iris)
 tukey.wrapper(lm(Sepal.Length ~ Species, data=iris), alpha=0.05, factorC="Species")

two.stage A p-value procedure which controls the FDR for independent test statistics.

Description

A p-value procedure which controls the FDR for independent test statistics.

Usage

two.stage(pValues, alpha)

Arguments

 pValues A numeric vector of p-values.
 alpha The FDR error rate to control.

Details

In the Benjamini-Krieger-Yekutieli two-stage procedure the linear step-up procedure is used in stage one to estimate m0 which is re-plugged in a linear step-up. This procedure is more powerful then non-adaptive procedures, while still controlling the FDR. On the other hand, error control is not guaranteed under dependence in which case more conservative procedures should be used (e.g. BH).
Value

A list containing:

- `rejected` - A logical vector indicating which hypotheses are rejected
- `criticalValues` - A numeric vector containing critical values used in the step-up-down test.
- `adjPValues` - A numeric vector containing adjusted p-values.
- `pi0` - An estimate of the proportion of true null hypotheses among all hypotheses ($\pi_0 = m_0/m$).
- `errorControl` - A Mutoss S4 class of type errorControl, containing the type of error controlled by the function and the level α.

Author(s)

Jonathan Rosenblatt

Examples

```r
pvals <- runif(1000)^2
two.stage(pvals, 0.1)
```

twosamp.marginal Marginal two sample test

Description

The robust version uses the Wilcoxon-Mann-Whitney test, otherwise a two-sample t-test will be performed.

Usage

twosamp.marginal(data, model, robust, alternative, psi0, equalvar)

Arguments

- `data` - the data set
- `model` - the result of a call to `twosamp.model(classlabel)`
- `robust` - a logical variable indicating whether a two sample t-test or a Wilcoxon-Mann-Whitney test should be used.
- `alternative` - a character string specifying the alternative hypothesis, must be one of `two.sided`, `greater` or `less`
- `psi0` - a numeric that defines the hypothesized null value
- `equalvar` - a logical variable indicating whether to treat the two variances as being equal

Details

A vector of classlabels needs to be provided to distinguish the two groups.
Value

pValues A numeric vector containing the unadjusted pValues

Author(s)

MuToss-Coding Team

References

twostageBR

Blanchard-Roquain (2009) 2-stage adaptive step-up...

Description

Blanchard-Roquain (2009) 2-stage adaptive step-up

Usage

twostageBR(pValues, alpha, lambda=1, silent=FALSE)

Arguments

pValues the used p-values (assumed to be independent)
alpha the level at which the FDR should be controlled.
lambda parameter of the procedure, should belong to (0, 1/alpha) (lambda=1 default)
silent if true any output on the console will be suppressed.

Details

This is an adaptive linear step-up procedure where the proportion of true nulls is estimated using the Blanchard-Roquain 1-stage procedure with parameter lambda, via the formula

estimated \(\pi_0 = \frac{m - R(\alpha, \lambda) + 1}{m (1 - \lambda \alpha)} \)

where \(R(\alpha, \lambda) \) is the number of hypotheses rejected by the BR 1-stage procedure, \(\alpha \) is the level at which FDR should be controlled and \(\lambda \) an arbitrary parameter belonging to (0, 1/\(\alpha \)) with default value 1. This procedure controls FDR at the desired level when the p-values are independent.
Value

A list containing:

- `rejected` A logical vector indicating which hypotheses are rejected
- `errorControl` A Mutoss S4 class of type `errorControl`, containing the type of error controlled by the function and the level `alpha`.

Author(s)

Gilles Blanchard

References

Index

*Topic datasets
 notterman, 43
ABH_pi0_est, 3
adaptiveBH, 4
adaptiveSTS, 5
adjPValuesPlot, 6
aorc, 7
augmentation, 8
BH, 9
BL, 11
BlaRoi, 12
bonferroni, 13
BR_pi0_est, 14
BY, 15
calculateBetaAdjustment, 16
compareMutoss, 17
ErrorControl-class, 19
fisher22.marginal, 19
fisher22.model(mutoss.models), 41
fisher22.fast, 20
fisher23.marginal, 21
fisher23.model(mutoss.models), 41
fisher23.fast, 21
ftest.marginal, 22
ftest.model(mutoss.models), 41
gao, 23
gatherParameters, 24
gatherStatistics, 25
hochberg, 27
holm, 28
hommel, 29
indepBR, 30
jointCDF.orderedUnif, 31
linearStepUp, 32
mu.compare.adjusted(compareMutoss), 17
mu.compare.critical(compareMutoss), 17
mu.compare.summary(compareMutoss), 17
mu.test.class, 33
mu.test.name, 34
mu.test.rates, 34
mu.test.same.data, 35
mu.test.type, 36
multcomp.wrapper, 36
multiple.down, 38
multiple.down.adjust, 39
Mutoss-class, 39
mutoss.apply, 40
mutoss.models, 41
mutoss.plotCI, 42
MutossMethod(MutossMethod-class), 42
MutossMethod-class, 42
notterman, 43
nparcomp, 43
nparcomp.wrapper, 45
onesamp.marginal, 46
onesamp.model(mutoss.models), 41
oracleBH, 47
paired.marginal, 48
paired.model(mutoss.models), 41
printRejected, 49
pval2locfdr, 50
pval2qval, 51
pValuesPlot, 52
Qvalue, 52
ranktruncated, 53
regwaq, 54
reject, 56
requireLibrary, 56
rom, 57
SD, 58
sidak, 59
SidakSD, 60
simulation, 61
snk, 62
storey_pi0_est, 64
SU, 65
SUD, 66

T.Test.tumor.vs.normal (notterman), 43
TSBKY_pi0_est, 67
tukey.wrapper, 68
two.stage, 69
twosamp.marginal, 70
twosamp.model (mutoss.models), 41
twostageBR, 71