Package ‘optAUC’

February 20, 2015

Type Package
Title Optimal Combinations of Diagnostic Tests Based on AUC
Version 1.0
Date 2013-03-31
Author Xin Huang, Gengsheng Qin, Yixin Fang
Maintainer Xin Huang <xhuang.fhcrc@gmail.com>
Depends R (>= 2.15.2), MASS
Description Searches for optimal linear combination of multiple diagnostic tests (markers) that maximizes the area under the receiver operating characteristic curve (AUC); performs an approximated cross-validation for estimating the AUC associated with the estimated coefficients.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2013-04-01 07:50:08

R topics documented:

<table>
<thead>
<tr>
<th>topic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>optAUC-package</td>
<td>2</td>
</tr>
<tr>
<td>AUC</td>
<td>3</td>
</tr>
<tr>
<td>AUC.emp</td>
<td>3</td>
</tr>
<tr>
<td>beta2theta</td>
<td>4</td>
</tr>
<tr>
<td>betahat</td>
<td>4</td>
</tr>
<tr>
<td>gradAUC.Lang</td>
<td>5</td>
</tr>
<tr>
<td>gradsqr</td>
<td>5</td>
</tr>
<tr>
<td>hessAUC</td>
<td>6</td>
</tr>
<tr>
<td>nlsolve</td>
<td>6</td>
</tr>
<tr>
<td>optAUC</td>
<td>7</td>
</tr>
<tr>
<td>theta2beta</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 10
optAUC-package

Optimal Combinations of Diagnostic Tests Based on AUC

Description

Searches for optimal linear combination of multiple diagnostic tests (markers) that maximizes the area under the receiver operating characteristic curve (AUC); performs an approximated cross-validation for estimating the AUC associated with the estimated coefficients.

Details

Package: optAUC
Type: Package
Version: 1.0
Date: 2013-03-31
License: GPL-2

Author(s)

Xin Huang, Gengsheng Qin, Yixin Fang
Maintainer: Xin Huang <xhuang.fhcrc@gmail.com>

References

Examples

rhoc<-0
m<-50
n<-50
y1.sd<-0.5
y2.sd<-0.5
y1.mean<-2
y2.mean<-1
lambda <- 5

set.seed(88)
generate non-diseased population F(X1, X2)
the sample from 2-dimensinal multinormal distribution with mean 0 and std=1
X1X2<-mvnorm(m, c(1,1), matrix(c(0.5,rho,rho,0.5),2,2))

generate diseased population G(Y1,Y2)
AUC

Function for AUC with sigmoid estimate

Description
Function for AUC with sigmoid estimate

Usage
AUC(beta, Z, lambda)

Arguments
beta linear coefficients for linear combinations of multiple diagnostic tests
Z the Y[i]-X[j]
lambda the smooth parameter for the Sigmoid function used for the AUC

Author(s)
Maintainer: Xin Huang <xhuang.fhcrc@gmail.com>

AUC.emp

Function for AUC when input is X and Y

Description
NA

Usage
AUC.emp(X, Y)

Arguments
X m X p data matrix for m non-diseased subjects with p markers
Y n X p data matrix for n diseased subjects with p markers
Author(s)

Maintainer: Xin Huang <xhuang.fhcre@gmail.com>

beta2theta
Function to translate beta into theta, the n-sphere constrain

Description

Function to translate beta into theta, the n-sphere constrain

Usage

`beta2theta(beta)`

Arguments

- `beta` coefficients for linear combination of multiple diagnostic tests

betahat
Function for estimating beta using kernal function

Description

Function for estimating beta using kernel function

Usage

`betahat(X, Y, init, lambda)`

Arguments

- `X`
m X p data matrix for m non-diseased subjects with p markers
- `Y`
n X p data matrix for n diseased subjects with p markers
- `init`
initial value of the linear coefficients for the optimization algorithm
- `lambda`
the smooth parameter for the Sigmoid function used for the AUC
gradAUC.Lang

Function for gradient of AUC after applying Lagrange Multiplier

Description

Function for gradient of AUC after applying Lagrange Multiplier

Usage

```
gradauc.lang(par, Z, lambda)
```

Arguments

- `par` : parameter
- `Z` : Z
- `lambda` : the smooth parameter for the Sigmoid function used for the AUC

gradsqr

The function of grad_square in the GCV

Description

The function of grad_square in the GCV

Usage

```
gradsqr(beta, X, Y, lambda)
```

Arguments

- `beta` : linear coefficients
- `X` : m X p data matrix for m non-diseased subjects with p markers
- `Y` : n X p data matrix for n diseased subjects with p markers
- `lambda` : the smooth parameter for the Sigmoid function used for the AUC
hessAUC

function for hessian matrix of AUC

Description
function for hessian matrix of AUC

Usage
hessAUC(beta, x, y, lambda)

Arguments
beta
linear coefficients
x
m X p data matrix for m non-diseased subjects with p markers
y
n X p data matrix for n diseased subjects with p markers
lambda
the smooth parameter for the Sigmoid function used for the AUC

nlsolve
solve nonlinear function

Description
solve nonlinear function

Usage
nlsolve(par, fn, method = "BFGS", nstarts = 1, ...)

Arguments
par
parameter
fn
function
method
method
nstarts
tries
...
other parameters pass to fn
Description

Searches for optimal linear combination of multiple diagnostic tests (markers) that maximizes the area under the receiver operating characteristic curve (AUC); performs an approximated cross-validation for estimating the AUC associated with the estimated coefficients.

Usage

optauc(xL yL column.select = c(1:ncol(x)), lambda = 5, scale = TRUE)

Arguments

- **X**: m X p data matrix for m non-diseased subjects with p markers
- **Y**: n X p data matrix for n diseased subjects with p markers
- **column.select**: which of the p markers are used for the combination, default is all p columns
- **lambda**: the smooth parameter for the Sigmoid function used for the AUC
- **scale**: a logic indicator whether performs standardization to the dataset before the combination, default is true

Details

When several diagnostic tests are available, one can combine them to achieve better diagnostic accuracy. This program considers the optimal linear combination that maximizes the area under the receiver operating characteristic curve (AUC); the estimates of the combination’s coefficients is obtained via a nonparametric procedure. Further, for estimating the AUC associated with the estimated coefficients, this program outputs two estimates: one is an apparent estimation by re-substitution (ACV), which is too optimistic; the other is an approximated cross-validation (GCV) estimation. Notice that, the GCV can be applied for variable selection to select important diagnostic tests/markers. See reference for more details.

Value

- **beta**: the estimated linear coefficients, under a unit-sphere constraint
- **ACV**: apparent estimation of AUC of the composite score by re-substitution of the linear coefficients
- **GCV**: the approximated cross-validation estimation of AUC of the composite score
- **converge**: an indicator for the convergency status of the optimization algorithm, 1 means converge, 0 means converge criteria not meet
Note

It is recommended to rescale or monotonic transfer of the data first if significant outliers exists, e.g. log transfer. The AUC is invariant to any monotonic transformation of the data; however, the sigmoid approximation of the AUC may be affected by outliers. The estimated linear coefficients are based on the standardized (if the parameter scale=TRUE) input data. Thus, composite scores = beta%*%scale(rbind(X,Y)).

Author(s)

Xin Huang, Gengsheng Qin, Yixin Fang
Maintainer: Xin Huang <xhuang.fhcrc@gmail.com>

References

Examples

library(MASS)
rhoc<0
m<-50
n<-50
y1.sd<-0.5
y2.sd<-0.5
y1.mean<-2
y2.mean<-1
lambda <- 5

set.seed(XX)
generate non-diseased population F(X1, X2)
the sample from 2-dimensinal multinormal distribution with mean 0 and std=1
X1X2<- mvrnorm(m, c(1,1), matrix(c(0.5,rhoc,rhoc,0.5),2,2))

generate diseased population G(Y1,Y2)
the sample from 2-dimensinal multinormal distribution with mean
(y1.mean,y2.mean) and std=(y1.sd,y2.sd)
Y1Y2<- mvrnorm(n, c(y1.mean,y2.mean), matrix(c(y1.sd^2,rhoc*y1.sd*y2.sd, rho*y1.sd*y2.sd, y2.sd^2),2,2))

only the first marker, the "true" model, should have the maximum AUC amount all models
optAUC(X1X2, Y1Y2, column.select=1)
two markers in the model, the AUC from GCV is smaller than just first marker in the model, because the second marker is noise
the AUC from ACV (apearent estimate by substituting the estimated beta into the model) is larger than previous model
optAUC(X1X2, Y1Y2, column.select=c(1:2))
theta2beta

theta2beta

Function to translate theta to beta, the n-sphere constrain

Description

Function to translate theta to beta, the n-sphere constrain

Usage

theta2beta(theta)

Arguments

- **theta**: the parameter on n unit-sphere constrain
Index

*Topic \textasciitilde kwd1
 AUC, 3
 AUC.emp, 3
 beta2theta, 4
 betahat, 4
 gradAUC.Lang, 5
 gradsqr, 5
 hessAUC, 6
 nlsolve, 6
 optAUC, 7
 theta2beta, 9

*Topic \textasciitilde kwd2
 AUC, 3
 AUC.emp, 3
 beta2theta, 4
 betahat, 4
 gradAUC.Lang, 5
 gradsqr, 5
 hessAUC, 6
 nlsolve, 6
 optAUC, 7
 theta2beta, 9

*Topic package
 optAUC-package, 2

 AUC, 3
 AUC.emp, 3
 beta2theta, 4
 betahat, 4
 gradAUC.Lang, 5
 gradsqr, 5
 hessAUC, 6
 nlsolve, 6
 optAUC, 7
 optAUC-package, 2
 theta2beta, 9