Package ‘orcutt’

September 28, 2018

Type Package
Title Estimate Procedure in Case of First Order Autocorrelation
Version 2.3
Date 2018-09-27
Depends lmtest
Imports stats
Description Solve first order autocorrelation problems using an iterative method. This procedure estimates both autocorrelation and beta coefficients recursively until we reach the convergence (8th decimal as default). The residuals are computed after estimating Beta using EGLS approach and Rho is estimated using the previous residuals.
License GPL-2
NeedsCompilation no
Author Stefano Spada [aut, cre],
 Matteo Quartagno [ctb],
 Marco Tamburini [ctb],
 David Robinson [ctb]
Maintainer Stefano Spada <lostefanospada@gmail.com>
Repository CRAN
Date/Publication 2018-09-27 22:40:04 UTC

R topics documented:

orcutt-package .. 2
cochrane.orcutt .. 2
icecream .. 4
predict.orcutt .. 4
print.orcutt ... 5
print.summary.orcutt .. 6
residual.orcutt ... 7
summary.orcutt ... 8

Index 9
Estimate Procedure in Case of First Order Autocorrelation

Description

This package has been implemented to solve first order autocorrelation problems using an iterative method. This procedure estimates both autocorrelation and beta coefficients recursively until we reach the convergence (8th decimal). The residuals are computed after estimating Beta using EGLS approach and Rho is estimated using the previous residuals.

Details

Package: orcutt
Type: Package
Version: 2.3
Date: 2018-09-27
License: GPL-2

Author(s)

Stefano Spada [aut, cre], Matteo Quartagno [ctb], Marco Tamburini [ctb], David Robinson [ctb]
Maintainer: Stefano Spada <lostefanospada@gmail.com>

References

Cochrane-Orcutt Estimation

Description

Interactive method using to solve first order autocorrelation problems. This procedure estimates both autocorrelation and beta coefficients recursively until we reach the convergence (8th decimal). The residuals are computed after estimating Beta using EGLS approach and Rho is estimated using the previous residuals.

Usage

cochrane.orcutt(reg, convergence = 8, max.iter=100)
Arguments

- **reg**
 a linear model built with lm function

- **convergence**
 decimal value to reach for convergence, 8 as default

- **max.iter**
 the maximum number of interactions, 100 as default

Value

An object of class "orcutt", basically a list including elements

- **coefficients**
 a named vector of coefficients.

- **residuals**
 residuals.

- **fitted.values**
 the fitted mean values.

- **t.value**
 t test of coefficients.

- **p.value**
 p-value of coefficients.

- **call**
 the matched call.

- **rho**
 Spearman’s rho autocorrelation.

- **number.interaction**
 number of interaction of the model.

- **DW**
 vector contained Durbin-Watson statistics and p-value.

Author(s)

Stefano Spada

References

Examples

```r
data(icecream, package="orcutt")
lm = lm(cons ~ price + income + temp, data=icecream)
coch = cochrane.orcutt(lm)
coch
```
icecream Ice Cream Consumption

Description

four weekly observations from 1951-03-18 to 1953-07-11 in United States (30 observations)

Usage

data("icecream")

Format

A data frame with 30 observations on the following 4 variables.

- price price of ice cream (per pint);
- cons consumption of ice cream per head (in pints);
- income average family income per week (in US Dollars);
- temp average temperature (in Fahrenheit);

Source

References

Examples

data(icecream)
summary(icecream)

predict.orcutt Predict method for Cochrane-Orcutt Estimation

Description

Predicted values based on orcutt object.

Usage

S3 method for class 'orcutt'
predict(object, ...)

Arguments

object An "orcutt" object build with Cochrane-Orcutt function
... further arguments passed to or from other methods.

Author(s)

Stefano Spada

References

Examples

data(icecream, package="orcutt")
lm = lm(cons ~ price + income + temp, data=icecream)
coch = cochrane.orcutt(lm)
predict.coch = predict(coch)

print.orcutt Print Cochrane-Orcutt Estimation

Description

Print Cochrane-Orcutt Estimation

Usage

S3 method for class 'orcutt'
print(x, ...)

Arguments

x an orcutt object
... additional arguments for specific methods.

Author(s)

Stefano Spada

References

print.summary.orcutt

Examples

```r
data(icecream, package="orcutt")
lm = lm(cons ~ price + income + temp, data=icecream)
coch = cochrane.orcutt(lm)
coch
```

print.summary.orcutt
Summarizing Cochrane-Orcutt Fits

Description

summary method for class "orcutt".

Usage

```r
## S3 method for class 'summary.orcutt'
print(x, ...)
```

Arguments

- `x` an object of class "orcutt", usually, a result of a call to cochrane.orcutt.
- `...` further arguments passed to or from other methods.

Value

The function summary.orcutt computes and returns a list of summary statistics of the fitted Cochrane-Orcutt.

- `coefficients` a \(p \times 4 \) matrix with columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omitted.
- `fstatistic` value of F statistic.
- `df` degrees of freedom of F statistic.
- `r.squared` \(R^2 \), the fraction of variance explained by the model.
- `adj.r.squared` the above \(R^2 \) statistic _adjusted_, penalizing for higher \(p \).
- `DW.t` a 4-vector contained the Durbin-Watson statistic and the p-value for the original "lm" model, and the Durbin-Watson statistic and the p-value for the original "orcutt" model.

Author(s)

Stefano Spada
residual.orcutt

References

Examples

```r
#-- Continuing the cochrane.orcutt(.) example:
summary(coch)
```

`residual.orcutt`
Accessing Cochrane-Orcutt Fits

Description

Residual for Cochrane-Orcutt Estimation

Usage

`residual.orcutt(object, ...)`

Arguments

- `object`
 An "orcutt" object build with Cochrane-Orcutt function
- `...`
 further arguments passed to or from other methods.

Author(s)

Stefano Spada

References

Examples

```r
data(icecream, package="orcutt")
lm = lm(cons ~ price + income + temp, data=icecream)
coch = cochrane.orcutt(lm)
residuals(coch)
```
summary.orcutt

Summarizing Cochrane-Orcutt Fits

Description

summary method for class "orcutt".

Usage

```r
## S3 method for class 'orcutt'
summary(object, ...)  
```

Arguments

- **object**: an object of class "orcutt", usually, a result of a call to cochrane.orcutt.
- **...**: further arguments passed to or from other methods.

Value

The function summary.orcutt computes and returns a list of summary statistics of the fitted Cochrane-Orcutt coefficients:

- **coefficients**: a $p \times 4$ matrix with columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omitted.
- **fstatistic**: value of F statistic.
- **df**: degrees of freedom of F statistic.
- **r.squared**: R^2, the fraction of variance explained by the model.
- **adj.r.squared**: the above R^2 statistic *adjusted*, penalizing for higher p.
- **DW.t**: a 4-vector contained the Durbin-Watson statistic and the p-value for the original "lm" model, and the Durbin-Watson statistic and the p-value for the original "orcutt" model.

Author(s)

Stefano Spada

References

Examples

```r
##-- Continuing the cochrane.orcutt(.) example:

summary(coch)
```
Index

*Topic autocorrelation
 orcutt-package, 2
*Topic cochrane.orcutt
 predict.orcutt, 4
 residual.orcutt, 7
*Topic cochrane
 orcutt-package, 2
*Topic datasets
 icecream, 4
*Topic lm
 cochrane.orcutt, 2
*Topic orcutt
 icecream, 4
 orcutt-package, 2
 print.orcutt, 5
*Topic summary.orcutt
 print.summary.orcutt, 6
 summary.orcutt, 8

cochrane.orcutt, 2

icecream, 4

orcutt (orcutt-package), 2
orcutt-package, 2

predict.orcutt, 4
print.orcutt, 5
print.summary.orcutt, 6

residual.orcutt, 7

summary.orcutt, 8