Package ‘neuRosim’

February 20, 2015

Type Package
Title Functions to Generate fMRI Data Including Activated Data, Noise Data and Resting State Data
Version 0.2-12
Date 2015-01-09
Author Marijke Welvaert with contributions from Joke Durnez, Beatrijs Moerkerke, Yves Rosseel and Geert Verdoolaege
Maintainer Marijke Welvaert <marijke.welvaert@gmail.com>
Depends R (>= 3.1.1), deSolve
Description The package allows users to generate fMRI time series or 4D data. Some high-level functions are created for fast data generation with only a few arguments and a diversity of functions to define activation and noise. For more advanced users it is possible to use the low-level functions and manipulate the arguments.
License GPL (>= 2)
LazyLoad yes
Repository CRAN
Date/Publication 2015-01-10 10:01:21
NeedsCompilation yes

R topics documented:

neuRosim-package ... 2
balloon ... 3
canonicalHRF ... 5
gammaHRF ... 6
GaussSmoothKernel ... 7
lowfreqdrift ... 8
physnoise ... 9
rrice ... 10
Sim.3D.GRF .. 11
simprepSpatial ... 12
simprepTemporal .. 13
neuRosim-package

Functions to Generate fMRI Data Including Activated Data, Noise Data and Resting State Data

Description

The package allows users to generate fMRI time series or 4D data. Some high-level functions are created for fast data generation with only a few arguments and a diversity of functions to define activation and noise. For more advanced users it is possible to use the low-level functions and manipulate the arguments.

Details

<table>
<thead>
<tr>
<th>Package: neuRosim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: Package</td>
</tr>
<tr>
<td>Version: 0.2-12</td>
</tr>
<tr>
<td>Date: 2015-01-09</td>
</tr>
<tr>
<td>License: GPL (>=2)</td>
</tr>
<tr>
<td>LazyLoad: yes</td>
</tr>
</tbody>
</table>

Author(s)

Marijke Welvaert with contributions from Joke Durnez, Beatrijs Moerkerke, Yves Rosseel and Geert Verdoolaege

Maintainer: Marijke Welvaert <marijke.welvaert@gmail.com>

References

Examples

```r
## generate fMRI time series for block design
design <- sinprepTemporal(totaltime=200, onsets=seq(1,200,40),
durations=20, TR=2, effectsize=1, hrf="double-gamma")
ts <- sinTsfmri(design=design, SNR=1, noise="white")
## Not run: plot(ts, type="l")
```

```r
## generate fMRI slice for block design with activation in 2 regions
design <- sinprepTemporal(totaltime=200, onsets=seq(1,200,40),
durations=20, TR=2, effectsize=1, hrf="double-gamma")
region <- sinprepSpatial(regions=2, coord=list(c(32,15),c(57,45)),
radius=c(10,7), form="sphere")
out <- simVOLfmri(design=design, image=region, dim=c(64,64),
SNR=1, noise="none")
## Not run: plot(out[32,15], type="l")
```

balloon
Balloon model

Description
Generates the BOLD signal based on the Balloon model of Buxton et al. (2004).

Usage

```r
balloon(stim, totaltime, acc, par=list(), verbose=TRUE)
```

Arguments

- `stim` Vector representing the presence/absence (1-0 coding) of a stimulus/activation in seconds.
- `totaltime` Total duration of stimulus vector in seconds.
- `acc` Microtime resolution of stimulus vector in seconds.
- `par` List representing the parameters of the Balloon model. The list should contain the following:
 - `kappa` Inhibitory gain factor
 - `tau1` Inhibitory time constant
 - `tauf` FWHM of CBF impulse response
 - `taum` FWHM of CMRO2 impulse response
 - `deltat` Delay of CBF relative to CMRO2 response
 - `n` Steady-state flow metabolism relation
 - `f1` Normalized CBF response to sustained neural activation
 - `tauMTT` Transit time through the balloon
 - `tau` Viscoelastic time constant
alpha Steady-state flow-volume relation
E0 baseline O2 extraction fraction
V0 baseline blood volume
a1 weight for deoxyHb change
a2 weight for blood volume change
verbose If TRUE, warnings are displayed.

Details

Based on the provided stimulus boxcar function, a neural activation function is generated that enters the Balloon model to generate a BOLD response. The microtime resolution ensures a high-precision generation of the response. More details can be found in Buxton et al. (2004).

Value

Vector representing the values of the BOLD signal for the given stimulus vector and microtime resolution.

Author(s)

G. Verdoolaege, M. Welvaert

References

See Also

canonicalHRF, gammaHRF

Examples

```r
## Not run: (s <- rep(rep(0,10), rep(1,10), 5)
T <- 100
it <- 0.1
out <- balloon(s, T, it)
#takes a couple of seconds due to solving of the differential equations

## End(Not run)```
canonicalHRF

Double-gamma Haemodynamic response function

Description
Specifies a double-gamma variate haemodynamic response function for the given time vector and parameters.

Usage
canonicalHRF(x, param = NULL, verbose = TRUE)

Arguments
- x: Time vector in seconds.
- param: List of parameters of the haemodynamic response function. The list should contain the following:
  - a1: Delay of response relative to onset (default: 6)
  - a2: Delay of undershoot relative to onset (default: 12)
  - b1: Dispersion of response (default: 0.9)
  - b2: Dispersion of undershoot (default: 0.9)
  - c: Scale of undershoot (default: 0.35)
- verbose: If TRUE, warnings are displayed.

Value
Vector representing the values of the function for the given time vector and parameters.

Author(s)
M. Welvaert

References

See Also
gammaHRF, balloon

Examples
t <- 1:100
out <- canonicalHRF(t, verbose=FALSE)
**gammaHRF**

*Single Gamma Haemodynamic response function.*

**Description**

Specifies a Gamma variate haemodynamic response function for the given time vector and FWHM.

**Usage**

```r
gammaHRF(x, FWHM = 4, verbose = TRUE)
```

**Arguments**

- `x` Time vector in seconds.
- `FWHM` Full Width Half Maximum of the Gamma variate function.
- `verbose` If TRUE, warnings are displayed.

**Value**

Vector representing the values of the function for the given time vector and FWHM.

**Author(s)**

M. Welvaert

**References**


**See Also**

- `canonicalHRF`
- `balloon`

**Examples**

```r
t <- 1:100
out <- gammaHRF(t, verbose=FALSE)
```
GaussSmoothKernel

Calculates a discrete Gaussian smoothing kernel (adopted from AnalyzeFMRI)

Description

Calculates a simple, discrete Gaussian smoothing kernel of a specific size given the covariance matrix of the Gaussian.

Usage

GaussSmoothKernel(voxdim=c(1,1,1), ksize=5, sigma=diag(3,3))

Arguments

- **voxdim**: The dimensions of each voxel.
- **ksize**: The size (in voxels) of the kernel with which to filter the independent field.
- **sigma**: The covariance matrix of the Gaussian kernel.

Value

An array of dimension (ksize,ksize,ksize) containing the smoothing kernel.

Author(s)

J. L. Marchini

See Also

Sim.3D.GRF

Examples

a <- GaussSmoothKernel(voxdim=c(1,1,1), ksize=5, sigma=diag(1,3))
lowfreqdrift

Generate low frequency drift

Description
Generates a low-frequency drift dataset with specified dimensions and frequency.

Usage
lowfreqdrift(dim, freq = 128, nscan, TR, template, verbose = TRUE)

Arguments
- dim: A vector specifying the dimensions of the image.
- freq: The frequency of the drift in seconds.
- nscan: The number of scans in the dataset.
- TR: The repetition time in seconds.
- template: An array representing the anatomical structure or mask with dimensions equal to dim.
- verbose: Logical indicating if warnings should be printed.

Details
The function generates low-frequency drift based on a basis set of cosine functions. The result is an array with specified dimensions and frequency.

Value
An array containing the drift with dimensions specified in dim.

Author(s)
Y. Rosseel, M. Welvaert

References

See Also
temporalnoise, systemnoise, physnoise, tasknoise, spatialnoise
phynoise

Examples

d <- c(10,10,10)
freq <- 80
nscan <- 100
TR <- 2
out <- lowfreqdrift(d, freq, nscan, TR, verbose=FALSE)

Description
Generates a physiological noise dataset with specified dimensions and standard deviation. The physiological noise is defined as noise caused by heart beat and respiratory rate.

Usage
phynoise(dim, nscan, TR, sigma, freq.heart = 1.17, freq.resp = 0.2, template, verbose = TRUE)

Arguments
- dim: A vector specifying the dimensions of the image.
- nscan: The number of scans in the dataset.
- TR: The repetition time in seconds.
- sigma: The standard deviation of the noise.
- freq.heart: The frequency in Hz of the heart beat.
- freq.resp: The frequency in Hz of the respiratory rate.
- template: An array representing the anatomical structure or mask with dimensions equal to dim.
- verbose: Logical indicating if warnings should be printed.

Details
The function generates physiological noise. Heart beat and respiratory rate are defined as sine and cosine functions with specified frequencies. Additional Gaussian noise creates variability over voxels. The result is a noise dataset with specified dimensions and desired standard deviation.

Value
An array containing the noise with dimensions specified in dim and nscan.

Author(s)
M. Welvaert
rrice

The Rice Distribution

Description
Density and random generation for the Rician distribution

Usage
rrice(n, vee, sigma)

Arguments
- n: number of observations. Must be a positive integer of length 1.
- vee: non-centrality parameter of the distribution. Must be a positive integer of length 1.
- sigma: scale parameter of the distribution. Must be a positive integer of length 1.

Details
See VGAM for more details on the parameters and the formula of the probability density function.

Value
Random deviates for the given number of observations.

Author(s)
T.W. Yee

Examples
```r
Not run:
x <- rrice(n=10, vee=2, sigma=1)

End(Not run)
```
Simulate a GRF (adopted from AnalyzeFMRI)

Description

Simulates a Gaussian Random Field with specified dimensions and covariance structure.

Usage

Sim.3D.GRF(d, voxdim, sigma, ksize, mask=NULL, type=c("field","max"))

Arguments

d        A vector specifying the dimensions of a 3D or 4D array.
voxdim   The dimensions of each voxel.
sigma    The 3D covariance matrix of the field.
kszise   The size (in voxels) of the kernel with which to filter the independent field.
mask     A 3D mask for the field.
type     If type="field" then the simulated field together with the maximum of the field is returned. If type="max" then the maximum of the field is returned.

Details

The function works by simulating a Gaussian r.v at each voxel location and the smoothing the field with a discrete filter to obtain a field with the desired covariance structure.

Value

mat      Contains the simulated field if type="field", else NULL
max      The maximum value of the simulated field

Author(s)

J. L. Marchini

See Also

GaussSmoothKernel
Examples

d <- c(64, 64, 21)
FWHM <- 9
sigma <- diag(FWHM^2, 3) / (8 * log(2))
voxdim <- c(2, 2, 4)
msk <- array(1, dim = d)
field <- Sim.3D.GRF(d = d, voxdim = voxdim, sigma = sigma,
                   ksize = 9, mask = msk, type = "max")

---

**simprepSpatial**  
Prepare spatial structure of the data

**Description**

Prepare a list defining the necessary parameters to specify the spatial structure of the activation data.

**Usage**

```
simprepSpatial(regions, coord, radius = NULL,
 form = c("cube", "sphere", "manual"), fading = 0)
```

**Arguments**

- `regions` Number of activated regions.
- `coord` List of coordinates specifying the xyz-coordinates.
- `radius` If form=cube or sphere, the distance between the center and the edge, if form=manual, the number of voxels in each region.
- `form` The form of the activated regions.
- `fading` Decay rate between 0 and 1. 0 means no fading, while 1 results in the fastest decay.

**Value**

A list with the necessary arguments to be used in `simVOLfMRI`.

**Author(s)**

M. Welvaert

**See Also**

`simVOLfMRI`, `simprepTemporal`, `specifyregion`
**Examples**

```r
coord <- list(c(3,3,3), c(6,6,6))
radius <- c(1,2)
out <- simprepSpatial(2, coord, radius, form="cube", fading=0.2)
```

---

**Description**

Prepare a list defining the necessary parameters to specify the temporal structure of the activation data.

**Usage**

```r
simprepTemporal(totaltime, regions = NULL, onsets, durations, TR, effectsize, accuracy=0.1, hrf = c("gamma", "double-gamma", "Balloon"), param = NULL)
```

**Arguments**

- `totaltime`: Duration of the experiment.
- `regions`: Number of regions. If not specified, it is assumed that all regions have the same design matrix.
- `onsets`: List or vector representing the onsets of the stimulus in seconds.
- `durations`: List or vector representing the durations of the stimulus in seconds.
- `TR`: Repetition time in seconds.
- `effectsize`: List or number representing the effectsize in each condition.
- `accuracy`: Microtime resolution in seconds.
- `hrf`: Haemodynamic response function (double-gamma is default)
- `param`: Vector, matrix or array representing the parameters of the haemodynamic response function.

**Value**

A list with the necessary arguments to be used in `simVOLfMRI` or `simTSfmri`.

**Author(s)**

M. Welvaert

**See Also**

`simVOLfMRI, simTSfmri, simprepSpatial, specifyregion`
**Examples**

```
nc <- 2
os <- list(c(20,60),c(15,35))
d <- list(20, 10)
effect <- list(7,10)
total <- 80
TR <- 2
out <- simpreptemporal(total, onsets=os, durations=d, TR=TR, effectsize=effect, hrf="double-gamma")
```
**simTSrestingstate**

Simulate fMRI resting state time series

Description

Synthesizes a single time series x representing resting state activity. The fluctuation frequencies f are limited to a square passband 0.01 Hz <= f <= 0.1 Hz. TR is the repetition time (needed to compute the passband limits), expressed in seconds. N is the required number of samples (needs not be a power of 2).

Usage

```r
simTSrestingstate(nscan, base=0, TR, SNR=NULL, noise = c("none", "white", "temporal", "low-frequency", "physiological", "mixture"), type = c("gaussian", "rician"), weights, verbose = TRUE, rho = 0.2, freq.low = 128, freq.heart = 1.17, freq.resp = 0.2, vee=1)
```

freq.heart  If noise==physiological or noise==mixture, frequency of heart rate in Hz.
freq.resp  If noise==physiological or noise==mixture, frequency of respiratory rate in Hz.
vee  If type="rician", non-centrality parameter of the distribution.

Value

A vector representing the fMRI time series.

Author(s)

M. Welvaert

See Also

`simVOLfmri`, `simprepTemporal`

Examples

```r
design <- simprepTemporal(totaltime=200, onsets=seq(1,200,40), durations=20, effectsize=1, TR=2, hrf="double-gamma")
ts <- simTSfmri(design=design, SNR=1, noise="white")
Not run: plot(ts, type="l")
```
Arguments

- `nscan` Number of scans.
- `base` Baseline value of the time series.
- `TR` Repetition time in seconds.
- `SNR` Signal-to-noise ratio of the time series.
- `noise` Type of noise (white is default).
- `type` If `noise==white`, `noise==mixture`, type of system noise (gaussian is default).
- `weights` If `noise==mixture`, vector of weights to specify the fraction of the noise components.
- `verbose` Logical indicating if warnings should be returned.
- `rho` If `noise==temporal` or `noise==mixture`, value of autocorrelation coefficients. The length of the vector corresponds to the order of the autoregressive model.
- `freq.low` If `noise==low-frequency` or `noise==mixture`, frequency of the low-frequency drift in seconds.
- `freq.heart` If `noise==physiological` or `noise==mixture`, frequency of heart rate in Hz.
- `freq.resp` If `noise==physiological` or `noise==mixture`, frequency of respiratory rate in Hz.
- `vee` If `type==rician`, non-centrality parameter of the distribution.

Value

A vector representing the resting state time series

Author(s)

J. Durnez, G. Verdoolaege, M. Welvaert

References


See Also

`simTSfMRI`

Examples

```r
out <- simTSrestingstate(nscan=50, TR=2, SNR=1, noise="none")
Not run: plot(out, type="1")
```
simVOLfmri

Simulate 3D or 4D fMRI data

Description
Simulates a 3D or 4D fMRI dataset for the specified design and with activation in the specified regions.

Usage
```r
simVOLfmri(design = list(), image = list(), base = 0, dim, nscan = NULL,
TR = NULL, SNR=NULL, noise = c("none", "white", "temporal",
"spatial", "low-frequency", "physiological", "task-related",
"mixture"), type = c("gaussian", "rician"),
spat = c("corr", "gaussRF", "gammarf"), weights, verbose = TRUE,
rho.temp = 0.2, rho.spat = 0.75, freq.low = 128,
freq.heart = 1.17, freq.resp = 0.2, FWHM = 4, gamma.shape = 6,
gamma.rate = 1, vee=1, template)
```

Arguments
- **design**: List generated by `simpreptemporal` specifying the design. If not specified, noise images are generated.
- **image**: List generated by `simprepspatial` specifying the activated regions. If not specified, noise images are generated.
- **base**: Baseline of the data. Should be a single number or an array with the same dimensions as in `dim`.
- **dim**: Dimensions of the image space.
- **nscan**: Number of scans for noise images.
- **TR**: Repetition time for noise images.
- **SNR**: Signal-to-noise ratio.
- **noise**: Type of noise, default is white.
- **type**: If `noise==white` or `noise==mixture`, the type of system noise (default is gaussian).
- **spat**: If `noise==spatial` or `noise==mixture`, the spatial correlation structure (default is `corr`).
- **weights**: If `noise==mixture`, weights vector of six elements.
- **verbose**: Logical indicating if warning should be printed.
- **rho.temp**: If `noise==temporal` or `noise==mixture`, value of autocorrelation coefficients. The length of the vector indicates the order of the autoregressive model.
- **rho.spat**: If `noise==spatial` or `noise==mixture`, and `spat==corr`, value of the correlation coefficient.
freq.low If noise==low-frequency or noise==mixture, frequency of the low-frequency drift in seconds.
freq.heart If noise==physiological or noise==mixture, frequency of heart rate in Hz.
freq.resp If noise==physiological or noise==mixture, frequency of respiratory rate in Hz.
FWHM If noise==spatial or noise==mixture, and spat==gaussRF or spat==gammaRF, value of the FWHM of the Gaussian kernel.
gamma.shape If noise==spatial or noise==mixture, and spat==gammaRF, value of the shape parameter of the gamma distribution.
gamma.rate If noise==spatial or noise==mixture, and spat==gammaRF, value of the rate parameter of the gamma distribution.
vee If type==rician, non-centrality parameter of the rician distribution.
template An array representing the anatomical structure or mask with dimensions equal to dim.

Value
A 3D or 4D array specifying the values for each voxel in the data.

Author(s)
M. Welvaert

See Also

simTSfmri, simprepTemporal, simprepSpatial

Examples

design <- simprepTemporal(totaltime=200, onsets=seq(1,200,40),
durations=20, TR=2, effectsize=1, hrf="double-gamma")
region <- simprepSpatial(regions=2, coord=list(c(32,15),c(57,45)),
radius=c(10,7), form="sphere", fading=TRUE)
out <- simVOLFmri(design=design, image=region, dim=c(64,64),
SNR=1, noise="none")
## Not run: plot(out[32,15,], type="l")
## Not run: library(lattice)
library(gplots)
levelplot(out[,10], scales=list(tck=0),
col.regions=colorpanel(50,high="white",low="black"))
## End(Not run)
## spatialnoise

**Generate spatially correlated noise**

### Description
Generates a spatially correlated noise dataset with specified dimensions and standard deviation.

### Usage
```
spatialnoise(dim, sigma, nscan, method = c("corr", "gammaRF", "gaussRF"),
type=c("gaussian","rician"), rho = 0.75, FWHM = 4, gamma.shape = 6,
gamma.rate = 1, vee=1, template, verbose = TRUE)
```

### Arguments
- `dim`: A vector specifying the dimensions of the image.
- `sigma`: The standard deviation of the noise.
- `nscan`: The number of scans in the dataset.
- `method`: Method specifying the type of spatial correlation. Default is "corr".
- `type`: Type of distribution if `method`="corr". Default is "gaussian".
- `rho`: If `method`="corr", the value of the autocorrelation coefficient.
- `FWHM`: If `method`="gammaRF" or `method`="gaussRF", the full-width-half-maximum of the Gaussian kernel.
- `gamma.shape`: If `method`="gammaRF", the shape parameter of the Gamma distribution.
- `gamma.rate`: If `method`="gammaRF", the shape parameter of the Gamma distribution.
- `vee`: If `method`="corr" and `type`="rician", the non-centrality parameter of the rician distribution.
- `template`: An array representing the anatomical structure or mask with dimensions equal to `dim`.
- `verbose`: Logical indicating if warnings should be printed.

### Details
The function generates spatially correlated noise. When `method`="corr", AR(1) voxelwise correlations are introduced. If `method`="gaussRF" of `method`="gammaRF", respectively a Gaussian Random Field or a Gamma Random Field is created. The result is a noise array with specified dimensions and desired standard deviation. The generation of the random fields is based on the function `Sim.3D.GRF` from J.L. Marchini in the package `AnalyzeFMRI`.

### Value
An array containing the noise with dimensions specified in `dim` and `nscan`. 
Author(s)

J. Durnez, B. Moerkerke, M. Welvaert

See Also

temporalnoise, lowfreqdrift, physnoise, tasknoise, systemnoise, Sim.3D.GRF

Examples

d <- c(10,10,10)
sigma <- 5
nscan <- 100
rhospat <- 0.7
out <- spatialnoise(d, sigma, nscan, method="corr", rho=rhospat, verbose=FALSE)

---

specifydesign

Generate design matrix.

Description

Generates a design matrix to be used as a model for the simulated activation.

Usage

specifydesign(onsets, durations, totaltime, TR, effectsize, accuracy=0.1, conv = c("none", "gamma", "double-gamma", "Balloon"), cond.names = NULL, param = NULL)

Arguments

  onsets  List or vector representing the onsets in seconds.
  durations  List or vector representing the durations in seconds.
  totaltime  Duration of the experiment in seconds.
  TR  Repetition time in seconds.
  effectsize  List or number representing the effectsize in each condition.
  accuracy  Microtime resolution in seconds.
  conv  Should the design matrix be convoluted, default is none.
  cond.names  Optional names for the conditions.
  param  Parameters of the haemodynamic response function. See gammaHRF and canonicalHRF for more details.

Value

A matrix specifying the design.
**specifyregion**

**Author(s)**

M. Welvaert

**See Also**

specifyregion, gammaHRF, canonicalHRF, balloon

**Examples**

```r
os <- list(c(20, 60), c(15, 35))
d <- list(20, 10)
total <- 80
TR <- 2
out <- specifydesign(os, d, total, TR, effectsize=list(2, 5), conv="double-gamma")
```

---

**Description**

Generates an image with activated regions for specified dimensions. The regions are defined by their center and radius or can be entered manually.

**Usage**

```r
specifyregion(dim, coord, radius = NULL,
form = c("cube", "sphere", "manual"),
fading = 0)
```

**Arguments**

- `dim`: Dimensions of the image space.
- `coord`: Coordinates of the activated region, if `form="cube"` or `form="sphere"`, the coordinates represent the center of the region, if `form="manual"`, the coordinates should be in matrix form, where the rows represent the voxels and the columns the x-y-z coordinates.
- `radius`: If `form="cube"` or `form="sphere"`, the distance in voxels from the center of the region to the edge.
- `form`: The form of the activated region. Default is "cube".
- `fading`: Decay rate between 0 and 1. 0 means no fading, while 1 results in the fastest decay.

**Value**

An array representing the activation image with specified regions.
st IMF\text{function}n

**Author(s)**

M. Welvaert

**See Also**

`specifyregion, gammaHRF, canonicalHRF, balloon`

**Examples**

```r
d <- c(10, 10, 10)
coord <- c(3, 3, 3)
radius <- 1
out <- specifyregion(d, coord, radius, form="sphere")
```

**Description**

Generates a stimulus boxcar vector for the specified time duration and microtime resolution based on the user-defined onsets and durations.

**Usage**

```r
stimfunction(totaltime, onsets, durations, accuracy)
```

**Arguments**

- `totaltime`: Total time of the design in seconds.
- `onsets`: Vector representing the onsets of the stimulus in seconds.
- `durations`: Vector representing the durations of the stimulus in seconds.
- `accuracy`: Microtime resolution in seconds.

**Details**

If duration is a single number, it is assumed that all stimulus onsets have the same duration.

**Value**

A vector in microtime resolution specifying the stimulus boxcar function in 1-0 coding.

**Author(s)**

M. Welvaert
systemnoise

See Also

specifydesign

Examples

```r
total <- 100
os <- c(1, 21, 41, 61, 81)
d <- 10
out <- stimfunction(total, os, d, 0.1)
```

---

**systemnoise**

*Generate system noise*

**Description**

Generates a system noise dataset with specified dimensions and standard deviation. The noise can be either Gaussian or Rician distributed.

**Usage**

```r
systemnoise(dim, nscan, type=c("gaussian","rician"), sigma, vee, template, verbose = TRUE)
```

**Arguments**

- `dim`: A vector specifying the dimensions of the image.
- `nscan`: The number of scans in the dataset.
- `type`: Distribution of system noise. Default is gaussian.
- `sigma`: The standard deviation of the noise.
- `vee`: If `type="rician"`, the non-centrality parameter of the distribution.
- `template`: An array representing the anatomical structure or mask with dimensions equal to `dim`.
- `verbose`: Logical indicating if warnings should be printed.

**Value**

An array containing the noise with dimensions specified in `dim` and `nscan`.

**Author(s)**

M. Welvaert

**See Also**

temporalnoise, lowfreqdrift, physnoise, tasknoise, spatialnoise
tasknoise

Generate task-related noise

Description

Generates a Gaussian noise dataset with specified dimensions and standard deviation only when a task is performed or activation is present.

Usage

```r
tasknoise(act.image, sigma, type=c("gaussian","rician"), vee=1)
```

Arguments

- `act.image`: Array defining where and when activation is present.
- `sigma`: Standard deviation of the noise.
- `type`: Distribution of task-related noise. Default is gaussian.
- `vee`: If `type=="rician"`, the non-centrality parameter of the distribution.

Details

The function generates random Gaussian noise for those voxels in the dataset that show activation. The result is a noise array with specified dimensions and desired standard deviation.

Value

An array containing the noise.

Author(s)

M. Welvaert

See Also

temporalnoise, lowfreqdrift, physnoise, systemnoise, spatialnoise
temporalnoise

Examples

d <- c(10,10,10)
sigma <- 5
nscan <- 100
act <- array(rep(0, prod(d) * nscan), dim = c(d, nscan))
act[2:4,2:4,c(20:30,40:50,60:70)] <- 1
out <- tasknoise(act, sigma)

temporalnoise Generate temporally correlated noise

Description
Generates an autoregressive noise dataset with specified dimensions and standard deviation.

Usage

temporalnoise(dim, nscan, sigma, rho = 0.2, template, verbose = TRUE)

Arguments

dim A vector specifying the dimensions of a 2D or 3D array.
nscan The number of scans in the dataset.
sigma The standard deviation of the noise.
rho The autocorrelation coefficients. The length of the vector determines the order of the autoregressive model.
template An array representing the anatomical structure or mask with dimensions equal to dim.
verbose Logical indicating if warnings should be printed.

Value
An array containing the noise with dimensions specified in dim.

Author(s)
J. Durnez, B. Moerkerke, M. Welvaert

See Also
systemnoise, lowfreqdrift, physnoise, tasknoise, spatialnoise
Examples

d <- c(10, 10, 10)
sigma <- 5
nscan <- 100
rho <- c(0.3, -0.7)
out <- temporalnoise(d, nscan, sigma, rho, verbose=FALSE)
Index

*Topic activation
balloon, 3
canonicalHRF, 5
gammaHRF, 6
*Topic high-level
simprepSpatial, 12
simprepTemporal, 13
simTSfMRI, 14
simTSrestingstate, 15
simVOLfMRI, 17
*Topic low-level
balloon, 3
canonicalHRF, 5
gammaHRF, 6
GaussSmoothKernel, 7
lowfreqdrift, 8
physnoise, 9
rrice, 10
Sim. 3D. GRF, 11
spatialnoise, 19
specifydesign, 20
specifyregion, 21
stimFunction, 22
systemnoise, 23
tasknoise, 24
temporalnoise, 25
*Topic noise
GaussSmoothKernel, 7
lowfreqdrift, 8
physnoise, 9
rrice, 10
Sim. 3D. GRF, 11
spatialnoise, 19
systemnoise, 23
tasknoise, 24
temporalnoise, 25
*Topic package
neurosimNEUROSIMPackage, 2

balloon, 3, 5, 6, 21, 22
canonicalHRF, 4, 5, 6, 20–22
gammaHRF, 4, 5, 6, 20–22
GaussSmoothKernel, 7, 11
lowfreqdrift, 8, 10, 20, 23–25
physnoise, 8, 9, 20, 23–25
rrice, 10
Sim. 3D. GRF, 7, 11, 20
simprepSpatial, 12, 13, 17, 18
simprepTemporal, 12, 13, 14, 15, 17, 18
simTSfMRI, 13, 14, 16, 18
simTSrestingstate, 15
simVOLfMRI, 12, 13, 15, 17
spatialnoise, 8, 10, 19, 23–25
specifydesign, 20, 23
specifyregion, 12, 13, 21, 21, 22
stimFunction, 22
systemnoise, 8, 10, 20, 23, 24, 25
tasknoise, 8, 10, 20, 23, 24, 25
temporalnoise, 8, 10, 20, 23, 24, 25