Package ‘mwa’

February 24, 2015

Type Package

Title Causal Inference in Spatiotemporal Event Data

Version 0.4.1

Date 2015-02-21

Author Sebastian Schutte and Karsten Donnay

Maintainer Sebastian Schutte <schuttesebastian@gmail.com>

Description Matched Wake Analysis (mwa) grants insights into causal relationships in spatiotemporal event data.

License LGPL-3

Depends R (>= 2.6), cem (>= 0.3), rJava (>= 0.9), MASS (>= 7.0)

SystemRequirements Java (>= 6.0)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-02-24 09:42:28

R topics documented:

mwa-package .. 2
matchedwake .. 3
mwa_data .. 7
plot.matchedwake ... 7
print.matchedwake .. 8
slideWakeMatch ... 9
slidingWake .. 10
summary.matchedwake 11

Index 13
Description

The package is designed to analyze causal relationships in spatially and temporally referenced data. Specific types of events might affect subsequent levels of other events. To estimate the corresponding effect, treatment, control, and dependent events are selected from the empirical sample. Treatment effects are established through automated matching and a diff-in-diffs regression design. The analysis is repeated for various spatial and temporal offsets from the treatment events.

Details

The full functionality of `mwa` is given through `matchedwake`, which relies on a small set of auxiliary methods. Note that `print()`, `summary()` and `plot()` commands are overloaded to return outputs specific to class `matchedwake`. For performance reasons, the iterative counting is done in Java using the `rJava` interface.

IMPORTANT: The size of the Java heap space has to be set before first calling the package via `library(mwa)` since JVM size cannot change once it has been initialized. This also implies that R has to be restarted if another library was already using a JVM in order for the heap space option to have any effect. To set the heap space to 1 GB, for example, use `options(java.parameters = "-Xmx1g")` (512 MB is the default size).

Author(s)

Sebastian Schutte and Karsten Donnay

References

See Also

`matchedwake, slidingWake, slideWakeMatch, print, summary, plot`

Examples

```r
# Loading sample data
data(mwa_data)

# Specify required parameters:
# - 2 to 10 days in steps of 2
t_window <- c(2,10,2)
# - 2 to 10 kilometers in steps of 2
spat_window <- c(2,10,2)
# - column and entries that indicate treatment events
```
matchedwake

Estimate Treatment Effect for Sliding Spatiotemporal Windows

Description

This function performs the Matched Wake Analysis (mwa), which consists of two steps: counts for previous and posterior events are established for different spatial and temporal offsets from treatment and control events. After that, the treatment effect is estimated in a difference-in-differences regression design. For performance reasons, the iterative counting is done in Java using the rJava interface.

IMPORTANT: The size of the Java heap space has to be set before first calling the package via library(mwa) since JVM size cannot change once it has been initialized. This also implies that R has to be restarted if another library was already using a JVM in order for the heap space option to have any effect. To set the heap space to 1 GB, for example, use options(java.parameters = "-Xmx1g") (512 MB is the default size).

Usage

matchedwake(data, t_window, spat_window, treatment, control,

```r
treatment <- c("type","treatment")
control <- c("type","control")
dependent <- c("type","dependent")
matchColumns <- c("match1","match2")

# Specify optional parameters:
weighted <- TRUE
# - use weighted regression (default estimation method is "lm")
t_unit <- "days"
# - temporal units
TCM <- TRUE
# - match on counts of previous treatment and control events

## Not run:
# Execute method:
results <- matchedwake(mwa_data, t_window, spat_window, treatment, control, dependent,
matchColumns, weighted = weighted, t_unit = t_unit, TCM = TCM)

# Plot results:
plot(results)

# Return detailed summary of results:
summary(results, detailed = TRUE)

## End(Not run)
```
dependent, matchColumns, t_unit = "days", estimation = "lm",
weighted = FALSE, estimationControls = c(), TCM = FALSE,
deletesUTVA = FALSE, alpha1 = 0.05, alpha2 = 0.1,
match.default = TRUE, ...)
in units of \(t_{\text{unit}} \). The spatial window \(\text{spat_window} \) is specified in the same way with kilometers as units.

\text{treatment}, \text{control} and \text{dependent} define which category of events is considered to be treatment, control and dependent cases respectively. The required syntax is \(\text{c(column_name, value)} \) where \(\text{column_name} \) must be entered as String and \(\text{value} \) can be Numeric, Boolean, or a String.

\text{matchColumns} selects the columns in \text{data} used for matching. Matching variables are expected to be coded together with every treatment and control type event and are assumed to reflect a set of suitable matching variables (what is suitable will, of course, vary from case to case).

The optional argument \(t_{\text{unit}} \) specifies the temporal resolution for which the analysis is to be conducted, one of either "days", "hours", "mins" or "secs". If the time stamps provided in \text{data} are more precise than the resolution they are truncated accordingly.

\text{mwa} estimates treatment effects using a diff-in-diffs regression design, i.e. "dependent_post \sim \text{dependent_pre} + \text{treatment}" (where "pre" and "post" refer to pre and post intervention). Three different methods can be chosen using \text{estimation}: a linear model ("lm", \text{stats}), all models available through ("att", \text{cem}) or a count dependent model ("glm_nb", \text{MASS}). For regressions using "lm" or "att" weighted sets whether or not the regression is weighted by the number of treatment vs. control cases. Additional control variables can be specified via \text{estimationControls}.

For example, if \text{estimationControls} = \text{c("covariate1")}, the package automatically modifies the estimation formula to "dependent_post \sim \text{dependent_pre} + \text{covariate1} + \text{treatment}". In this case the output then also not only returns the estimate and \text{p value} for \text{treatment} but further returns the coefficients and \text{p values} for all additional control variables.

The package supports full inheritance for optional arguments of the following methods: \text{cem} and \text{att} (\text{cem}), \text{lm} (\text{stats}), \text{glm_nb} (\text{MASS}). To guarantee unique inputs for each method, options have to entered into \text{matchedwake(\ldots)} using a prefix that consists of the method name separated by ".". For example, in order for \text{cem} to return an exactly balanced dataset simply add \text{cem.k2k = TRUE} as optional argument.

\textbf{Value}

Returns an object of class \text{matchedwake}, which is a list of objects with the following slots:

- \text{estimates} data.frame with estimates and \text{p values} for all spatial and temporal windows considered. For \text{estimation} = "lm" it also returns a pseudo \text{R}^2 value. If additional control dimensions were included in the estimation, it further returns the corresponding coefficients and \text{p values}.

- \text{matching} data.frame with detailed matching statistics for all spatial and temporal windows considered. Returns the number of control and treatment episodes, L1 metric, percent common support. All values are given both pre and post matching.

- \text{SUTVA} data.frame with detailed statistics on the degree of overlaps of the spatiotemporal cylinders. Returns the fraction of cases in which two or more treatment (or control) episodes overlap ("SO": same overlap) and the fraction of overlapping treatment and control episodes ("MO": mixed overlap). All values are given pre and post matching and for the full time window.

- \text{wakes} data.frame providing the information for the spatiotemporal cylinders (or \text{wakes}) for all spatial and temporal windows considered. Returns the \text{eventID} (i.e. the index of the event in the time-ordered dataset), \text{treatment} (1: treatment
matchedwake

episode, 0: control episode), counts of dependent events, overlaps (“SO” and “MO”) pre and post intervention, and the matching variables.

parameters list of all arguments passed to the method.
call the call.

Author(s)
Sebastian Schutte and Karsten Donnay.

References

See Also
mwa-package, slidingWake, slideWakeMatch, print.matchedwake, summary.matchedwake, plot.matchedwake

Examples

Loading sample data
data(mwa_data)

Specify required parameters:
- 2 to 10 days in steps of 2
t_window <- c(2,10,2)
- 2 to 10 kilometers in steps of 2
spat_window <- c(2,10,2)
- column and entries that indicate treatment events
treatment <- c("type","treatment")
- column and entries that indicate control events
control <- c("type","control")
- column and entries that indicate dependent events
dependent <- c("type","dependent")
- columns to match on
matchColumns <- c("match1","match2")

Specify optional parameters:
- use weighted regression (default estimation method is "lm")
weighted <- TRUE
- temporal units
t_unit <- "days"
- match on counts of previous treatment and control events
TCM <- TRUE

Not run:
Execute method:
results <- matchedwake(mwa_data, t_window, spat_window, treatment, control, dependent, matchColumns, weighted = weighted, t_unit = t_unit, TCM = TCM)

Plot results:
mwa_data

Data to Illustrate the Functionality of mwa

Description

This artificial data set illustrates how mwa can be used to identify causal effects. Treatment, control, and dependent events are referenced in time and space. Increased levels of dependent events following treatments can be visually and numerically analyzed using the package.

Usage

data(mwa_data)

Format

A data.frame containing observations.

Source

Monte Carlo Simulations. See supplementary information of Schutte and Donnay (2014).

References

plot.matchedwake

Plot Function for Objects of Class matchedwake

Description

Overloads the default plot() for objects of class matchedwake. Returns a contour plot: The lighter the color the larger the estimated treatment effect. The corresponding standard errors are indicated by shading out some of the estimates: No shading corresponds to \(p < \alpha_1 \) for the treatment effect in the diff-in-diffs analysis. Dotted lines indicate \(p \)-values between \(\alpha_1 \) and \(\alpha_2 \) and full lines indicate \(p > \alpha_2 \). The cells indicating effect size and significance level are arranged in a table where each field corresponds to one specific combination of spatial and temporal sizes.
Usage

S3 method for class 'matchedwake'
plot(x, ...)

Arguments

x object of class `matchedwake`.
...
 further arguments passed to or from other methods.

Author(s)

Sebastian Schutte and Karsten Donnay.

References

See Also

matchedwake

print.matchedwake
Print Function for Objects of Class matchedwake

Description

Overloads the default print() for objects of class matchedwake.

Usage

S3 method for class 'matchedwake'
print(x, ...)

Arguments

x object of class `matchedwake`.
...
 further arguments passed to or from other methods.

Value

Returns a `data.frame` with all significant results (significance level is `alpha1` as retrieved from `x$parameters`).

Author(s)

Sebastian Schutte and Karsten Donnay.
References

See Also

matchedwake

slideWakeMatch

Auxiliary Function to Match Data and Estimate Treatment Effects

Description

Method takes the output of `slidingWake`, matches observations using `cem` and estimates treatment effects using linear models (`lm` or `att`) or a count dependent variable model (`glm.nb`).

Usage

```r
slideWakeMatch(wakesL alphaL matchcolumnsL estimationL weightedL
estimationcontrolsL tcmL match.defaultL NNN)
```

Arguments

- `wakes`: data.frame. See “wakes” in the description of `matchedwake` for details.
- `alpha`: significance level used for the analysis and plots. Default = `0.05`.
- `matchColumns`: vector of Strings indicating the columns to match on.
- `estimation`: String specifying method used for estimation.
- `weighted`: Boolean specifying whether regression is weighted.
- `estimationControls`: vector of Strings indicating additional control dimensions to be included in the estimation.
- `tcm`: Boolean to select whether the method should match on counts of previous treatment and control instances.
- `match.default`: Boolean to select whether observations are matched using `cem`.
- `...`: optional parameters that can be passed to the methods used for matching and estimation.

Details

See the description of `matchedwake` for details.
slidingWake

Value

Returns a list with the following slots:

- `estimates` : data.frame with estimates and p values for all spatial and temporal windows considered.
- `matching` : data.frame with detailed matching statistics for all spatial and temporal windows considered.
- `SUTVA` : data.frame with detailed statistics on the degree of overlaps of the spatiotemporal cylinders.
- `wakes` : data.frame.

See the description of `matchedwake` for details.

Author(s)

Sebastian Schutte and Karsten Donnay.

References

See Also

`matchedwake, slidingWake`

slidingWake

Auxiliary Function to Iterate Through Sliding Spatiotemporal Windows

Description

Method iterates through all spatial and temporal window sizes specified and counts dependent events with a given spatial window and for a given temporal window (symmetrically in forward and backward direction in time). For performance reasons, the iterative counting is done in Java using the `rJava` interface.

IMPORTANT: The size of the Java heap space has to be set before first calling the package via `library(mwa)` since JVM size cannot change once it has been initialized. This also implies that R has to be restarted if another library was already using a JVM in order for the heap space option to have any effect. To set the heap space to 1 GB, for example, use `options(java.parameters = "-Xmx1g")` (512 MB is the default size).

Usage

slidingWake(data, t_unit, t_window, spat_window, treatment, control, dependent, matchColumns, estimationControls)
summary.matchedwake

Arguments

- **data**
 data.frame containing the observations.
- **t_unit**
 String specifying the temporal units to be used.
- **t_window**
 specification of temporal windows in `t_units`.
- **spat_window**
 specification of spatial windows in kilometers.
- **treatment**
 vector of Strings identifying which type of events serve as treatments.
- **control**
 vector of Strings identifying which type of events serve as controls.
- **dependent**
 vector of Strings identifying which type of events are affected by treatment.
- **matchColumns**
 vector of Strings indicating the columns to match on.
- **estimationControls**
 vector of Strings indicating additional control dimensions to be included in the estimation.

Details

See the description of `matchedwake` for details.

Value

Returns a data.frame. See “wakes” in the description of `matchedwake` for details.

Author(s)

Sebastian Schutte and Karsten Donnay.

References

See Also

`matchedwake`, `slideWakeMatch`

summary.matchedwake
Summary Function for Objects of Class matchedwake

Description

Overloads the default `summary()` for objects of class `matchedwake`.

Usage

```r
## S3 method for class 'matchedwake'
summary(object, detailed = FALSE, ...)
```
Arguments

- object: object of class `matchedwake`.
- detailed: Boolean indicating whether or not a detailed summary should be returned. Default = TRUE.
- ...: further arguments passed to or from other methods.

Value

Returns a data.frame with an overview of all significant results (significance level is \(\alpha_1 \) as retrieved from x$parameters). If `detailed = TRUE` this overview includes a number of matching statistics and statistics on overlaps of the spatiotemporal cylinders. If additional control dimensions were included in the estimation, it also provides an overview of the corresponding coefficients and \(p \) values for all significant results.

Author(s)

Sebastian Schutte and Karsten Donnay.

References

See Also

`matchedwake`
Index

att, 5, 9

cem, 5, 9

glm.nb, 5, 9

lm, 5, 9

matchedwake, 2, 3, 8–12
mwa-package, 2
mwa_data, 7

plot, 2
plot.matchedwake, 6, 7
print, 2
print.matchedwake, 6, 8

slideWakeMatch, 2, 6, 9, 11
slidingWake, 2, 6, 9, 10, 10
summary, 2
summary.matchedwake, 6, 11