Package ‘mvnmle’

February 20, 2015

Version 0.1-11
Date June 2011
Title ML estimation for multivariate normal data with missing values.
Author Kevin Gross, with help from Douglas Bates
Maintainer ORPHANED
Depends R (>= 1.2.0)
Description Finds the maximum likelihood estimate of the mean vector
and variance-covariance matrix for multivariate normal data
with missing values.
License GPL (>= 2)
Repository CRAN
Date/Publication 2012-12-21 20:38:43
X-CRAN-Original-Maintainer Kevin Gross <kevin_gross@ncsu.edu>
X-CRAN-Comment Orphaned on 2012-12-21 as the maintainer failed to
respond to requests for an update for R >= 2.14.0
NeedsCompilation yes

R topics documented:

apple ... 2
gelf ... 2
getstartvals ... 3
make.del .. 4
missvals .. 5
mlest .. 6
mysort .. 7

Index 8
Worm Infestations in Apple Crops

Description
The apple data frame provides the number of apples (in 100s) on 18 different apple trees. For 12 trees, the percentage of apples with worms (x 100) is also given.

Format
This data frame contains the following columns:
- size hundreds of apples on the tree.
- worms percentage (x100) of apples harboring worms.

Details
These data constitute Table 6.1 in Little and Rubin (1987), adapted from Table 6.9.1 of Snedecor and Cochran (1967).

Source

Examples
library(mvnmle)
data(apple)
mlest(apple)

getclf
Create likelihood function for multivariate data with missing values.

Description
getclf returns a function proportional to twice the negative log likelihood function for multivariate normal data with missing values. This is a private function used in mlest.

Usage
getclf(data, freq)
getstartvals

Arguments

- **data**: A data frame sorted so that records with identical patterns of missingness are grouped together.
- **freq**: An integer vector specifying the number of records in each block of data with identical patterns of missingness.

Details

The argument of the returned function is the vector of parameters. The parameterization is: mean vector first, followed by the log of the diagonal elements of the inverse of the Cholesky factor, and then the elements of the inverse of the Cholesky factor above the main diagonal. These off-diagonal elements are ordered by column (left to right), and then by row within column (top to bottom).

Value

A function proportional to twice the negative log likelihood of the parameters given the data.

References

See Also

mlest

getstartvals(x, eps=0.001)

Arguments

- **x**: Multivariate data, potentially with missing values.
- **eps**: All eigenvalues of the variance-covariance matrix less than eps times the smallest positive eigenvalue are set to eps times the smallest positive eigenvalue.
make.del

Details
Starting values for the mean vector are simply sample means. Starting values for the variance-
covariance matrix are derived from the sample variance-covariance matrix, after setting eigenvalues
less than ϵ times the smallest positive eigenvalue equal to ϵ times the smallest positive eigen-
value to enforce positive definiteness.

Value
A numeric vector, containing the mean vector first, followed by the log of the diagonal elements
of the inverse of the Cholesky factor of the adjusted sample variance-covariance matrix, and then
the elements of the inverse of the Cholesky factor above the main diagonal. These off-diagonal
elements are ordered by column (left to right), and then by row within column (top to bottom).

See Also
mlest

make.del(pars)

Arguments
pars A length $k \times (k + 1)/2$ numerical vector giving the elements of Δ.

Details
The first k elements of pars are the log of the diagonal elements of Δ. The next $k \times (k - 1)/2$ ele-
ments are the elements above the main diagonal of Δ, ordered by column (left to right), and then by
row within column (top to bottom). That is to say, if Δ_{ij} is the element in the ith row and jth column
of Δ, then the order of the parameters is $\Delta_{11}, \Delta_{22}, \ldots, \Delta_{kk}, \Delta_{12}, \Delta_{13}, \Delta_{23}, \Delta_{14}, \ldots, \Delta_{(k-1)k}$.

Value
An upper triangular $k \times k$ matrix.

References
The `missvals` data frame has 13 rows and 5 columns. These are data from Draper and Smith (1968), and are included to demonstrate ML estimation of mean and variance-covariance parameters of multivariate normal data when some observations are missing.

This data frame contains the following columns:

- `x1`, `x2`, `x3`, `x4`, `x5` numeric vectors

These data constitute Table 6.4 in Little and Rubin (1987). They are analyzed both in Rubin (1976) and Little and Rubin (1987).

Example:

```r
library(mvnmle)
data(missvals)
mlest(missvals, iterlim=400)
```
ML Estimation of Multivariate Normal Data

Description

Finds the maximum likelihood estimates of the mean vector and variance-covariance matrix for multivariate normal data with (potentially) missing values.

Usage

```r
mlest(data, ...)
```

Arguments

- **data**
 A data frame or matrix containing multivariate normal data. Each row should correspond to an observation, and each column to a component of the multivariate vector. Missing values should be coded by 'NA'.

- **...**
 Optional arguments to be passed to the `nlm` optimization routine.

Details

The estimate of the variance-covariance matrix returned by `mlest` is necessarily positive semi-definite. Internally, `nlm` is used to minimize the negative log-likelihood, so optional arguments may be passed to `nlm` which modify the details of the minimization algorithm, such as `iterlim`. The likelihood is specified in terms of the inverse of the Cholesky factor of the variance-covariance matrix (see Pinheiro and Bates 2000).

`mlest` cannot handle data matrices with more than 50 variables. Each variable must also be observed at least once.

Value

- **muhat**
 MLE of the mean vector.

- **sigmahat**
 MLE of the variance-covariance matrix.

- **value**
 The objective function that is minimized by `nlm`. Is is proportional to twice the negative log-likelihood.

- **gradient**
 The curvature of the likelihood surface at the MLE, in the parameterization used internally by the optimization algorithm. This parameterization is: mean vector first, followed by the log of the diagonal elements of the inverse of the Cholesky factor, and then the elements of the inverse of the Cholesky factor above the main diagonal. These off-diagonal elements are ordered by column (left to right), and then by row within column (top to bottom).

- **stop.code**
 The stop code returned by `nlm`.

- **iterations**
 The number of iterations used by `nlm`.
mysort

References

See Also

nlm

Examples

library(mvnmle)
data(apple)
mlest(apple)
data(missvals)
mlest(missvals, iterlim=400)

mysort

Sort a multivariate data matrix according to patterns of missingness.

Description

mysort sorts a multivariate data matrix so that records with identical patterns of missingness are adjacent to one another. msort is a private function used inside of mlest.

Usage

mysort(x)

Arguments

x

A multivariate data matrix. Rows correspond to individual records and columns correspond to components of the multivariate vector.

Value

sorted.data

A matrix of the same size as x but with the rows re-arranged so that records with identical patterns of missingness are adjacent to one another.

freq

An integer vector giving the number of records in each block of rows with a unique pattern of missingness. The first element in freq counts the number of rows in the top block of sorted.data, and so on.

See Also

mlest
Index

*Topic algebra
 make.del, 4

*Topic datasets
 apple, 2
 missvals, 5

*Topic multivariate
 getclf, 2
 getstartvals, 3
 mlest, 6
 mysort, 7

apple, 2

getclf, 2
getstartvals, 3

make.del, 4
missvals, 5
mlest, 3–5, 6, 7
mysort, 7

nlm, 7