Package ‘occ’

May 31, 2018

Type Package
Title Estimates PET Neuroreceptor Occupancies
Version 1.1
Date 2018-05-30
Author Joaquim Radua
Maintainer Joaquim Radua <jradua@fidmag.com>
Description Generic function for estimating positron emission tomography (PET) neuroreceptor occupancies from the total volumes of distribution of a set of regions of interest. Fittings methods include the simple 'reference region' and 'ordinary least squares' (sometimes known as occupancy plot) methods, as well as the more efficient 'restricted maximum likelihood estimation'.
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-30 20:09:51

R topics documented:

occ ... 1
occ.example .. 3

Index

estimates PET neuroreceptor occupancies

Description

This package provides a generic function for estimating positron emission tomography (PET) neuroreceptor occupancies from the total volumes of distribution (VT) of a set of regions of interest (ROI). Fittings methods include the simple 'reference region' ("ref") and 'ordinary least squares' ("ols", sometimes known as occupancy plot) methods, as well as the more efficient 'restricted maximum likelihood' estimation ("reml").
Usage

occ(VT, method = "reml")

Arguments

VT matrix of total volumes of distribution (VT). Each row must have the VT values of a ROI. The first column must have the baseline VT values, the second column the first-postdose VT values, the third column the second-postdose VT values, etcetera. See "occ.example" example below.

method one of either "ref" (reference region), "ols" (ordinary least squares) or "reml" (restricted maximum likelihood estimation). Please read the assumptions of each method below in Details.

Details

Reference region ("ref") method assumes that: a) neuroreceptor occupancy is different in each ROI; b) non-displaceable volume of distribution (VND) is different in each scan; c) specific volumes of distribution (VS) are the same in all scans; d) VS of the first ROI is null; and e) all measurement errors are negligible. Note that assumptions d) and e) may be unrealistic in many cases.

Ordinary least squares ("ols") method assumes that: a) neuroreceptor occupancy is the same in all ROIs; b) VND is different in each postdose scan; c) baseline VND is equal to all postdose VND; d) VS are different in each postdose scan; e) baseline VS are equal to all postdose VS; f) measurement errors are different in each scan; and g) measurement error of baseline scan is null. Note that assumptions c) and e) may lead to multiple (i.e. mathematically impossible) baseline estimates in studies with more than one postdose scan. Also, note that assumption g) may be unrealistic in many cases.

Restricted likelihood estimation ("reml") method assumes that: a) neuroreceptor occupancy is the same in all ROIs; b) VND is the same in all scans; c) VS are the same in all scans; and d) measurement error is the same in all scans. This method is recommended above other methods because it has shown higher statistical efficiency.

Value

An object of class occ, basically a list including the following elements:

VT the observed total volumes of distribution
coefficients the neuroreceptor occupancy coefficients
VND the non-displaceable volumes of distribution of each scan
VS the specific volumes of distribution
sigma the measurement error in each scan
fitted.values the fitted VT
residuals the residuals, that is, observed VT minus fitted VT

Author(s)

Joaquim Radua
References

Doi: 10.1118/1.3578606 (http://dx.doi.org/10.1118/1.3578606)

Examples

`## Total volumes of distribution (VT) from a simulated PET study
including a baseline scan, as well as two other scans after
administration of a drug. Note that each row in the matrix
represents a ROI, whilst each column represents a scan.

data(occ.example)
occ.example

Baseline 1st postdose 2nd postdose
Cerebellum 0.39 0.28 0.30
Frontal cortex 0.72 0.35 0.47
Occipital cortex 0.96 0.43 0.62
Parietal cortex 0.75 0.34 0.50
Temporal cortex 0.44 0.26 0.31`

`## Default REML fitting of these simulated data:

m = occ(occ.example)
print(m) # Prints the neuroreceptor occupancy coefficients
summary(m) # Also prints the non-displaceable volume of
 # distribution (VND), the specific volumes of
 # distribution (VS) and the measurement error
fitted(m) # Prints the fitted values
residuals(m) # Prints the residuals
plot(m) # Plots the estimated and observed volumes of
 # distribution`

occ.example

Total volumes of distribution (VT) from a simulated PET study

Description

Total volumes of distribution (VT) from a simulated PET study including a baseline scan, as well as two other scans after administration of a drug.
Usage

occ.example

Format

A matrix of total volumes of distribution (VT) with 5 rows (ROIs) and 3 columns (scans).

Examples

data(occ.example)

occ.example

Cerebellum 0.39 0.28 0.30
Frontal cortex 0.72 0.35 0.47
Occipital cortex 0.96 0.43 0.62
Parietal cortex 0.75 0.34 0.50
Temporal cortex 0.44 0.26 0.31

Find the neuroreceptor occupancy in each scan:

summary(occ(occ.example))

Plot the estimated and observed volumes of distribution:

plot(occ(occ.example))
Index

*Topic PET
 occ, 1

*Topic maximum likelihood estimation
 occ, 1

*Topic neuroreceptor occupancy
 occ, 1

*Topic neuroreceptor
 occ, 1

*Topic occ.example
 occ.example, 3

*Topic occupancy plot
 occ, 1

*Topic occupancy
 occ, 1

*Topic positron emission tomography
 occ, 1

*Topic receptor occupancy
 occ, 1

*Topic receptor
 occ, 1

*Topic reference region
 occ, 1

*Topic restricted maximum likelihood estimation
 occ, 1

occ, 1
occ.example, 3
plot.occ(occ), 1
print.occ(occ), 1
print.summary.occ(occ), 1
summary.occ(occ), 1