Package ‘optpart’

September 20, 2016

Version
2.3-0

Date
2016-09-20

Title
Optimal Partitioning of Similarity Relations

Author
David W. Roberts <droberts@montana.edu>

Maintainer
David W. Roberts <droberts@montana.edu>

Depends
cluster, labdsv, MASS, plotrix

Suggests
tree

Description
Contains a set of algorithms for creating partitions and coverings of objects largely based on operations on (dis)similarity relations (or matrices). There are several iterative re-assignment algorithms optimizing different goodness-of-clustering criteria. In addition, there are covering algorithms 'clique' which derives maximal cliques, and 'maxpact' which creates a covering of maximally compact sets. Graphical analyses and conversion routines are also included.

License
GPL (>= 2)

URL
http://ecology.msu.montana.edu/labdsv/R

NeedsCompilation
yes

Repository
CRAN

Date/Publication
2016-09-20 18:46:42

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>archi</td>
<td>2</td>
</tr>
<tr>
<td>bestfit</td>
<td>3</td>
</tr>
<tr>
<td>bestopt</td>
<td>4</td>
</tr>
<tr>
<td>classmatch</td>
<td>5</td>
</tr>
<tr>
<td>clique</td>
<td>7</td>
</tr>
<tr>
<td>clique.test</td>
<td>8</td>
</tr>
<tr>
<td>clustering</td>
<td>9</td>
</tr>
<tr>
<td>compare</td>
<td>10</td>
</tr>
</tbody>
</table>
Description

Archipelago analysis finds connected clusters in a dissimilarity matrix. Samples in the same cluster are at most alpha dissimilar to at least one other sample in the cluster, and are more than alpha dissimilar to all samples in all other clusters. The solution is equivalent to slicing a nearest neighbor cluster analysis at alpha, but does not require (or produce) a hierarchical structure.

Usage

archi(dist, alpha)

Arguments

dist an object of class 'dist' from dist, vegdist, or dsvdis
alpha the dissimilarity threshold to establish the relationship
Details
Archipelago analysis is a topological, as opposed to metric space, cluster routine that returns connected clusters. Every sample in a cluster is connected by a path with step lengths of at most alpha dissimilarity to every other sample in the cluster, and is more than alpha dissimilar to all other samples in all other clusters.

Value
produces an object of class ‘clustering’, a list with a vector ‘clustering’ of cluster memberships

Author(s)
David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg) # produces a vegetation dataframe
dis.bc <- dsdis(shoshveg,'bray/curtis')
produces a Bray/Curtis dissimilarity matrix
arc.50 <- archi(dis.bc,0.5) # clusters at 0.5 dissimilarity
table(arc.50$clustering)

bestfit
Identify the Goodness-of-Fit of Cluster Members

Description
Sorts the members of clusters by maximum similarity goodness-of-fit

Usage
bestfit(x,cluster)

Arguments
x an object of class ‘partana’ or ‘silhouette’
cluster a specific cluster number

Details
Simply finds all members of a specific cluster and lists them in order of (1) mean similarity to their cluster (if x is an object of class ‘partana’) or silhouette width (if x is an object of class ‘silhouette’ as produced by functions in package ‘cluster’)

Value
returns a data.frame with cluster members in column ‘ID’ and goodness-of-fit in column ‘fit’
Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/

See Also

typal

Examples

data(shoshveg) # returns vegetation matrix
dis.bc <- dsvdis(shoshveg,'bray') # Bray/Curtis dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # 5 cluster partition
print(class(opt.5))
fit <- bestfit(opt.5,1) # goodness-of-fit for cluster 1
sil.5 <- silhouette(opt.5,dis.bc) # calculate silhouette widths
fit2 <- bestfit(sil.5,1) # goodness-of-fit for cluster 1

bestopt

Best Of Set Optimal Partitions From Random Starts

Description

Produces a specified number of optpart solutions from random starts, keeping the best result of the set

Usage

bestopt(dist,numclu,numrep,maxitr=100)

Arguments

dist an object of class ‘dist’ from dist, vegdist, or dsvdis, or a symmetric dissimilarity matrix
numclu the number of clusters desired
numrep the number of random starts requested
maxitr the maximum number of iterations per replicate

Details

calls function optpart with an random initial assignment of items to clusters ‘numitr’ times, keeping the best result (highest within/among ratio observed). See optpart for more details.
classmatch

Value
an object of class partana, with components:

ptc the mean similarity of each item to each cluster
ctc the mean similarity of each cluster to other clusters
musubx the membership of each item in each cluster
clustering the best ‘crisp’ partition from musubx
ratio the within-cluster/among-cluster similarity ratio achieved at each iteration of the
 selected result.

Note
This is a simple wrapper function to automate independent random starts of function optpart.

Author(s)
David W. Roberts <droberts@montana.edu>

See Also
optpart, partana, pam

Examples

data(shoshveg)
dis.bc <- dsdis(shoshveg,'bray curtis')
x <- bestopt(dis.bc,5,10)
summary(x)
Not run: plot(x)

classmatch(x,y,type='full')
Arguments

x an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying membership of objects in classes
y an object of class ‘clustering’, ‘partana’, ‘partition’ or a vector identifying membership of objects in classes
type a switch, either ‘full’ or ‘direct’, to control the parameters of the algorithm

Details

classmatch first calculates a cross-tabulation of the two classifications. Then, if ‘type=="full"’, the default, it finds all cases of agreement in order of number of objects. Objects are assigned to new clusters to reflect that order. It’s important to note that a single class may be partitioned into several new classes, and the the number of new classes produced may be higher than either of the classifications considered.

If ‘type=="direct"’ classmatch assumes a one-to-one relation between the two classifications compared. Classmatch finds the largest case of agreement, and assigns that match to class 1. It then zeros out the rows and columns corresponding to those classes, and iterates.

Value

A list with components:

tab the cross-tabulation analyzed
pairs the x and y values considered matched in order of solution
partial a cumulative fraction of agreement as a function of number of clusters
ord a table showing the order of new clusters
combo a new vector of assignment of objects to clusters, only produced if ‘type=="full"’

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

partition, optpart, slice

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
pam.5 <- pam(dis.bc,5)
classmatch(opt.5,pam.5)
Maximal Clique Analysis

Description

Maximal clique analysis produces the set of maximal cliques of a dissimilarity or distance matrix. Maximal cliques are sets where every member of the set is <= alpha-dissimilar to every other member.

Usage

```r
clique(dist, alphac, minsize=1, mult=100)
## S3 method for class 'clique'
summary(object, ...)
## S3 method for class 'clique'
plot(x, panel = 'all', ...)
```

Arguments

- `dist` an object of class ‘dist’ from `dist`, `vegdist`, or `dsvdis`
- `alphac` the dissimilarity threshold to establish the relationship
- `minsize` the minimum size clique to list in the results
- `mult` scratch space multiplier to control stack size (see below)
- `object` an object of class ‘clique’
- `...` ancillary arguments to `summary` or `plot`
- `x` an object of class ‘clique’
- `panel` an integer switch to indicate which panel to plot

Details

Maximal clique analysis produces a covering, as opposed to a partition, i.e. objects can belong to more than one clique, and every object belongs to at least one clique. The maximal clique solution is solved for by symbolic computation, as opposed to numerical computation, and produces a unique solution. The number of cliques produced cannot be known beforehand, and can significantly exceed the number of objects. The ‘mult’ argument controls the size of the stack to hold intermediate terms in the equation as the solution proceeds. At each iteration, the algorithm simplifies the equation to the extent possible, and recovers space used to hold terms that have been eliminated. Nonetheless, it is possible for the equation to grow quite large at intermediate steps. The initial value of ‘mult=100’ sets the stack to 100 times the number of objects in the dissimilarity/distance matrix. If the memory allocated is exceeded, the output is set to NULL, and a message is printed to increase the ‘mult’ argument to a higher value.
Value

produces a list with elements:

- alphac: the threshold value used to establish the cliques
- musubx: a matrix of object membership in each of the maximal cliques
- member: a list of members of each clique

Note

WARNING. The run time of maximal clique analysis is approximately \(2^n + n\) for \(n\) objects. The number of cliques generated, and the run time, is sensitive to ‘alpha’, as values of ‘alpha’ close to the mean dissimilarity of the matrix are likely to produce the most cliques and longest run time. A solution for 1200 objects once took approximately 20 CPU days on a SparcStation. The example shown below (100 objects) runs in a few seconds on a modern computer.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

Examples

```r
data(shoshveg) # produces a vegetation dataframe
dis.bc <- dsdiss(shoshveg, 'bray/curtis')
  # produces a Bray/Curtis dissimilarity matrix
cli.50 <- clique(dis.bc, 0.5) # clusters at 0.5 dissimilarity, likely to run for
     # a few seconds in most PCs
  summary(cli.50)
```

Description

The `clique.test` function analyzes within-clique variability in attributes of objects other than those used to calculate the similarity relation. If the cliques exhibit a narrower range of values than expected at random it may be that the variable analyzed has an underlying role in determining the attributes on which the similarity is calculated.

Usage

```r
clique.test(cliq, env, minsize=2, plotit=FALSE)
```

Arguments

- cliq: an object of class ‘clique’
- env: a continuous environmental variable to test
- minsize: the minimum size clique to test for range
- plotit: a switch to control plotting each clique individually
clustering

Value

Produces a vector of probabilities, one for each clique that expresses the probability of obtaining a range of ‘env’ as small as observed. Also produces a plot of the sorted probabilities on the current device.

Note

The ‘clique.test’ function actually calls the envrtest function once for each clique and stores the associated probability as determined by envrtest.

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

clique.mps.test, envrtest

Examples

data(shoshveg)
data(shoshsite)
dis.bc <- dsvdis(shoshveg,'bray')
Not run: cli.60 <- clique(dis.bc,0.60) # will run for several minutes
Not run: print(clique.test(cli.60,shoshsite$swb))

custering

Clustering Object

Description

A clustering object is a list with a component called ‘clustering’ which is an integer vector of length n where n is the number of elements in a classification.

Details

The clustering object is defined simply to allow a cleaner interface to functions in package ‘cluster’.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R
compare

<table>
<thead>
<tr>
<th>Description</th>
<th>Compare Species Constancy for Specified Clusters</th>
</tr>
</thead>
</table>

Description

Extracts specified columns from a constancy table (see `const`) and identifies species which occur in one of the two clusters (potential diagnostic species) or in both.

Usage

```r
compare(const, left, right, thresh=0.2)
```

Arguments

- `const` a constancy table produced by function `const`
- `left` a numeric cluster
- `right` a cluster number
- `thresh` a minimum differential abundance to list in the table

Details

`compare` extracts two columns (left and right) from a constancy table produced by `const`, and calculates the pairwise differences. Differences greater than the specified threshold appear in the set ‘left’; negative differences less then minus one times the threshold appear in the set ‘right’, and species which occur in both columns but with an absolute value of difference less than the threshold appear in set ‘both’.

Value

A list with elements

- `left` a data.frame of species diagnostic of set ‘left’
- `right` a data.frame of species diagnostic of set ‘right’
- `both` species occurring in both sets and diagnostic of neither

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R
Examples

```r
data(shoshveg) # returns vegetation data set
data(shoshsite) # returns site data
elev.clust <- as.numeric(factor(cut(shoshsite$elevation,5))) # 5 elevation bands
elev.const <- const(shoshveg,elev.clust)
compare(elev.const,1,2) # identify diagnostic species
```

confus

<table>
<thead>
<tr>
<th>Confusion Matrix</th>
</tr>
</thead>
</table>

Description

A confusion matrix is a cross-tabulation of actual class membership with memberships predicted by a discriminant function, classification tree, or other predictive model.

Usage

```r
confus(clustering,fitted)
```

Arguments

- `clustering`: an object of class ‘clustering’ or a vector of (integer or factor) class membership values
- `fitted`: a matrix of probabilities of membership in classes, such as produced by fitted functions

Details

Cross-classifies each sample by actual class membership and predicted membership, computing overall accuracy, and the Kappa statistic of agreement.

Value

produces a list with elements

- `matrix`: the cross-tabulation matrix as a data.frame
- `correct`: the fraction of correctly predicted samples
- `kappa`: the value of the Kappa statistic
- `legend`: the text legend for the cross-tabulation matrix

Note

Confusion matrices are commonly computed in remote sensing applications, but are equally suited to the evaluation of any predictive methods of class membership or factors.
consider

Author(s)
David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References
http://ecology.msu.montana.edu/labdsv/R

Examples
data(shoshveg) # returns a data frame of vegetation data
data(shoshsite) # returns a data frame of site data
library(tree)
mod <- tree(factor(shoshveg$PSEmen>0)~ elevation+slope+av,data=shoshsite)
pred <- predict(mod,newdata=shoshsite)
confus(shoshveg$PSEmen>0,pred)

consider

Recommendations for Possible Merging of Clusters

description
Presents an ordered list of possible cluster combinations to consider for merging to simplify a classification.

Usage
consider(part)

Arguments
part an object of class ‘partana’ from functions partana, optpart or bestopt

Details
Simply sorts the cluster-to-cluster mean similarity matrix of a ‘partana’ object into a list sorted by mean similarity.

Value
a data.frame with three elements:
row the current cluster number
col the cluster to which it is most similar
vals the mean similarity of the two clusters
Note

The listed combinations are not suggested to be optimal by any specific criterion. In fact, if the ‘partana’ object was generated by optpart or bestopt it is known that the suggested combinations are sub-optimal. Nevertheless, sometimes it is desirable to simplify a classification for other reasons.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

optpart, bestopt

Examples

data(shoshveg) # returns a vegetation data.frame
dis.bc <- dsvdis(shoshveg,'bray') # calculates a Bray/Curtis
dis.diam <- disdiam(dis.bc) # dissimilarity matrix

Example: # generates a 5 cluster partition
opt.5 <- optpart(5,dis.bc)
consider(opt.5) # recommends possible clusters to merge

Disdiam

Dissimilarity Diameters of a Partition

Description

Calculates the diameter (maximum within-cluster dissimilarity) of all clusters in a partition, as well as the average diameter across all clusters.

Usage

disdiam(x,dist,digits)

S3 method for class 'stride'
disdiam(x,dist,digits=3)

S3 method for class 'disdiam'
print(x, ...)

Arguments

- x: a vector of integers or an object of class ‘clustering’, ‘partition’, ‘partana’, or ‘stride’
- dist: an object of class ‘dist’ from dist, dsvdis, or vegdist
- digits: the number of significant digits reported in the output
- ...: ancillary arguments to the print function
Details

disdiam is a cluster validation routine, and calculates the diameter (maximum within-cluster dis-
similarity) of each cluster, as well as the average diameter of across all clusters of size greater than
one.

Value

A list with components:

diameters a data.frame with clusters as rows, and cluster ID, cluster size, and diameter as
cols
mean the weighted mean diameter of clusters of size greater than one. The mean is
weighted for cluster size.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
disdiam(opt.5,dis.bc)

extract

Extract A Specific Cluster Solution From A Stride

Description

Extracts a specified cluster solution from an object of class ‘stride’. The desired solution is specified
by the number of clusters.

Usage

S3 method for class 'stride'
extract(stride,k)

Arguments

stride an object of class ‘stride’ from function stride
k the number of clusters desired

Details

A stride object consists of a list with a data.frame of cluster solutions for varying numbers of clusters. Extract simply selects one column of this data.frame (specified by number of clusters desired, not column number) and returns that solution as an object of class ‘clustering’.
Value

an object of class ‘clustering’.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg) # get vegetation data
dis.bc <- dsvdis(shoshveg,'bray') # calculate dissimilarity matrix
avg.hcl <- hclust(dis.bc,'average') # average linkage cluster analysis
avg.2.10 <- stride(2:10,avg.hcl) # compute stride
res <- extract(avg.2.10,8) # extract 8-cluster solution

fuzconfus Fuzzy Confusion Matrix

Description

A confusion matrix is a cross-tabulation of actual class membership with memberships predicted by a discriminant function, classification tree, or other predictive model. A fuzzy confusion matrix is a confusion matrix that corrects for ‘near misses’ in prediction by comparing the similarity of the predicted type to the actual type and giving credit for the similarity.

Usage

fuzconfus(part,fitted,dis)

Arguments

part an object of class ‘partana’, ‘clustering’, or ‘pam’ a vector of (integer) class membership values
fitted a matrix of probabilities of membership in classes, such as produced by fitted functions
dis an object of class ‘dist’ such as produced by ‘dist’ dsvdis, or vegdist. if ‘part’ is an object of class ‘clustering’ or ‘pam’ argument ‘dis’ must be provided.

Details

Cross-classifies each sample by actual class membership and predicted membership, and then calculates the similarity of the predicted type to the actual. Correct predictions are assigned values of 1.0, and other predictions are given the value of the similarity of the two types on the diagonal. The dissimilarity of the two types is added off the diagonal as fuzzy error.
maxpact

Value

produces a list with elements

- confuz: the fuzzy cross-tabulation matrix as a data.frame
- correct: the fraction of fuzzy correctly predicted samples
- percent: the percent of fuzzily correct predictions
- kappa: the value of the Kappa statistic

Note

Confusion matrices are commonly computed in remote sensing applications, but are equally suited to the evaluation of any predictive methods of class membership or factors.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References

http://ecology.msu.montana.edu/labdsv/R

Examples

```r
data(shoshveg) # returns a data frame of vegetation data
data(shoshsite) # returns a data frame of site data
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
library(tree)
mod <- tree(factor(opt.5$clustering)~ elevation+slope+av,data=shoshsite)
pred <- predict(mod,newdata=shoshsite)
fuzconfus(opt.5,pred,dis.bc)
```

Description

Maximally compact sets is an approach to deriving relatively homogeneous subsets of objects as determined by similarity of the composition of the objects. Maximally compact sets are a covering, as opposed to a partition, of objects. The sets so derived can be tested against random sets of the same size to determine whether a vector of independent data exhibits an improbably restricted distribution within the sets.

Usage

```r
maxpact(dist.size=NULL,alphac=NULL,mean=FALSE)
mps.test(mps, env, panel = 'all', main = deparse(substitute(env)), ...)  
## S3 method for class 'mps'
plot(x, ...)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dist</code></td>
<td>a dist object from dist, dsvids, or vegdist</td>
</tr>
<tr>
<td><code>size</code></td>
<td>the size of desired compact sets</td>
</tr>
<tr>
<td><code>alphac</code></td>
<td>the alpha-cut to specify maximum dissimilarity for inclusion in a set</td>
</tr>
<tr>
<td><code>mean</code></td>
<td>if mean is FALSE (the default), the algorithm uses a furthest neighbor criterion; if mean is TRUE, it uses a mean similarity criterion</td>
</tr>
<tr>
<td><code>mps</code></td>
<td>an object of class ‘mps’</td>
</tr>
<tr>
<td><code>env</code></td>
<td>a quantitative environmental variable for analysis</td>
</tr>
<tr>
<td><code>main</code></td>
<td>a title for the plot of mps.test</td>
</tr>
<tr>
<td><code>panel</code></td>
<td>an integer switch to indicate which panel to draw</td>
</tr>
<tr>
<td><code>x</code></td>
<td>an object of class ‘mps’ from maxpact</td>
</tr>
<tr>
<td>...</td>
<td>ancillary arguments for ‘plot’</td>
</tr>
</tbody>
</table>

Details

maxpact starts with each sample as a seed, and adds the most similar plot to the set. Plots are added in turn to the set (up to the size specified, or to the maximum dissimilarity specified) in order of maximum similarity. If mean is FALSE, the sample most similar to set is the sample with the max-min similarity, that is, the sample whose minimum similarity to the set is highest, equivalent to furthest-neighbor or complete-linkage in cluster analysis. If mean is TRUE, the sample most similar to a set is the sample with highest mean similarity to the set. Once the sets are determined for each seed, the list is examined for duplicate sets, which are deleted, to return the list of unique sets.

If ‘alphac’ is specified, sets are grown to maximum size, or to maximum dissimilarity as specified by alphac, whichever is smaller.

The ‘mps.test’ function analyzes within-set variability in attributes of the objects other than those used to calculate the similarity relation. If maximally compact sets exhibit a narrower range of values than expected at random it may be that the variable analyzed has an underlying role in determining the attributes on which the similarity is calculated. The function ‘plot’ plots the sorted within-set range of values in red, and the sorted range of values of random sets of the same size in black. This followed by a boxplot of within-set values for the random replicates versus the observed sets, and calculates a Wilcoxon rank sum test of the difference.

Value

an object of class ‘mps’, a list with elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>musubx</code></td>
<td>a matrix of sample membership in the sets where membership is given by the similarity with which a sample joined the set</td>
</tr>
<tr>
<td><code>member</code></td>
<td>a list of set members in the order they were added to the set</td>
</tr>
<tr>
<td><code>numset</code></td>
<td>the number of unique sets derived</td>
</tr>
<tr>
<td><code>size</code></td>
<td>the number of members in each set</td>
</tr>
<tr>
<td><code>distname</code></td>
<td>the name of the dissimilarity/distance object employed</td>
</tr>
</tbody>
</table>
mergeclust

Merge Specified Clusters in a Classification

Description
Re-assigns members of one cluster to another specified cluster, reducing the number of clusters by one.

Usage
mergeclust(clustering, from, to)

Arguments
- clustering: a vector of (integer) cluster memberships, or an object of class 'partition', 'partana', or 'clustering'
- from: the cluster number to be vacated
- to: the cluster to which members will be re-assigned

Details
The function simply renumbers members of one cluster with the number of another, but greatly simplifies managing the list objects class 'partition', 'partana', or 'clustering' and simplifies the syntax.

Value
A list object of class 'clustering' specifying cluster membership for every object.

Author(s)
David W. Roberts <droberts@montana.edu>

References
http://ecology.msu.montana.edu/labdsv/R
See Also

partition, partana, and clustering

Examples

data(shoshveg) # returns a vegetation data.frame
dis.bc <- dsdis(shoshveg,"bray/curtis") # returns a Bray/Curtis
dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # five cluster partition
opt.5a <- mergeclust(opt.5,5,4) # reassigns member form cluster 5 to 4

murdoch

Indicator Species Analysis by Murdoch Preference Function

Description

Calculates the indicator value of species in a single cluster or environment type using the Murdoch Preference Function

Usage

murdoch(taxa,type,minval=0,minplt=10)
 ## S3 method for class 'murdoch'
summary(object,pval=0.05,ndigits=3,...)
 ## S3 method for class 'murdoch'
plot(x,axtype=1,pval=0.05,...)

Arguments

taxa a matrix or data.frame of samples with species as columns and samples as rows
type a logical vector with values of TRUE for samples in a specific cluster or type
minval a threshold minimum abundance value to count as a presence
minplt the minimum number of presences to include a species in the calculation
object and object of class 'murdoch’
pval the maximum probability to include a species in the summary table
ndigits the number of digits to report
... ancillary arguments to maintain compatibility with the generic summary function
x an object of class ‘murdoch’
axtype a switch to control scaling of the x axis in the plot. 1=number of plots in the data set, other = number of presences in the type
Details

Calculates the indicator value of species for a specific type using the modified Murdoch statistic:

\[
\log \left(\frac{p/a \times (n - p_i)/n_i}{} \right)
\]

where: \(p \) = number of samples where species is present, \(a \) = number of samples where species is absent, \(n \) = total number of samples (\(p+a \)), \(p_i \) = number of samples in type \(i \) where species is present, \(n_i \) = number of samples in type \(i \).

Probabilities are based on the hypergeometric distribution calculation of having as many or more presences in a type as observed.

Value

a list object of class ‘murdoch’ with components:

- \texttt{minplt}\ the minimum number of presences to be included
- \texttt{nplots}\ the number of plots a species occurs in
- \texttt{type}\ the plot membership vector for the type
- \texttt{pres}\ the number of presences for species in the type
- \texttt{abs}\ the number of absences of species in the type
- \texttt{murdoch}\ the Murdoch value for species in the type
- \texttt{pval}\ the probability of getting such a high murdoch value

Note

Indicator value analysis is a set of techniques designed to identify species of special interest in clusters or types. The most widely used indicator species analysis was proposed by Dufrene and Legendre (1997), and is included in package ‘labdsv’ as \texttt{indval}. murdoch differs significantly from \texttt{indval} in assumption and objective, seeking to identify species that have improbable occurrences in types, regardless of their relative frequency in the type.

Author(s)

David W. Roberts with help from Ken Aho \(<\texttt{droberts@montana.edu}>\) \url{http://ecology.msu.montana.edu/labdsv/R}

See Also

\texttt{indval}, \texttt{tabdev}

Examples

```r
data(shoshveg) # returns a vegetation dataframe
dis.bc <- dsvdis(shoshveg,'bray/curtis') # returns a dissimilarity matrix
clust <- optpart(5,dis.bc)
murdoch(shoshveg,clust$clustering==1)
```
neighbor

Neighbor Analysis of Partitions

Description

Calculates the nearest neighbor (least dissimilar cluster) for each item in partition to identify the topology of the partition.

Usage

```r
neighbor(x, all=FALSE)
```

Arguments

- `x`: an object of class ‘pam’ or class ‘partana’
- `all`: a logical switch to control which items are included in the calculation

Details

Each item in a partition has membership in a cluster. The nearest neighbor of an item is the cluster to which the item is least dissimilar, other than the one to which it belongs. If ‘all’ is TRUE, then every item is included in the analysis. If ‘all’ is FALSE, only ‘misfits’ are included in the calculation. If the first argument is an object of class ‘pam’, then a misfit is an item with a negative silhouette width (see `silhouette`). If the first argument is an object of class ‘partana’, a misfit is an item with lower mean dissimilarity to another cluster than to the one to which it belongs.

Value

A table with clusters as rows, and neighbors as columns.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

```r
data(shoshveg)
dis.bc <- dsdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
neighbor(opt.5)
```
optindval

Optimizing Classification by Maximizing Dufrene and Legendre’s Indicator Value

Description

optindval is an iterative re-assignment classification algorithm that assigns samples to clusters to maximize the sum of indicator values.

Usage

optindval(veg, clustering, maxitr=100, minsiz=5)

Arguments

- **veg**: a vegetation or other taxon table with samples as rows and taxa as columns
- **clustering**: an index of cluster membership for each sample. May be either a numeric vector of length equal to the number of samples, or an object that inherits from class ‘cluster’
- **maxitr**: the maximum number of iterations to attempt
- **minsiz**: the minimum size cluster to consider reassigning a sample out of

Details

Iterative re-allocation algorithms temporarily re-assign each sample to each of the other possible clusters and calculate a goodness-of-clustering statistic for each re-assignment. The best of all possible re-assignments is then executed and the algorithm iterates until there are no more good re-assignments or the maximum number of iterations is reached. In optindval, the goodness-of-clustering statistic is the sum of Dufrene and Legendre indicator values

Value

a list of class “optindval”, “clustering” with components:

- **numitr**: the number of iterations performed
- **sums**: a vector of indicator value probability sums
- **clustering**: the vector of cluster memberships (as integers) for each sample

Note

Like many iterative re-assignment algorithms, optindval is likely to be VERY slow from a random start or poor initial condition. optindval is maybe better used to polish existing classifications

Author(s)

David W. Roberts <droberts@montana.edu>
optpart

References

http://ecology.msu.montana.edu/labdsv/R

See Also

optpart, opttdev, optsil

Examples

data(shoshveg) # returns a data.frame of vegetation data called shoshveg
dis.bc <- dsvdis(shoshveg,'bray') # generate Bray/Curtis dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # generate 5-cluster optpart
Not run: res <- optindval(shoshveg,opt.5) # polish the optpart result
Not run: classmatch(opt.5,res) # see the plot re-assignments

optpart

Optimal Partitioning of Dissimilarity/Distance Matrices

Description

Optimal partitioning is an iterative re-allocation algorithm to maximize the ratio of within-cluster similarity/among-cluster similarity for a given number of clusters. Optpart can operate as either a crisp (classical) partitioning, or a fuzzy partitioning algorithm.

Usage

optpart(x, dist, maxitr = 100, mininc = 0.001, maxmu = 1)

Arguments

x an integer, integer vector, factor vector, or objects of class ‘clustering’, ‘partana’, ‘partition’ or ‘stride’
dist a object of class ‘dist’ from dist, dsvdis, or vegdist
maxitr the maximum number of iterations to perform
mininc the minimum increment in the within/among similarity ratio to continue iterating
maxmu the ‘maximum delta mu’. If 1, a crisp (non-fuzzy) partition results. If (0,1) a fuzzy partition results.

Details

optpart produces a partition, or clustering, of items into clusters by iterative reallocation of items to clusters so as to maximize the within cluster/ among cluster similarity ratio. At each iteration optpart ranks all possible re-allocations of a sample from one cluster to another. The re-allocation that maximizes the change in the within-cluster/among-cluster ratio is performed. The next best reallocation is considered, and if it does not include any clusters already modified, it is also performed, as re-allocations of independent clusters are independent and additive in effect. When no
Further re-allocations can be performed in that iteration, the algorithm recalcultes all possible re-allocations and iterates again. When no re-allocations exist that improve the within/among ratio greater than ‘mininc’, or the maximum number of iterations is reached, the algorithm stops.

Optpart is designed to run from a random start or the levels of a factor, or preferably from existing initial partitions. Specifying a single integer gives the number of clusters desired using a random start. Specifying an integer vector gives the initial assignments of items to clusters. Initial assignments can also be extracted from a number of objects. Specific methods exist for objects of class ‘clustering’ from functions slice or archi, class ‘partana’ from function partana, class ‘stride’ from stride, or class ‘partition’ from functions pam or diana. optpart is deterministic from a given initial condition. To get good results from a random start, multiple random starts should be attempted, using function bestopt.

Optpart is an unweighted algorithm, i.e. each of the \((n^2 - n)/2\) pairwise distances or dissimilarities is included in the calculation of the ratio exactly once. Optpart somewhat penalizes small clusters, as small clusters contribute only \((n_i^2 - n_i)/2\) values to the numerator; the extreme case is that a cluster with a single member does not contribute anything to the numerator.

It is an interesting characteristic of optpart that no minimum cluster size is enforced, and it is common for partitions of a large number of clusters to contain null clusters, i.e. clusters with no members. This is not a bug or error, but rather an indication that a partition with a fewer number of clusters achieves a better within/among similarity ratio than does a larger number. It is also somewhat common that for solutions with a small or intermediate number of clusters, optpart places outliers in a small ‘trash’ cluster.

When optpart is run as a fuzzy partitioning algorithm, it often achieves a surprisingly low entropy, with many items assigned completely to a single cluster.

Value

an object of class partana, a list with elements:

- ptc a matrix of item mean similarity to each cluster
- ctc a matrix of mean cluster-to-cluster similarity
- musubx a matrix of membership of each item to each cluster. If maxdmu is 1, this will be a single 1 in the appropriate cluster and 0 in all others. If maxdmu is (0,1) then the musubx represent fuzzy memberships in each cluster.
- clustering a vector giving the cluster each item is assigned to. If optpart is run as a fuzzy partitioning, this is determined by the maximum membership observed.
- ratio the vector of within/among similarities achieved at each iteration. The final non-zero value is the final ratio achieved.
- numitr the number of iterations performed
- names the names of the items clustered

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsve/R

See Also

partana
Examples

```r
data(shoshveg)
dis.bc <- dsvdis(shoshveg, 'bray/curtis')
opt.5 <- optpart(5, dis.bc)
summary(opt.5)
```

Description

Silhouette width is a measurement of the mean similarity of each object to the other objects in its cluster, compared to its mean similarity to the most similar cluster (see `silhouette`). Optsil is an iterative re-allocation algorithm to maximize the mean silhouette width of a clustering for a given number of clusters.

Usage

```r
optsil(x, dist, maxitr)
```

Arguments

- `x` an integer, a vector of integers, an object of class 'clustering', 'partana', 'partition', or 'stride'
- `dist` a object of class 'dist' from `dist`, `dsvdis`, or `vegdist`
- `maxitr` the maximum number of iterations to perform

Details

Optsil produces a partition, or clustering, of items into clusters by iterative reallocation of items to clusters so as to maximize the mean silhouette width of the classification. At each iteration optsil ranks all possible re-allocations of a item from one cluster to another. The reallocation that maximizes the change in the mean silhouette width is performed. Because silhouette widths are not independent of clusters that are not modified, only a single reallocation can be preformed in a single iteration. When no further re-allocations result in an improvement, or the maximum number of iterations is achieved, the algorithm stops.

Optsil is an unweighted algorithm, i.e. each of the objects is included in the calculation exactly once.

Optsil can be extremely slow to converge, and is best used to ‘polish’ an existing partition or clusterings resulting from slicing an `hclust` or from functions `optpart`, `pam`, `diana` or other initial clusterings. It is possible to run optsil from a random start, but is EXTREMELY SLOW to converge, and should be done only with caution.
Value

a list with elements:

- clustering a vector of integers giving the cluster assignment for each object
- sils a vector of the silhouette widths achieved at each iteration
- numitr the number of iterations performed

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

- optpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(dis.bc)
sil.5 <- optsil(opt.5,dis.bc,100) # make take a few minutes
summary(silhouette(sil.5,dis.bc))
Not run: plot(silhouette(sil.5,dis.bc))

opttdev

Optimizing Classification by Minimizing Table Deviance

Description

opttdev is a iterative re-assignment classification algorithm that assigns samples to clusters to minimize the total deviance of a table with respect to the row-wise relative abundance of the elements.

Usage

opttdev(veg, clustering, maxitr=100, minsiz=5)

Arguments

- veg a vegetation or other taxon table with samples as rows and taxa as columns
- clustering an index of cluster membership for each sample. May be either a numeric vector of length equal to the number of samples, or an object that inherits from class 'cluster'
- maxitr the maximum number of iterations to attempt
- minsiz the minimum size cluster to consider reassigning a sample out of
Details

Iterative re-allocation algorithms temporarily re-assign each sample to each of the other possible clusters and calculate a goodness-of-clustering statistic for each re-assignment. The best of all possible re-assignments is then executed and the algorithm iterates until there are no more good re-assignments or the maximum number of iterations is reached. In opttdev, the goodness-of-clustering statistic is total table deviance as calculated by \texttt{tabdev}. See the help file for \texttt{tabdev} for more detail.

Value

a list which inherits from class 'opttdev', 'clustering' with components:

- \texttt{numitr} the number of iterations performed
- \texttt{dev} a vector of total table deviance at each iteration of length 'numitr'
- \texttt{clustering} the vector of cluster memberships (as integers) for each sample

Note

Like many iterative re-assignment algorithms, opttdev is likely to be VERY slow from a random start or poor initial condition. opttdev is maybe better used to polish existing classifications

Author(s)

David W. Roberts <droberts@montana.edu>

References

\url{http://ecology.msu.montana.edu/labdsv/R}

See Also

\texttt{optpart, optindval, optsil}

Examples

```r
## Not run: data(shoshveg) # returns a data.frame of vegetation
## Not run: # data called shoshveg
## Not run: res <- opttdev(shoshveg,sample(1:5,nrow(shoshveg),replace=TRUE))
## Not run: # likely to be VERY slow
```
Description

Partition analysis evaluates the within-cluster to among-cluster similarity of classifications as a measure of cluster validity.

Usage

```r
partana(c, dist)
```

Summary

```r
summary(object, ...)
```

Plot

```r
plot(x, panel = 'all', zlim = range(x$ptc), col = heat.colors(12), ...)
```

Arguments

- `c`: an integer or factor vector, or an object of class ‘clustering’, ‘partana’, ‘partition’, or ‘stride’
- `dist`: an object of class ‘dist’ from functions `dist`, `dsvdis` or `vegdist`.
- `object`: an object of class ‘partana’
- `x`: an object of class ‘partana’
- `panel`: an integer switch to indicate which panel to draw
- `zlim`: the min and max values for the color map
- `col`: a color map name (heat.colors(12) is the default)
- `...`: ancillary arguments to pass to `summary` or `plot`

Details

Calculates mean object-to-cluster similarity, mean cluster-to-cluster similarity, and mean within-cluster to among-cluster similarity. `partana` operates on partitions or clusterings produced by a wide range of algorithms, including specific methods for the products of functions `optpart`, `slice`, `pam` and `diana`.

`summary` produces a matrix of the mean cluster-to-cluster similarities, and the overall within-cluster/among-cluster similarity ratio.

`plot` plots two panels in sequence in the current device. The first shows the mean similarity of every object to each cluster, sorted by mean similarity to the other members of its own cluster, with objects as columns and clusters as rows. The second panel shows the mean similarity of every cluster to every other cluster and mean within-cluster similarity, ignoring cluster size. These plots are known as ‘Mondrianian’ plots, where the similarities are given by lines colored from min to max. If the ‘partana’ object was produced by `optpart`, a third panel is plotted showing the trace of the optimization.
Value

an object of class ‘partana’ with components:

- **ptc**: matrix of mean object-to-cluster similarity
- **ctc**: matrix of mean cluster-to-cluster similarity
- **clustering**: vector of numeric cluster assignments
- **ratio**: within-cluster to among-cluster similarity ratio

Author(s)

David W. Roberts <droberts@montana.edu>

See Also

`partition`, `optpart`, `plot.partana`

Examples

```r
data(shoshveg)
data(shoshsite)
dis.bc <- dsddis(shoshveg,'bray/curtis')
demo.part <- partana(cut(shoshsite$elev,5),dis.bc)
summary(demo.part)
```

partition
Convert Object to Partition Object

Description

Convert an object of class ‘partana’ or class ‘clustering’ to an object of class ‘partition’.

Usage

```r
partition(x, dist, ...)
```

Arguments

- **x**: an object which inherits from class ‘clustering’
- **dist**: an object of class ‘dist’
- **...**: ancillary arguments to pass to ‘partition’

Details

A ‘partition’ object is the output of several functions in package ‘cluster’. This utility function converts objects from package ‘optpart’ to ‘partitions’ so that functions in that library are available.
Value

an object of class ‘partition’ with components (and possibly others):

clustering vector of numeric cluster assignments
silinfo a list with all silhouette information, only available when the number of clusters is non-trivial, i.e., $1 < k < n$. See ‘silhouette’

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsv/R

References

http://ecology.msu.montana.edu/labdsv/R

See Also

silhouette, partition, optpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
part <- partana(sample(1:5,nrow(shoshveg),replace=TRUE),dis.bc)
result <- partition(part,dis.bc)

Calculating the phi Statistic on Taxon Classifications

Description

Calculates the phi statistic on a classified table of taxa

Usage

phi(taxa,clustering,minplt=10)

Arguments

taxa a data.frame with samples as rows and attributes as columns
clustering a vector of integers or an object of class ‘clustering’, ‘partition’, or ‘partana’
minplt the minimum number of samples a species must occur in to be included in the calculation
Details

\(\phi \) is a statistic of agreement between two vectors. In this case the function calculates the distribution of each species within clusters of a partition, calculates the \(\phi \) statistic for each species in each cluster.

\[
\phi = \frac{ad - bc}{\sqrt{(a + b) \times (c + d) \times (a + c) \times (b + c)}}
\]

where:

- a sample is in specified type and species is present
- b sample is not in group and species is present
- c sample is in type but species is not present
- d sample is not in type and species is not present

Value

A data.frame of \(\phi \) values with species as rows and clusters as columns

Author(s)

David W. Roberts <droberts@montana.edu>

References

Examples

```r
data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
opt.5 <- optpart(5,dis.bc)
phi(shoshveg,opt.5)
```

refine Refining a Classification by Re-Assigning Memberships

Description

Refine allows you to re-assign specific elements of a classification from one class or cluster to another. In the default case, you simply interactively enter sample IDs and give a new cluster assignment. For PCO and NMDS ordinations, you do the assignments with a mouse.
Usage

```r
## Default S3 method:
refine(x, clustering, ...)
## S3 method for class 'nmds'
refine(x, clustering, ax=1, ay=2, ...)
## S3 method for class 'pco'
refine(x, clustering, ax=1, ay=2, ...)
```

Arguments

- `x` a taxon dataframe or an ordination of class ‘PCO’ or ‘NMDS’
- `clustering` a clustering identity or membership vector
- `ax` the X axis of the ordination
- `ay` the Y axis of the ordination
- `...` ancillary arguments to allow differing numbers of arguments

Value

- a list object of class ‘clustering’ with one component.
 - `clustering` a numeric vector giving the cluster assignment for each sample

Note

There are many, many ways to produce classifications in R, including several in package ‘optpart’. `refine` is designed to take one of these classifications and polish it by making relatively few transfers. The ordination-based routines allow visual assessment of cluster validity, although in reduced dimensionality, which can be misleading.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

Examples

```r
## Not run: data(shoshveg)
## Not run: dis.bc <- dsvdis(shoshveg,'bray')
## Not run: opt.5 <- optpart(5,dis.bc)
## Not run: nmds.bc <- nmds(dis.bc)
## Not run: plot(nmds.bc)
## Not run: res <- refine(nmds.bc,opt.5)
```
reordclust Re-order Clusters in a Classification

Description
In it's simplest form simply reassigns cluster numbers in an existing classification to re-order tables and graphs. Can also be used to combine clusters into a fewer number of clusters.

Usage
reordclust(clustering,from,to)

Arguments
- clustering: a vector of (interger) cluster mmeberships, or an object of class ‘clustering’, ‘partana’, or ‘partition’
- from: an integer vector equal in length to the number of clusters that specifies the current clusters
- to: an integer vector equal in length to the number of clusters that specifies the clusters the current clusters map to

Details
The function simply maps cluster numbers in the ‘from’ vector to the respective cluster number in the ‘to’ vector.

Value
an object of class ‘clustering’

Note
As demonstrated in the examples below, reordclass can also combine existing clusters into fewer clusters while reordering if more than one cluster in the ‘from’ vector maps to the same cluster in the ‘to’ cluster.

Author(s)
David W. Roberts <droberts@montana.edu>

References
http://ecology.msu.montana.edu/labdsv/R

See Also
mergeclust
Examples

data(shoshveg)
dis.bc <- dsdis(shoshveg, 'bray')
opt.10 <- optpart(10, dis.bc)
new <- reordclust(opt.10, 1:10, c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10))
simply re-ordered
new2 <- reordclust(opt.10, 1:10, c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5))
merge 1 and 2 into 1, 3 and 4 into 2, etc.

shoshsite

Site Data for the Shoshone National Forest, Wyoming, USA

Description

The coniferous forests of the Shoshone National Forest range from lower elevation woodlands dominated by *Pinus flexilis*, through forests of *Pseudotsuga menziesii*, *Pinus contorta*, *Picea engelmannii*, *Abies lasiocarpa* and *Pinus albicaulis* with increasing elevation (Steele et al. 1983). One hundred and fifty sample plots were chosen at random from a larger set for this data set; the larger set was stratified by elevation, exposure, surficial geology, and geographic distribution.

Usage

data(shoshsite)

Format

A data.frame with sample plots as rows, and site variable as columns. Variables comprise:

- `elevation` elevation above sea level in meters
- `aspect` compass orientation of the site in degrees
- `slope` slope steepness in percent
- `av` aspect value: \((\cos(d(\text{aspect}-30))+1)/2\)
- `swb` site water balance: a tipping bucket model of water-year soil water
- `sprppt` spring precipitation in cm
- `sumppt` summer precipitation in cm
- `autppt` autumn precipitation in cm
- `winppt` winter precipitation in cm
- `sprtmp` spring mean temperature degrees C
- `sumtmp` summer mean temperature degrees C
- `auttmp` autumn mean temperature degrees C
- `winpt` winter mean temperature degrees C
- `sprpet` spring potential evapotranspiration in cm
- `sumpet` summer potential evapotranspiration in cm
- `autpet` autumn potential evapotranspiration in cm
- `winpet` winter potential evapotranspiration in cm
- `sprrad` spring direct and diffuse solar radiation (correcting for topographic shading)
- `sumrad` summer direct and diffuse solar radiation (correcting for topographic shading)
shoshveg

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autrad</td>
<td>autumn direct and diffuse solar radiation (correcting for topographic shading)</td>
</tr>
<tr>
<td>win</td>
<td>winter direct and diffuse solar radiation (correcting for topographic shading)</td>
</tr>
<tr>
<td>ffd</td>
<td>frost free days</td>
</tr>
<tr>
<td>dday</td>
<td>degree days heat sum</td>
</tr>
<tr>
<td>tcol</td>
<td>mean monthly temperature of the coldest month</td>
</tr>
</tbody>
</table>

Note

The data were derived from a multi-year effort by numerous scientists and field technicians. The project was directed by Kent Houston, Soil Scientist and Ecologist, Shoshone National Forest. The site data were calculated primarily by Dr. Niklaus Zimmermann, WSL, Birmensdorf, Switzerland http://www.wsl.ch/staff/niklaus.zimmermann/biophys.html

Source

shoshveg

Vascular Plant Species Cover for the Shoshone National Forest, Wyoming, USA

Description

Percent cover (in codes) for 368 vascular plants on 150 $375m^2$ sample plots stratified across the Shoshone National Forest, Wyoming, USA. Plots were chosen at random from a larger dataset.

Usage

data(shoshveg)

Format

A data.frame with sample plots as rows and species as columns. Sample plots match the ‘shoshsite’ dataset.

The cover of all vascular plant species was recorded according to the following scale: present but $< 1\% = 0.1$, $1-5\% = 0.5$, $5-15\% = 1.0$, $15-25\% = 2.0$, $25-35\% = 3.0$, $35-45\% = 4.0$, $45-55\% = 5.0$, $55-65\% = 6.0$, $65-75\% = 7.0$, $75-85\% = 8.0$. No species exhibited greater than 80% cover in the data set.

Note

The data were derived from a multi-year effort by numerous scientists and field technicians. The project was directed by Kent Houston, Soil Scientist and Ecologist, Shoshone National Forest.
Source

Description

Extracts components from a partana, clustering, or stride object, and passes the values to the silhouette function to produce an object of class silhouette.

Usage

```r
## S3 method for class 'partana'
silhouette(x, dist, ...)
## S3 method for class 'clustering'
silhouette(x, dist, ...)
## S3 method for class 'stride'
silhouette(x, dist, ...)
testsil(sil)
```

Arguments

- `x`: an object of class ‘partana’, ‘clustering’, or ‘stride’
- `dist`: an object of class dist
- `...`: miscellaneous arguments to pass to function silhouette
- `sil`: an object of class ‘silhouette’

Details

For ‘partana’ and ‘clustering’ objects the advantage over calling silhouette directly is that the row.names of the resulting object are added to the results, as opposed to consecutive integers.

For objects of class ‘stride’ the function extracts the component ‘clustering’ for each level of a stride object, and calls function silhouette in library ‘cluster’ returning the mean silhouette width for each case.

testsil identifies ‘misfits’ in a partition, defined as plots with a negative silhouette width, and prints them out in a sorted list.

Value

An object of class silhouette
Note

This is a simple conversion routine to allow plotting a silhouette plot for an object of class partana.

Author(s)

David W. Roberts <droberts@montana.edu>

References

http://ecology.msu.montana.edu/labdsv/R

See Also

silhouette

Examples

data(shoshveg) # produces a data frame of vegetation data, # samples as rows, attributes as columns
dis.bc <- dsvdis(shoshveg,'bray/curtis') # produces a Bray/Curtis dissimilarity matrix
opt.5 <- optpart(5,dis.bc) # produces an optimal partitioning into 5 clusters
silhouette(opt.5,dis.bc) # calculates the silhouette values
Not run: plot(silhouette(opt.5,dis.bc)) # produce silhouette plot on current device

slice Slice a Hierarchical Clustering Dendrogram with a Mouse

Description

Allows a simple classification of objects by slicing a dendrogram of a hierarchical cluster analysis graphically with a mouse, or by simply giving a number.

Usage

slice(clust, k=NULL)

Arguments

clust an object of class ‘hclust’ produced by hclust
k a desired number of clusters. If null, the function waits on a mouse click

Value

an object of class ‘clustering’, a list with a vector of cluster memberships
Note

This function is a simple wrapper for cutree that allows users to click their mouse at the height they desire to slice the dendrogram, and to establish the result with a class of `clustering` for ease of use in other functions. If you want to use the mouse, the dendrogram must have been previously plotted in the current graphic device.

Author(s)

David W. Roberts <droberts@montana.edu> http://ecology.msu.montana.edu/labdsveR

See Also

ordpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
demo <- hclust(dis.bc,'ave')
ave.5 <- slice(demo,5)
Not run: plot(demo)
Not run: ave.clust <- slice(demo)

stride *Stride: Producing a Sequence of Clusterings*

Description

stride proceeds along a specified sequence creating clusterings or partitions of a dissimilarity matrix for each value of the sequence.

Usage

```r
stride(seq, arg2, type='pam', numrep=10, maxitr=100)
```

S3 method for class 'stride'
plot(x, dist, col=4, ...)

Arguments

- `seq` a sequence, in either a:b or seq(a,b,c) form
- `arg2` an object of class ‘dist’ from `dist`, `dsvdis` or `vegdist` among other sources, or of class ‘hclust’
- `type` if `arg2` is an object of class ‘dist’, type specifies the algorithm to produce clusters, and can be either ‘pam’ or ‘optpart’.
- `numrep` if `arg2` is an object of class ‘dist’ and type = ‘optpart’, numrep specifies the number of replicates to run in function `optpart`.
maxitr
if arg2 is an object of class ‘dist’ and type = ‘optpart’ numrep specifies the
maximum number of iterations per replicate in function optpart
x
an object of class ‘stride’
dist
an object of class ‘dist’ from dist, dsvdis, or vegdist
col2
the color code for the second line in the graph
...
ancillary arguments to the plot function

Details
The specific action of function stride depends on the class of the second argument. If arg2 is of
class ‘dist’, then clusters are generated by a fixed cluster algorithm. In this case, if type is ‘pam’,
the function pam is called to produce the clusters. If type is ‘optpart’ the function optpart is called
to produce the clusters. If arg2 is of class ‘hclust’, then the hclust object is successively ‘sliced’ at
levels specified by the sequence. The object of class ‘hclust’ can result from the function hclust
using any of the methods provided, or by casting an object of class ‘partition’ to class ‘hclust’ with
the as.hclust function.

The default plot method for a stride plots the partana ratios (see partana) of each partition of the
sequence on the left Y axis, and the silhouette widths of the same partitions on the right Y axis.

Value
an object of class ‘stride’, which is a list with components:

clustering
a data.frame with items as rows, and cluster IDs as columns, with one column
for each value of the sequence

seq
a copy of the sequence employed

Author(s)
David W. Roberts <droberts@montana.edu>

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray')
results <- stride(2:5,dis.bc)

Description
Table deviance is a method to assess the quality of classifications by calculating the clarity of the
classification with respect to the original data, as opposed to a dissimilarity or distance matrix
representation
Usage

```r
# Default S3 method:
tabdev(x, clustering, nitr=999, ...)
# S3 method for class 'tabdev'
tabdev(x, taxa, ...)
```

Arguments

- **x**: a matrix or data.frame of multivariate observations, with objects as rows, and attributes as columns.
- **clustering**: a vector of integer cluster assignments, or an object of class ‘clustering’ or ‘partana’.
- **nitr**: number of iterations to perform in calculating the probability of obtaining as effective a classification as observed.
- **taxa**: a data.frame with samples as rows and species as columns.
- **object**: and object of class ‘tabdev’.
- **p**: the maximum probability threshold to list species in the summary table.
- **...**: ancillary arguments to maintain compatibility with generic summary function.

Details

Tabdev calculates the concentration of values within clusters. For each column, tabdev calculates the sum of values within classes and the sum within classes divided by the sum of that column to get fractional sums by class. These values are used to calculate the deviance of each row. Attributes that are widely dispersed among classes exhibit high deviance; attributes that are concentrated within a single class contribute zero deviance. An effective classification should exhibit low deviance.

Tabdev then permutes the values within columns and calculates the probability of observing as low a deviance as observed as $\frac{(m+1)}{(nitr + 1)}$ where m is the number of cases with as low or lower deviance as observed.

Value

A list with components:

- **spcdev**: a data.frame with species, deviance, and probability as columns.
- **totdev**: the total deviance of the entire table.

Author(s)

David W. Roberts <droberts@montana.edu> [http://ecology.msu.montana.edu/labdsv/R]
testpart

Examples

data(shoshveg)
dis.bc <- dsvdis(shoshveg,'bray/curtis')
opt.5 <- optpart(5,dis.bc)
tabdev(shoshveg,opt.5)

Description

testopt analyzes the mean similarity of each sample to the cluster to which it is assigned to all other
clusters, and lists those samples which have similarity higher to another cluster than to the one to
which they are assigned.

Usage

testpart(part,ord=TRUE)

Arguments

 part a object of class ‘partana’ from partana or optpart
 ord a switch to control whether the output is ordered

Details

Simply examines each sample plot, comparing the mean similarity of that sample to all other sam-
ples in the cluster to which it is assigned as compared to its mean similarity to all other clusters.
Samples which are more similar to other clusters than to the one to which they are assigned are
listed in a table which gives their current cluster assignment, the cluster to which they are more
similar, and the mean similarities of that sample to all clusters.
If ‘ord=TRUE’ then the output is ordered to reflect target clusters.

Value

 a table of values

Author(s)

 David W. Roberts <droberts@montana.edu>

See Also

 partana, partana, silhouette
typal

Identification of Typal Samples in a Partition

Description

Identifies samples that typify clusters in a partition based on dissimilarity.

Usage

```r
typal(clustering, dist, k = 1)
```

Arguments

- `clustering`: a vector of integers or an object of class ‘clustering’, ‘partition’, or ‘partana’
- `dist`: an object of class ‘dist’ from `dist`, `dsvdis`, or `vegdist`
- `k`: number of typal species/cluster to identify

Details

`typal` calculates two versions of typal species based on silhouette analysis (see `silhouette`) and partana analysis (see `partana`). With respect to silhouette analysis, the function returns k species with the largest positive silhouette width for each cluster. With respect to the partana analysis, the function returns the k species with the highest mean similarity to the cluster.

Value

Returns a list with two data.frames. The first, `partana`, gives the clusters as rows and typal samples as columns from the perspective of the partana ratio. The second, `silhouette`, also gives the clusters as rows and typal samples as columns but from the perspective of silhouette widths.

Author(s)

David W. Roberts <droberts@montana.edu>

Examples

```r
data(shoshveg)
dis.bc <- dsvdis(shoshveg, 'bray/curtis')
opt.5 <- optpart(5, dis.bc)
testpart(opt.5)
```

```r
typal(opt.5, dis.bc, 3)
```
Index

*Topic clustering
 bestfit, 3
 clustering, 9
 consider, 12
 mergeclust, 18
 reordclust, 33

*Topic cluster
 archi, 2
 bestopt, 4
 classmatch, 5
 clique, 7
 disdiam, 13
 extract, 14
 maxpact, 16
 murdoch, 19
 neighbor, 21
 optindval, 22
 optpart, 23
 optsil, 25
 opttddev, 26
 partana, 28
 partition, 29
 refine, 31
 silhouette.partana, 36
 slice, 37
 stride, 38
 tabdev, 39
 testpart, 41
 typal, 42

*Topic datasets
 shoshsite, 34
 shoshveg, 35

*Topic hplot
 clique.test, 8
 stride, 38

*Topic htest
 confus, 11
 fuzconfus, 15
 phi, 30

*Topic multivariate
 clique.test, 8
 compare, 10
 archi, 2, 24
 bestfit, 3
 bestopt, 4, 24
 classmatch, 5
 clique, 7, 9
 clique.test, 8
 clustering, 9, 19
 compare, 10
 confus, 11
 consider, 12
 const, 10
 diana, 24, 25, 28
 disdiam, 13
 dist, 2, 4, 7, 13, 23, 25, 28, 38, 39
 dsvdis, 2, 4, 7, 13, 15, 23, 25, 28, 38, 39, 42
 envrtest, 9
 extract, 14
 fuzconfus, 15
 hclust, 25
 indval, 20
 maxpact, 16
 mergeclust, 18
 mps.test, 9
 mps.test(maxpact), 16
 murdoch, 19
 neighbor, 21
 optindval, 22, 27
 optpart, 4–6, 23, 25–30, 38, 39
optsil, 25, 27
optttdev, 26
ordpart, 38

pam, 5, 24, 25, 28, 39
partana, 5, 19, 24, 28, 39, 41, 42
partition, 6, 19, 29, 29, 30
phi, 30
plot.clique(clique), 7
plot.mps(maxpact), 16
plot.murdoch(murdoch), 19
plot.partana, 29
plot.partana(partana), 28
plot.stride(stride), 38
print.disdiam(disdiam), 13

refine, 31
reordclust, 33

shoshsite, 34
shoshveg, 35
silhouette, 21, 25, 30, 36, 37, 41, 42
silhouette.clustering
 (silhouette.partana), 36
silhouette.partana, 36
silhouette.stride(silhouette.partana),
 36
slice, 6, 24, 28, 37
stride, 14, 24, 38
summary.clique(clique), 7
summary.murdoch(murdoch), 19
summary.partana(partana), 28
summary.tabdev(tabdev), 39

tabdev, 20, 27, 39
testpart, 41
testsil(silhouette.partana), 36
typal, 4, 42

vegdist, 2, 4, 7, 13, 15, 23, 25, 28, 38, 39, 42