Package ‘oem’

October 30, 2018

Type Package

Title Orthogonalizing EM: Penalized Regression for Big Tall Data

Version 2.0.9

Maintainer Jared Huling <jaredhuling@gmail.com>

Description Solves penalized least squares problems for big tall data using the orthogonalizing EM algorithm of Xiong et al. (2016) <doi:10.1080/00401706.2015.1054436>. The main fitting function is oem() and the functions cv.oem() and xval.oem() are for cross validation, the latter being an accelerated cross validation function for linear models. The big.oem() function allows for out of memory fitting.

BugReports https://github.com/jaredhuling/oem/issues

License GPL (>= 2)

Encoding UTF-8

LazyData TRUE

Depends R (>= 3.2.0), bigmemory

Imports Rcpp (>= 0.11.0), Matrix, foreach, methods

LinkingTo Rcpp, RcppEigen, BH, bigmemory, RcppArmadillo

RoxygenNote 6.1.0

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation yes

Author Bin Dai [aut], Jared Huling [aut, cre] (<https://orcid.org/0000-0003-0670-4845>), Yixuan Qiu [ctb], Gael Guennebaud [cph], Jitse Niesen [cph]

Repository CRAN

Date/Publication 2018-10-30 10:40:09 UTC
big.oem

Orthogonalizing EM for big.matrix objects

Description

Orthogonalizing EM for big.matrix objects

Usage

big.oem(x, y, family = c("gaussian", "binomial"),
penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.scad.net", "grp.mcp", "grp.scad",
"grp.mcp.net", "sparse.grp.lasso"),
weights = numeric(0), lambda = numeric(0), nlambda = 100L,
lambda.min.ratio = NULL, alpha = 1, gamma = 3, tau = 0.5,
groups = numeric(0), penalty.factor = NULL, group.weights = NULL,
standardize = TRUE, intercept = TRUE, maxit = 500L, tol = 1e-07,
irls.maxit = 100L, irls.tol = 0.001, compute.loss = FALSE,
gigs = 4, hessian.type = c("full", "upper.bound"))

Arguments

x input big.matrix object pointing to design matrix Each row is an observation, each column corresponds to a covariate
y numeric response vector of length nobs.
family "gaussian" for least squares problems, "binomial" for binary response. "binomial" currently not available.
penalty Specification of penalty type. Choices include:
- "elastic.net" - elastic net penalty, extra parameters: "alpha"
• "lasso" - lasso penalty
• "ols" - ordinary least squares
• "mcp" - minimax concave penalty, extra parameters: "gamma"
• "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
• "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
• "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
• "grp.lasso" - group lasso penalty
• "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters: "alpha"
• "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
• "grp.scad" - group smoothly clipped absolute deviation, extra parameters: "gamma"
• "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
• "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
• "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso), extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group SCAD penalties. Groups as specified by the groups argument should be chosen in a sensible manner.

weights observation weights. Not implemented yet. Defaults to 1 for each observation (setting weight vector to length 0 will default all weights to 1)

lambda A user supplied lambda sequence. By default, the program computes its own lambda sequence based on nlambda and lambda.min.ratio. Supplying a value of lambda overrides this.

nlambda The number of lambda values - default is 100.

lambda.min.ratio Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit when nobs < nvars.

alpha mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net. penalty applied is (1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso penalty)

gamma tuning parameter for SCAD and MCP penalties. must be >= 1

tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso penalty) + tau * (lasso penalty)

groups A vector of describing the grouping of the coefficients. See the example below. All unpenalized variables should be put in group 0
Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables.

penalty.factor

penalty factors applied to each group for the group lasso. Similar to penalty.factor, this is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and that group is always included in the model. Default is sqrt(group size) for all groups.

group.weights

Logical flag for x variable standardization, prior to fitting the models. The coefficients are always returned on the original scale. Default is standardize = TRUE. If variables are in the same units already, you might not wish to standardize. Keep in mind that standardization is done differently for sparse matrices, so results (when standardized) may be slightly different for a sparse matrix object and a dense matrix object.

standardize

Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)

intercept

integer. Maximum number of OEM iterations

maxit

convergence tolerance for OEM iterations

tol

integer. Maximum number of IRLS iterations

irls.maxit

convergence tolerance for IRLS iterations. Only used if family != "gaussian"

irls.tol

should the loss be computed for each estimated tuning parameter? Defaults to FALSE. Setting to TRUE will dramatically increase computational time

compute.loss

maximum number of gigs of memory available. Used to figure out how to break up calculations involving the design matrix x

gigs

only for logistic regression. if hessian.type = "full", then the full hessian is used. If hessian.type = "upper.bound", then an upper bound of the hessian is used. The upper bound can be dramatically faster in certain situations, ie when n > p

hessian.type

An object with S3 class "oem"

Value

Examples

set.seed(123)
nrows <- 50000
ncols <- 100
bkFile <- "bigmat.bk"
descFile <- "bigmat.k.desc"
bigmat <- filebacked.big.matrix(nrow=nrows, ncol=ncols, type="double",
backingfile=bkFile, backingpath=".",
descriptorfile=descFile,
dimnames=c(NULL,NULL))

Each column value with be the column number multiplied by
samples from a standard normal distribution.
set.seed(123)
cv.oem

for (i in 1:ncols) bigmat[,i] = rnorm(nrows)*i

y <- rnorm(nrows) + bigmat[,1] - bigmat[,2]

fit <- big.oem(x = bigmat, y = y,
penalty = c("lasso", "elastic.net",
"ols",
"mcp", "scad",
"mcp.net", "scad.net",
"grp.lasso", "grp.lasso.net",
"grp.mcp", "grp.scad",
"sparse.grp.lasso"),
groups = rep(1:20, each = 5))

fit2 <- oem(x = bigmat[,], y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:20, each = 5))

max(abs(fit$beta[[1]] - fit2$beta[[1]]))

layout(matrix(1:2, ncol = 2))
plot(fit)
plot(fit, which.model = 2)

cv.oem

Cross validation for Orthogonalizing EM

Description

Cross validation for Orthogonalizing EM

Usage

cv.oem(x, y, penalty = c("elastic.net", "lasso", "ols", "mcp", "scad",
"mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp",
"grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"),
weights = numeric(0), lambda = NULL, type.measure = c("mse",
"deviance", "class", "auc", "mae"), nfolds = 10, foldid = NULL,
grouped = TRUE, keep = FALSE, parallel = FALSE, ncores = -1, ...)

Arguments

x input matrix of dimension n x p or CsparseMatrix objects of the Matrix (sparse not yet implemented. Each row is an observation, each column corresponds to a covariate. The cv.oem() function is optimized for n > p settings and may be very slow when p > n, so please use other packages such as glmnet, ncvreg, grpreg, or gglasso when p > n or p approx n.

y numeric response vector of length nob.
penalty Specification of penalty type in lowercase letters. Choices include "lasso", "ols" (Ordinary least squares, no penalty), "elastic.net", "scad", "mcp", "grp.lasso"

weights observation weights. defaults to 1 for each observation (setting weight vector to length 0 will default all weights to 1)

lambda A user supplied lambda sequence. By default, the program computes its own lambda sequence based on nlambdas and lambda.min.ratio. Supplying a value of lambda overrides this.

type.measure measure to evaluate for cross-validation. The default is type.measure = "deviance", which uses squared-error for gaussian models (a.k.a type.measure = "mse" there), deviance for logistic regression. type.measure = "class" applies to binomial only. type.measure = "auc" is for two-class logistic regression only. type.measure = "mse" or type.measure = "mae" (mean absolute error) can be used by all models; they measure the deviation from the fitted mean to the response.

nfolds number of folds for cross-validation. default is 10. 3 is smallest value allowed.

foldid an optional vector of values between 1 and nfolds specifying which fold each observation belongs to.

grouped Like in glmnet, this is an experimental argument, with default TRUE, and can be ignored by most users. For all models, this refers to computing nfolds separate statistics, and then using their mean and estimated standard error to describe the CV curve. If grouped = FALSE, an error matrix is built up at the observation level from the predictions from the nfolds fits, and then summarized (does not apply to type.measure = "auc").

keep If keep = TRUE, a prevalidated list of array is returned containing fitted values for each observation and each value of lambda for each model. This means these fits are computed with this observation and the rest of its fold omitted. The fold vector is also returned. Default is keep = FALSE

parallel If TRUE, use parallel foreach to fit each fold. Must register parallel before hand, such as doMC.

ncores Number of cores to use. If parallel = TRUE, then ncores will be automatically set to 1 to prevent conflicts

... other parameters to be passed to "oem" function

Value

An object with S3 class "cv.oem"

Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(rnorm(15, -0.25, 0.25), rep(0, n.vars - 15))
```
logLik.oem

\[
x \leftarrow \text{matrix(rnorm(n.obs * n.vars), n.obs, n.vars)}
\]
\[
y \leftarrow \text{rmvnorm(n.obs, sd = 3) + x \times\timesₚ true.beta}
\]

\[
\text{fit} \leftarrow \text{cv.oem(x = x, y = y,}
\]
\[
\quad \text{penalty = c("lasso", "grp.lasso"),}
\]
\[
\quad \text{groups = rep(1:20, each = 5))}
\]

\[
\text{layout(matrix(1:2, ncol = 2))}
\]
\[
\text{plot(fit)}
\]
\[
\text{plot(fit, which.model = 2)}
\]

Description

log likelihood function for fitted oem objects

log likelihood function for fitted cross validation oem objects

log likelihood function for fitted cross validation oem objects

Usage

S3 method for class 'oem'

\[
\text{logLik(object, which.model = 1, \ldots)}
\]

S3 method for class 'cv.oem'

\[
\text{logLik(object, which.model = 1, \ldots)}
\]

S3 method for class 'xval.oem'

\[
\text{logLik(object, which.model = 1, \ldots)}
\]

Arguments

- **object**
 - fitted "oem" model object.

- **which.model**
 - If multiple penalties are fit and returned in the same oem object, the which.model argument is used to specify which model to plot. For example, if the oem object "oemobj" was fit with argument penalty = c("lasso", "grp.lasso"), then which.model = 2 provides a plot for the group lasso model.

- **\ldots**
 - not used

Examples

\[
\text{set.seed(123)}
\]
\[
\text{n.obs <- 2000}
\]
\[
\text{n.vars <- 50}
\]
\[
\text{true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))}
\]
Orthogonalizing EM

Description

Orthogonalizing EM

Usage

```r
oem(x = x, y = y, family = c("gaussian", "binomial"),
    penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net",
                "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad",
                "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"),
    weights = numeric(0), lambda = numeric(0), nlambda = 100L,
    lambda.min.ratio = NULL, alpha = 1, gamma = 3, tau = 0.5,
    groups = numeric(0), penalty.factor = NULL, group.weights = NULL,
    standardize = TRUE, intercept = TRUE, maxit = 500L, tol = 1e-07,
    irls.maxit = 100L, irls.tol = 0.001, accelerate = FALSE,
    ncores = -1, compute.loss = FALSE, hessian.type = c("upper.bound",
                "full")
)```

```r
x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE)
logLik(fit)

logLik(fit, which.model = "mcp")

fit <- cv.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE,
 nlambda = 25)
logLik(fit)

logLik(fit, which.model = "mcp")

fit <- xval.oem(x = x, y = y, penalty = c("lasso", "mcp"), compute.loss = TRUE,
 nlambda = 25)
logLik(fit)

logLik(fit, which.model = "mcp")
```
Arguments

x
input matrix of dimension \( n \times p \) or \( \text{CsparseMatrix} \) object of the \texttt{Matrix} package. Each row is an observation, each column corresponds to a covariate. The \texttt{oem()} function is optimized for \( n > p \) settings and may be very slow when \( p > n \), so please use other packages such as \texttt{glmnet}, \texttt{ncvreg}, \texttt{grpreg}, or \texttt{gglasso} when \( p > n \) or \( p \approx n \).

y
numeric response vector of length \( nobs \).

family
"gaussian" for least squares problems, "binomial" for binary response.

penalty
Specification of penalty type. Choices include:

- "elastic.net" - elastic net penalty, extra parameters: "alpha"
- "lasso" - lasso penalty
- "ols" - ordinary least squares
- "mcp" - minimax concave penalty, extra parameters: "gamma"
- "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
- "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.lasso" - group lasso penalty
- "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters: "alpha"
- "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
- "grp.scad" - group smoothly clipped absolute deviation, extra parameters: "gamma"
- "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
- "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso), extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group SCAD penalties. Groups as specified by the \texttt{groups} argument should be chosen in a sensible manner.

weights
observation weights. Not implemented yet. Defaults to 1 for each observation (setting weight vector to length 0 will default all weights to 1)

lambda
A user supplied lambda sequence. By default, the program computes its own lambda sequence based on \texttt{nlambda} and \texttt{lambda.min.ratio}. Supplying a value of lambda overrides this.

nlambda
The number of lambda values. The default is 100.

lambda.min.ratio
Smallest value for lambda, as a fraction of \texttt{lambda.max}, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size \( nobs \) relative to the number of variables \( nvars \). If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit when nobs < nvars.

**alpha**

mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net. penalty applied is \((1 - \alpha) \times \text{ridge penalty}) + \alpha \times \text{(lasso/mcp/mcp/grp.lasso penalty)}

**gamma**

tuning parameter for SCAD and MCP penalties. must be >= 1

**tau**

mixing value for sparse, grp.lasso. penalty applied is \((1 - \tau) \times \text{(group lasso penalty)}) + \tau \times \text{(lasso penalty)}

**groups**

A vector of describing the grouping of the coefficients. See the example below. All unpenalized variables should be put in group 0

**penalty.factor**

Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables.

**group.weights**

penalty factors applied to each group for the group lasso. Similar to penalty.factor, this is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and that group is always included in the model. Default is \(\sqrt{\text{group size}}\) for all groups.

**standardize**

Logical flag for variable standardization, prior to fitting the models. The coefficients are always returned on the original scale. Default is standardize = TRUE. If variables are in the same units already, you might not wish to standardize. Keep in mind that standardization is done differently for sparse matrices, so results (when standardized) may be slightly different for a sparse matrix object and a dense matrix object

**intercept**

Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)

**maxit**

integer. Maximum number of OEM iterations

**tol**

convergence tolerance for OEM iterations

**irls.maxit**

integer. Maximum number of IRLS iterations

**irls.tol**

convergence tolerance for IRLS iterations. Only used if family != "gaussian"

**accelerate**

boolean argument. Whether or not to use Nesterov acceleration with adaptive restarting

**ncores**

Integer scalar that specifies the number of threads to be used

**compute.loss**

should the loss be computed for each estimated tuning parameter? Defaults to FALSE. Setting to TRUE will dramatically increase computational time

**hessian.type**

only for logistic regression. if hessian.type = "full", then the full hessian is used. If hessian.type = "upper.bound", then an upper bound of the hessian is used. The upper bound can be dramatically faster in certain situations, ie when \(n > p\)

**Value**

An object with S3 class "oem"
References


Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 50

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y,
 penalty = c("lasso", "grp.lasso", "sparse.grp.lasso"),
 groups = rep(1:10, each = 5))

layout(matrix(1:3, ncol = 3))
plot(fit)
plot(fit, which.model = 2)
plot(fit, which.model = "sparse.grp.lasso")

the oem package has support for
sparse design matrices

library(Matrix)

xs <- rsparsematrix(n.obs * 25, n.vars * 2, density = 0.01)
ys <- rnorm(n.obs * 25, sd = 3) + as.vector(xs %*% c(true.beta, rep(0, n.vars)))
x.dense <- as.matrix(xs)

system.time(fit <- oem(x = x.dense, y = ys,
 penalty = c("lasso", "grp.lasso"),
 groups = rep(1:20, each = 5), intercept = FALSE,
 standardize = FALSE))

system.time(fits <- oem(x = xs, y = ys,
 penalty = c("lasso", "grp.lasso"),
 groups = rep(1:20, each = 5), intercept = FALSE,
 standardize = FALSE, lambda = fit$lambda))

max(abs(fit$beta[[1]] - fits$beta[[1]]))
max(abs(fit$beta[[2]] - fits$beta[[2]]))

logistic
y <- rbinom(n.obs, 1, prob = 1 / (1 + exp(-x %*% true.beta)))

system.time(res <- oem(x, y, intercept = FALSE,
 penalty = c("lasso", "sparse.grp.lasso", "mcp"),
...)```
family = "binomial",
groups = rep(1:10, each = 5),
nlambda = 10,
irls.tol = 1e-3, tol = 1e-8))

layout(matrix(1:3, ncol = 3))
plot(res)
plot(res, which.model = 2)
plot(res, which.model = "mcp")

sparse design matrix
xs <- rsparsematrix(n.obs * 2, n.vars, density = 0.01)
x.dense <- as.matrix(xs)
ys <- rbinom(n.obs * 2, 1, prob = 1 / (1 + exp(-x * true.beta)))

system.time(res.gr <- oem(xs, ys, intercept = FALSE,
penalty = "grp.lasso",
family = "binomial",
nlambda = 10,
groups = rep(1:5, each = 10),
irls.tol = 1e-3, tol = 1e-8))

system.time(res.gr.s <- oem(xs, ys, intercept = FALSE,
penalty = "grp.lasso",
family = "binomial",
nlambda = 10,
groups = rep(1:5, each = 10),
irls.tol = 1e-3, tol = 1e-8))

max(abs(res.gr$beta[1] - res.gr.s$beta[1]))

oem.xtx

Orthogonalizing EM with precomputed X*X

Description

Orthogonalizing EM with precomputed X*X

Usage

```r
oem.xtx(xtx, xty, family = c("gaussian", "binomial"),
        penalty = c("elastic.net", "lasso", "ols", "mcp", "scad", "mcp.net",
                   "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad",
                   "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"),
        lambda = numeric(0), nlambda = 100L, lambda.min.ratio = NULL,
        alpha = 1, gamma = 3, tau = 0.5, groups = numeric(0),
        scale.factor = numeric(0), penalty.factor = NULL,
        group.weights = NULL, maxit = 500L, tol = 1e-07,
        irls.maxit = 100L, irls.tol = 0.001)
```
Arguments

xtx
input matrix equal to `crossprod(x) / nrow(x)`. where `x` is the design matrix. It is highly recommended to scale the number of rows in `x`. If `xtx` is scaled, `xty` must also be scaled or else results may be meaningless!

xty
numeric vector of length `nvars`. Equal to `crossprod(x, y) / nobs`. It is highly recommended to scale by the number of rows in `x`.

family
"gaussian" for least squares problems, "binomial" for binary response. (only gaussian implemented currently)

penalty
Specification of penalty type. Choices include:
- "elastic.net" - elastic net penalty, extra parameters: "alpha"
- "lasso" - lasso penalty
- "ols" - ordinary least squares
- "mcp" - minimax concave penalty, extra parameters: "gamma"
- "scad" - smoothly clipped absolute deviation, extra parameters: "gamma", "alpha"
- "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.lasso" - group lasso penalty
- "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters: "alpha"
- "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
- "grp.scad" - group smoothly clipped absolute deviation, extra parameters: "gamma"
- "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
- "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso), extra parameters: "tau"

Careful consideration is required for the group lasso, group MCP, and group SCAD penalties. Groups as specified by the `groups` argument should be chosen in a sensible manner.

lambda
A user supplied lambda sequence. By default, the program computes its own lambda sequence based on `nlambda` and `lambda.min.ratio`. Supplying a value of `lambda` overrides this.

nlambda
The number of lambda values - default is 100.

lambda.min.ratio
Smallest value for lambda, as a fraction of `lambda.max`, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size `nobs` relative to the number of variables `nvars`. The default is 0.0001

alpha
mixing value for "elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net" penalty applied is `(1 - alpha) * (ridge penalty) + alpha * (lasso/mcp/mcp/grp.lasso penalty)`
gamma tuning parameter for SCAD and MCP penalties. must be >= 1

tau mixing value for sparse.grp.lasso. penalty applied is (1 - tau) * (group lasso penalty) + tau * (lasso penalty)

groups A vector of describing the grouping of the coefficients. See the example below. All unpenalized variables should be put in group 0

scale.factor of length nvars = ncol(xtx) = length(xty) for scaling columns of x. The standard deviation for each column of x is a common choice for scale.factor. Coefficients will be returned on original scale. Default is no scaling.

penalty.factor Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables.

group.weights penalty factors applied to each group for the group lasso. Similar to penalty.factor, this is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and that group is always included in the model. Default is sqrt(group size) for all groups.

maxit integer. Maximum number of OEM iterations

tol convergence tolerance for OEM iterations

irls.maxit integer. Maximum number of IRLS iterations

irls.tol convergence tolerance for IRLS iterations. Only used if family ! = "gaussian"

Value

An object with S3 class "oem"

Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- oem(x = x, y = y,
          penalty = c("lasso", "elastic.net",
                      "ols",
                      "mcp",
                      "mcp.net", "scad.net",
                      "grp.lasso", "grp.lasso.net",
                      "grp.mcp", "grp.scad",
                      "sparse.grp.lasso"),
          standardize = FALSE, intercept = FALSE,
          groups = rep(1:20, each = 5))

xtx <- crossprod(x) / n.obs
```
oemfit

xty <- crossprod(x, y) / n.obs

fit.ctx <- oem.ctx(xtx = xtx, xty = xty,
 penalty = c("lasso", "elastic.net",
 "ols",
 "mcp", "scad",
 "mcp.net", "scad.net",
 "grp.lasso", "grp.lasso.net",
 "grp.mcp", "grp.scad",
 "sparse.grp.lasso"),
 groups = rep(1:20, each = 5))

max(abs(fit$beta[[1]][-1] - fit.ctx$beta[[1]]))
max(abs(fit$beta[[2]][-1] - fit.ctx$beta[[2]]))

layout(matrix(1:2, ncol = 2))
plot(fit.ctx)
plot(fit.ctx, which.model = 2)

Deprecated functions

These functions have been renamed and deprecated in oem: oemfit() (use oem()), cv.oemfit() (use cv.oem()), print.oemfit(), plot.oemfit(), predict.oemfit(), and coef.oemfit().

Usage

- **oemfit**
 - `formula`, `data` = list(), `lambda` = NULL, `nlambda` = 100,
 - `lambda.min.ratio` = NULL, `tolerance` = 0.001, `maxIter` = 1000,
 - `standardized` = TRUE, `numGroup` = 1, `penalty` = c("lasso", "scad",
 "ols", "elastic.net", "ngarrote", "mcp"), `alpha` = 3, `evaluate` = 0,
 - `condition` = -1)

- **cv.oemfit**
 - `formula`, `data` = list(), `lambda` = NULL,
 - `type.measure` = c("mse", "mae"), ..., `nfolds` = 10, `foldid`,
 - `penalty` = c("lasso", "scad", "elastic.net", "ngarrote", "mcp")

S3 method for class 'oemfit'
- plot(x, xvar = c("norm", "lambda", "loglambda", "dev"),
 xlab = iname, ylab = "Coefficients", ...)

S3 method for class 'oemfit'
predict(object, newx, s = NULL, type = c("response",
 "coefficients", "nonzero"), ...)

S3 method for class 'oemfit'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments

formula
an object of 'formula' (or one that can be coerced to that class): a symbolic
description of the model to be fitted. The details of model specification are
given under 'Details'

data
an optional data frame, list or environment (or object coercible by 'as.data.frame'
to a data frame) containing the variables in the model. If not found in 'data',
the variables are taken from 'environment(formula)', typically the environment
from which 'oemfit' is called.

lambda
A user supplied lambda sequence. Typical usage is to have the program compute
its own lambda sequence based on nlambdas and lambda.min.ratio. Supplying
a value of lambda overrides this. WARNING: use with care. Do not supply
a single value for lambda (for predictions after CV use predict() instead).
Supply instead a decreasing sequence of lambda values. oemfit relies on its
warms starts for speed, and its often faster to fit a whole path than compute a
single fit.

nlambdas
The number of lambda values - default is 100.

lambda.min.ratio
Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry
value (i.e. the smallest value for which all coefficients are zero). The default
depends on the sample size nobs relative to the number of variables nvars. If
nobs > nvars, the default is 0.0001, close to zero. If nobs < nvars, the default
is 0.01. A very small value of lambda.min.ratio will lead to a saturated fit in
the nobs < nvars case.

tolerance
Convergence tolerance for OEM. Each inner OEM loop continues until the max-
imum change in the objective after any coefficient update is less than tolerance.
Defaults value is 1E-3.

maxIter
Maximum number of passes over the data for all lambda values; default is 1000.

standardized
Logical flag for x variable standardization, prior to fitting the model sequence.
The coefficients are always returned on the original scale. Default is standardize=TRUE.
If variables are in the same units already, you might not wish to standardize.

numGroup
Integer value for the number of groups to use for OEM fitting. Default is 1.

penalty
type in lower letters. Different types include 'lasso', 'scad', 'ols' (ordinary least
square), 'elastic-net', 'ngarrote' (non-negative garrote) and 'mcp'.

alpha
alpha value for scad and mcp.

evaluate
debugging argument

condition
Debugging for different ways of calculating OEM.

type.measure
type.measure measure to evaluate for cross-validation. type.measure = "mse"
(mean squared error) or type.measure = "mae" (mean absolute error)

nfolds
number of folds for cross-validation. default is 10.

foldid
an optional vector of values between 1 and nfolds specifying which fold each
observation belongs to.

x
fitted oemfit object
xvar

what is on the X-axis. "norm" plots against the L1-norm of the coefficients, "lambda" against the log-lambda sequence, and "dev" against the percent deviance explained.

xlab

x-axis label

ylab

y-axis label

object

fitted oemfit object

newx

matrix of new values for x at which predictions are to be made. Must be a matrix.

s

Value(s) of the penalty parameter lambda at which predictions are required. Default is the entire sequence used to create the model.

type

not used.

digits

significant digits in print out.

Details

The sequence of models implied by 'lambda' is fit by OEM algorithm.

Author(s)

Bin Dai

plot.oem
Plot method for Orthogonalizing EM fitted objects

Description

Plot method for Orthogonalizing EM fitted objects

Usage

```r
## S3 method for class 'oem'
plot(x, which.model = 1, xvar = c("norm", "lambda", "loglambda", "dev"), labsize = 0.6, xlab = iname, ylab = NULL, main = x$penalty[which.model], ...)

## S3 method for class 'cv.oem'
plot(x, which.model = 1, sign.lambda = 1, ...)

## S3 method for class 'xval.oem'
plot(x, which.model = 1, type = c("cv", "coefficients"), xvar = c("norm", "lambda", "loglambda", "dev"), labsize = 0.6, xlab = iname, ylab = NULL, main = x$penalty[which.model], sign.lambda = 1, ...)
```
plot.oem

Arguments

x fitted "oem" model object
which.model If multiple penalties are fit and returned in the same oem object, the which.model argument is used to specify which model to plot. For example, if the oem object "oemobj" was fit with argument penalty = c("lasso", "grp.lasso"), then which.model = 2 provides a plot for the group lasso model.
xvar What is on the X-axis. "norm" plots against the L1-norm of the coefficients, "lambda" against the log-lambda sequence, and "dev" against the percent deviance explained.
labsize size of labels for variable names. If labsize = 0, then no variable names will be plotted
xlab label for x-axis
ylab label for y-axis
main main title for plot
... other graphical parameters for the plot
sign.lambda Either plot against log(lambda) (default) or its negative if sign.lambda = -1.
type one of "cv" or "coefficients". type = "cv" will produce a plot of cross validation results like plot.cv.oem. type = "coefficients" will produce a coefficient path plot like plot.oem()

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x *%*% true.beta

fit <- oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:2, ncol = 2))
plot(fit, which.model = 1)
plot(fit, which.model = 2)

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x *%*% true.beta
fit <- cv.oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:2, ncol = 2))
plot(fit, which.model = 1)
plot(fit, which.model = "grp.lasso")

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

fit <- xval.oem(x = x, y = y, penalty = c("lasso", "grp.lasso"), groups = rep(1:10, each = 10))

layout(matrix(1:4, ncol = 2))
plot(fit, which.model = 1)
plot(fit, which.model = 2)

plot(fit, which.model = 1, type = "coef")
plot(fit, which.model = 2, type = "coef")

predict.cv.oem

Prediction function for fitted cross validation oem objects

Description

Prediction function for fitted cross validation oem objects

Usage

```r
## S3 method for class 'cv.oem'
predict(object, newx, which.model = "best.model", 
        s = c("lambda.min", "lambda.1se"), ...)
```

Arguments

- **object**: fitted "cv.oem" model object
- **newx**: Matrix of new values for x at which predictions are to be made. Must be a matrix; can be sparse as in the CsparseMatrix objects of the *Matrix* package
- **which.model**: If multiple penalties are fit and returned in the same oem object, the which.model argument is used to specify which model to make predictions for. For example, if the oem object "oemobj" was fit with argument penalty = c("lasso", "grp.lasso"),
then which.model = 2 provides predictions for the group lasso model. For predict.cv.oem(), can specify "best.model" to use the best model as estimated by cross-validation

Value

An object depending on the type argument

Examples

set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test %*% true.beta

fit <- cv.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:10, each = 10),
nlambda = 10)
preds.best <- predict(fit, newx = x.test, type = "response", which.model = "best.model")
apply(preds.best, 2, function(x) mean((y.test - x) ^ 2))
preds.gl <- predict(fit, newx = x.test, type = "response", which.model = "grp.lasso")
apply(preds.gl, 2, function(x) mean((y.test - x) ^ 2))
preds.l <- predict(fit, newx = x.test, type = "response", which.model = 1)
apply(preds.l, 2, function(x) mean((y.test - x) ^ 2))
Usage

```r
predict.oem
```

```r
predict(object, newx, s = NULL, which.model = 1,
    type = c("link", "response", "coefficients", "nonzero", "class"), ...)
```

Arguments

- **object**: fitted "oem" model object
- **newx**: Matrix of new values for \(x \) at which predictions are to be made. Must be a matrix; can be sparse as in the \texttt{CsparseMatrix} objects of the \texttt{Matrix} package. This argument is not used for \texttt{type}\{"coefficients", "nonzero"\}
- **s**: Value(s) of the penalty parameter lambda at which predictions are required. Default is the entire sequence used to create the model.
- **which.model**: If multiple penalties are fit and returned in the same \texttt{oem} object, the \texttt{which.model} argument is used to specify which model to make predictions for. For example, if the \texttt{oem} object \texttt{oemobj} was fit with argument \texttt{penalty = c("lasso", "grp.lasso")}, then \texttt{which.model = 2} provides predictions for the group lasso model.
- **type**: Type of prediction required. \texttt{type = "link"} gives the linear predictors for the "binomial" model; for "gaussian" models it gives the fitted values. \texttt{type = "response"} gives the fitted probabilities for "binomial". \texttt{type = "coefficients"} computes the coefficients at the requested values for \(s \). \texttt{type = "class"} applies only to "binomial" and produces the class label corresponding to the maximum probability.
- **...**: not used

Value

An object depending on the type argument

Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x * true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test * true.beta

fit <- oem(x = x, y = y,
    penalty = c("lasso", "grp.lasso"),
    groups = rep(1:10, each = 10),
    nlambda = 10)
preds.lasso <- predict(fit, newx = x.test, type = "response", which.model = 1)
```
predict.xval.oem

Prediction function for fitted cross validation oem objects

Description

Prediction function for fitted cross validation oem objects

Usage

S3 method for class 'xval.oem'
predict(object, newx, which.model = "best.model", s = c("lambda.min", "lambda.1se"), ...)

Arguments

object fitted "cv.oem" model object

newx Matrix of new values for x at which predictions are to be made. Must be a
matrix; can be sparse as in the CsparseMatrix objects of the Matrix package
This argument is not used for type=c("coefficients","nonzero")

which.model If multiple penalties are fit and returned in the same oem object, the which.model
argument is used to specify which model to make predictions for. For example,
if the oem object "oemobj" was fit with argument penalty = c("lasso", "grp.lasso"),
then which.model = 2 provides predictions for the group lasso model. For
predict.cv.oem(), can specify "best.model" to use the best model as estimated by cross-validation

s Value(s) of the penalty parameter lambda at which predictions are required. De-
fault is the entire sequence used to create the model. For predict.cv.oem, can also
specify "lambda.1se" or "lambda.min" for best lambdas estimated by

cross validation

... used to pass the other arguments for predict.oem()

Value

An object depending on the type argument

```r
preds.grp.lasso <- predict(fit, newx = x.test, type = "response", which.model = 2)
apply(preds.lasso, 2, function(x) mean((y.test - x) ^ 2))
apply(preds.grp.lasso, 2, function(x) mean((y.test - x) ^ 2))
```
print.summary.cv.oem

Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 100
n.obs.test <- 1e3

true.beta <- c(runif(15, -0.5, 0.5), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta
x.test <- matrix(rnorm(n.obs.test * n.vars), n.obs.test, n.vars)
y.test <- rnorm(n.obs.test, sd = 3) + x.test %*% true.beta

fit <- xval.oem(x = x, y = y,
penalty = c("lasso", "grp.lasso"),
groups = rep(1:10, each = 10),
nlambda = 10)

preds.best <- predict(fit, newx = x.test, type = "response", which.model = "best.model")
apply(preds.best, 2, function(x) mean((y.test - x) ^ 2))
preds.gl <- predict(fit, newx = x.test, type = "response", which.model = "grp.lasso")
apply(preds.gl, 2, function(x) mean((y.test - x) ^ 2))
preds.l <- predict(fit, newx = x.test, type = "response", which.model = 1)
apply(preds.l, 2, function(x) mean((y.test - x) ^ 2))
```

Description

print method for summary.cv.oem objects

Usage

```r
## S3 method for class 'summary.cv.oem'
print(x, digits, ...)
```

Arguments

- `x` a "summary.cv.oem" object
- `digits` digits to display
- `...` not used
summary.cv.oem
summary method for cross validation Orthogonalizing EM fitted objects

Description
summary method for cross validation Orthogonalizing EM fitted objects
summary method for cross validation Orthogonalizing EM fitted objects

Usage
```r
## S3 method for class 'cv.oem'
summary(object, ...)

## S3 method for class 'xval.oem'
summary(object, ...)
```

Arguments
- `object`: fitted "cv.oem" object
- `...`: not used

xval.oem
Fast cross validation for Orthogonalizing EM

Description
Fast cross validation for Orthogonalizing EM

Usage
```r
xval.oem(x, y, nfolds = 10L, foldid = NULL, type.measure = c("mse", 
  "deviance", "class", "auc", "mae"), ncores = -1, 
  family = c("gaussian", "binomial"), penalty = c("elastic.net", 
  "lasso", "ols", "mcp", "scad", "mcp.net", "scad.net", "grp.lasso", 
  "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net", "grp.scad.net", 
  "sparse.grp.lasso"), weights = numeric(0), lambda = numeric(0), 
  nlambda = 100L, lambda.min.ratio = NULL, alpha = 1, gamma = 3, 
  tau = 0.5, groups = numeric(0), penalty.factor = NULL, 
  group.weights = NULL, standardize = TRUE, intercept = TRUE, 
  maxit = 500L, tol = 1e-07, irls.maxit = 100L, irls.tol = 0.001, 
  compute.loss = FALSE)
```
Arguments

x
input matrix of dimension n x p (sparse matrices not yet implemented). Each row is an observation, each column corresponds to a covariate. The xval.oem() function is optimized for n > p settings and may be very slow when p > n, so please use other packages such as glmnet, ncvreg, grpreg, or gglasso when p > n or p approx n.

y
numeric response vector of length nobs = nrow(x).

nfolds
integer number of cross validation folds. 3 is the minimum number allowed. defaults to 10

foldid
an optional vector of values between 1 and nfold specifying which fold each observation belongs to.

type.measure
measure to evaluate for cross-validation. The default is type.measure = "deviance", which uses squared-error for gaussian models (a.k.a type.measure = "mse" there), deviance for logistic regression. type.measure = "class" applies to binomial only. type.measure = "auc" is for two-class logistic regression only. type.measure="mse" or type.measure="mae" (mean absolute error) can be used by all models; they measure the deviation from the fitted mean to the response.

ncores
Integer scalar that specifies the number of threads to be used

family
"gaussian" for least squares problems, "binomial" for binary response (not implemented yet).

penalty
Specification of penalty type. Choices include:

- "elastic.net" - elastic net penalty, extra parameters: "alpha"
- "lasso" - lasso penalty
- "ols" - ordinary least squares
- "mcp" - minimax concave penalty, extra parameters: "gamma"
- "scad" - smoothly clipped absolute deviation, extra parameters: "gamma"
- "mcp.net" - minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "scad.net" - smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.lasso" - group lasso penalty
- "grp.lasso.net" - group lasso penalty + l2 penalty, extra parameters: "alpha"
- "grp.mcp" - group minimax concave penalty, extra parameters: "gamma"
- "grp.scad" - group smoothly clipped absolute deviation, extra parameters: "gamma"
- "grp.mcp.net" - group minimax concave penalty + l2 penalty, extra parameters: "gamma", "alpha"
- "grp.scad.net" - group smoothly clipped absolute deviation + l2 penalty, extra parameters: "gamma", "alpha"

- "sparse.grp.lasso" - sparse group lasso penalty (group lasso + lasso), extra parameters: "tau"
Careful consideration is required for the group lasso, group MCP, and group SCAD penalties. Groups as specified by the groups argument should be chosen in a sensible manner.

weights
observation weights. defaults to 1 for each observation (setting weight vector to length 0 will default all weights to 1)

lambda
A user supplied lambda sequence. By default, the program computes its own lambda sequence based on nlambdas and lambda.min.ratio. Supplying a value of lambda overrides this.

nlambdas
The number of lambda values - default is 100.

lambda.min.ratio
Smallest value for lambda, as a fraction of lambda.max, the (data derived) entry value (i.e. the smallest value for which all coefficients are zero). The default depends on the sample size nobs relative to the number of variables nvars. If nobs > nvars, the default is 0.0001, close to zero.

alpha
mixing value for elastic.net, mcp.net, scad.net, grp.mcp.net, grp.scad.net. penalty applied is \((1 - \alpha) \cdot \text{ridge penalty} + \alpha \cdot \text{lasso/mcp/mcp/grp.lasso penalty}\)

gamma
tuning parameter for SCAD and MCP penalties. must be \(\geq 1\)

tau
mixing value for sparse.grp.lasso. penalty applied is \((1 - \tau) \cdot \text{group lasso penalty} + \tau \cdot \text{lasso penalty}\)

groups
A vector of describing the grouping of the coefficients. See the example below. All unpenalized variables should be put in group 0

penalty.factor
Separate penalty factors can be applied to each coefficient. This is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables.

group.weights
penalty factors applied to each group for the group lasso. Similar to penalty.factor, this is a number that multiplies lambda to allow differential shrinkage. Can be 0 for some groups, which implies no shrinkage, and that group is always included in the model. Default is sqrt(group size) for all groups.

standardize
Logical flag for x variable standardization, prior to fitting the models. The coefficients are always returned on the original scale. Default is standardize = TRUE. If variables are in the same units already, you might not wish to standardize.

intercept
Should intercept(s) be fitted (default = TRUE) or set to zero (FALSE)

maxit
integer. Maximum number of OEM iterations

tol
convergence tolerance for OEM iterations

irls.maxit
integer. Maximum number of IRLS iterations

irls.tol
convergence tolerance for IRLS iterations. Only used if family != "gaussian"

compute.loss
should the loss be computed for each estimated tuning parameter? Defaults to FALSE. Setting to TRUE will dramatically increase computational time

Value
An object with S3 class "xval.oem"
Examples

```r
set.seed(123)
n.obs <- 1e4
n.vars <- 100

true.beta <- c(runif(15, -0.25, 0.25), rep(0, n.vars - 15))

x <- matrix(rnorm(n.obs * n.vars), n.obs, n.vars)
y <- rnorm(n.obs, sd = 3) + x %*% true.beta

system.time(fit <- oem(x = x, y = y,
    penalty = c("lasso", "grp.lasso"),
    groups = rep(1:20, each = 5)))

system.time(xfit <- xval.oem(x = x, y = y,
    penalty = c("lasso", "grp.lasso"),
    groups = rep(1:20, each = 5)))

system.time(xfit2 <- xval.oem(x = x, y = y,
    penalty = c("lasso", "grp.lasso",
    "mcp", "scad",
    "mcp.net", "scad.net",
    "grp.lasso", "grp.lasso.net",
    "grp.mcp", "grp.scad",
    "sparse.grp.lasso"),
    groups = rep(1:20, each = 5)))
```
Index

big.oem, 2

CV.oem, 5, 15
CV.oemfit(oemfit), 15

logLik.cv.oem(logLik.oem), 7
logLik.oem, 7
logLik.xval.oem(logLik.oem), 7

oem, 8, 15
oem-deprecated(oemfit), 15
oem.xtx, 12
oemfit, 15

plot.cv.oem(plot.oem), 17
plot.oem, 17
plot.oemfit(oemfit), 15
plot.xval.oem(plot.oem), 17
predict.cv.oem, 19
predict.oem, 20
predict.oemfit(oemfit), 15
predict.xval.oem, 22
print.oemfit(oemfit), 15
print.summary.cv.oem, 23

summary.cv.oem, 24
summary.xval.oem(summary.cv.oem), 24

xval.oem, 24