Package ‘orientlib’

February 20, 2015

Title Support for orientation data
Version 0.10.3
Author Duncan Murdoch
Description Representations, conversions and display of orientation
 SO(3) data. See the orientlib help topic for details.
Maintainer Duncan Murdoch <murdoch@stats.uwo.ca>
License GPL
Depends R (>= 2.13.0), methods
Suggests rgl, scatterplot3d
NeedsCompilation no
Repository CRAN
Date/Publication 2013-03-22 19:30:04

R topics documented:

boat3d ... 2
coerce-methods ... 3
eulerzxz .. 4
eulerzyx ... 5
index-methods ... 6
length-methods .. 6
matrix-classes ... 6
matrix-methods .. 7
mean-methods ... 7
nearest ... 8
orientation-class .. 9
orientlib .. 10
orientlm ... 11
quaternion .. 13
rotation.distance ... 14
rotmatrix .. 15
rotvector .. 15
boat3d

Draw boat glyphs for orientation data

Description

Draws a stylized sailboat to represent an orientation.

Usage

boat3d(orientation, x = 1:length(orientation), y = 0,
 z = 0, scale = 0.25, col = 'red', add = FALSE, box = FALSE, axes = TRUE,
 graphics = c('rgl', 'scatterplot3d'), ...)

Arguments

- **orientation**: An orientation object to be shown.
- **x, y, z**: Coordinates where boats should be shown.
- **scale**: Size of boats
- **col**: Colour of boats
- **add**: Context in which to continue drawing, or FALSE to clear first.
- **box**: Whether to draw a box around the plot
- **axes**: Whether to draw axes
- **graphics**: Which graphics package to use
- **...**: Additional graphics parameters; see Details below

Details

For the identity orientation, the sailboats will be shown upright. Other orientations are shown as rotations of this glyph.

The (x,y,z) coordinate appears in the middle of the sail, at the top of the gunwales of the boat.

If the rgl package is installed, it will be used to draw solid faces on the boats which can be moved by the user. If not, but the scatterplot3d package is installed, it will be used to draw fixed wireframe boats. This search order can be changed by modifying the graphics parameter.

Additional graphics parameters may be passed. If scatterplot3d is used, these are passed to the scatterplot3d function (and ignored when adding to an existing plot). Extra parameters are not passed to rgl.

To add to a scatterplot3d plot, you must pass the return value from the initial plot as the value of add. See the orientlm function for an example.
Value

A current plot number for rgl, or a scatterplot3d drawing context. In any case, an attribute named graphics is added to indicate the drawing device type.

Note

Requires the rgl or scatterplot3d package.

Author(s)

Duncan Murdoch

Examples

```r
x <- eulerzyx(\psi\{0,\pi/4,0,0\}, \theta\{0,0,\pi/4,0\}, \phi\{0,0,0,\pi/4\})

# Need a 3D renderer; assume scatterplot3d, but others could be used
s <- boat3d(x, 0:3, axes = FALSE, graphics = 'scatterplot3d')
text(s$xyz.convert(0:3, rep(-0.5,4), rep(-0.5,4)),
     label = c('\textit{Id}', 'z', 'y', 'x'))

## not run:
# if the rgl package is loaded, this code will work
boat3d(x, 0:3, axes = FALSE, graphics = 'rgl')
rgl.bbox(xat=0:3,xlab=c('\textit{Id}', 'z', 'y', 'x'),yat=1,zat=1,color='grey')

## end(not run)
```

Description

Coercion methods are provided between all types of orientation objects, and from matrices to the orientation classes.
Create an orientation using Euler angles

Description

Creates an `eulerzxz-class` object.

Usage

eulerzxz(phi, theta, psi)

Arguments

phi Rotation about Z axis
theta Rotation about X axis
psi Further rotation about Z axis

Details

The rotations are expressed in radians and applied in the order Z, X, Z.

If theta and psi are missing, phi is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, it may be an orientation object.

Value

An `eulerzxz-class` object.

Author(s)

Duncan Murdoch

See Also

`eulerzxz-class`, `eulerzyx-class`, `rotmatrix`, `rotvector`, `quaternion`, `skewvector`, `skewmatrix`

Examples

```r
x <- eulerzxz(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)
```
Description

Create an `eulerzyx-class` object.

Usage

```r
eulerzyx(psi, theta, phi)
```

Arguments

- `psi` Rotation about Z axis
- `theta` Rotation about Y axis
- `phi` Rotation about X axis

Details

The rotations are expressed in radians and applied in the order Z, Y, X.

If `theta` and `phi` are missing, `psi` is taken to be an n x 3 matrix (or 3 element vector) holding all 3 Euler angles; alternatively, any orientation object may be used.

Value

An `eulerzyx-class` object.

Author(s)

Duncan Murdoch

See Also

- `eulerzyx-class`, `rotmatrix`, `rotvector`, `quaternion`, `skewvector`, `skewmatrix`

Examples

```r
x <- eulerzyx(c(1,0,0), c(0,1,0), c(0,0,1))
x
rotmatrix(x)
```
\textit{index-methods} \quad \textit{Methods for indexing orientations}

\textbf{Description}

Methods are defined for indexing all types of orientations.

\textbf{Details}

Single bracket indexing (e.g. \texttt{x[1:3]}) creates a new orientation object of the same class as the original by selecting the appropriate entries. Double bracket indexing (e.g. \texttt{x[[3]]}) extracts the chosen data as a matrix or vector, depending on the class of the orientation.

\textit{length-methods} \quad \textit{Length of orientation object}

\textbf{Description}

The generic \texttt{length()} function has methods for orientations; it counts the number of orientations in the object.

\textit{matrix-classes} \quad \textit{Matrix orientation classes}

\textbf{Description}

An orientation represented by \(3 \times 3\) SO(3) matrices or \(3 \times 3\) skew symmetric matrices.

\textbf{Objects from the Class}

Objects can be created by calls of the form \texttt{rotmatrix(x)} or \texttt{skewmatrix(x)}. The objects store the matrices in a \(3 \times 3 \times n\) array.

\textbf{Slots}

\texttt{x}: \(3 \times 3 \times n\) array holding the matrices.

\textbf{Extends}

Class "orientation", directly. Class "vector", by class "orientation".
Methods

[,<- Extract or assign to subvector
[I, [<- Extract or assign to an entry
length The length of the orientation vector
coerce Coerce methods are defined to convert all orientation descendants from one to another, and to coerce an appropriately shaped matrix or array to a rotmatrix

Author(s)
Duncan Murdoch

See Also
orientation-class, vector-classes, rotmatrix, skewmatrix

Examples

x <- rotmatrix(matrix(c(1L,0L,0L, 0L,1L,0L, 0L,0L,1IL SL SII
x skewmatrix(x)

Description

Methods are defined for matrix multiplication %*%, transposition t(), and real powers ^. These operate on the orientations term by term.

mean-methods Methods for calculating the mean

Description

The mean function.

Methods

x = "ANY" the standard mean function
x = "orientation" find the nearest SO(3) matrix to the mean rotmatrix-class representation of the orientations
nearest

Find nearest SO(3) or orthogonal matrix.

Description

Converts arbitrary 3 x 3 matrices into the nearest SO(3) or orthogonal matrix.

Usage

nearest.S03(x)
nearest.orthog(x)

Arguments

x 3 x 3 matrices stored in a 3 x 3 x n array

Details

Uses Stephens’ (1979) algorithm to find the nearest (in entry-wise Euclidean sense) SO(3) or orthogonal matrix to a given matrix.

Value

nearest.S03 produces an orientation-class object holding the closest orientations.
nearest.orthog produces a 3 x 3 x n array of orthogonal matrices.

Author(s)

Duncan Murdoch

References

See Also

orientation-class

Examples

x <- matrix(rnorm(9), 3,3)
nearest.orthog(x)
nearest.S03(x)
x <- -x
nearest.orthog(x)
nearest.S03(x)
orientation-class

Class "orientation"

Description

Abstract class for vectors of various representations of SO(3) (orientation) objects.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

coerce Methods are defined to coerce orientation objects to any concrete descendant class.

%*% Matrix multiplication acts on orientation objects component by component, producing compositions of the rotations.

^ An orientation is raised to a power by multiplying its component rotation angles by that power.

t The transpose of an orientation object is its component by component inverse.

mean The mean of an orientation object is the nearest SO(3) matrix to the element-by-element mean of its 3 x 3 rotation matrix representation.

weighted.mean The weighted mean, defined analogously to the mean.

Author(s)

Duncan Murdoch

See Also

matrix-classes, vector-classes

Examples

x <- rotmatrix(diag(3))
x
rotvector(x)
eulerzyx(x)
eulerzxz(x)
quaternion(x)
Description

Representations, conversions and display of orientation data.

Details

This package contains methods for working with orientation data, i.e. data from SO(3). The basic abstract class is the orientation; there are several concrete classes (rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion, skewmatrix and skewvector) storing different representations of orientations.

Methods are defined to get the length of a vector of orientations, as well as to extract and replace elements, and to multiply orientations and raise them to real powers.

There are also utility functions rotation.distance, rotation.angle, nearest.orthog, nearest.SO3. There is a plotting method boat3d to display orientation data in a 3D plot, and a linear modelling function orientlm.

Release History

- Version 0.9
 - Added CITATION file, dropped djmrgl support.
- Versions 0.3 to 0.8
 - Changes for CRAN compliance and minor corrections.
- Version 0.2
 - Added mean and weighted.mean.
 - Made orientation descend from vector.
 - Added cbind methods.
 - Changed default look of boats.
 - Made rotmatrix etc. into conversion functions between orientation types.
 - Added eulerzxz class.
 - Added various parameters to boat3d.
 - Added orientlm regression function plus transpose t() method.
 - Added rgl and scatterplot3d support to boat3d function.
 - Added skewmatrix.
- Version 0.1
 - First release.

Note

Plots require either the rgl or scatterplot3d package.
orientlm

Author(s)

Duncan Murdoch

orientlm

Linear models for orientation data

Description

Regression models for matched pairs of orientations.

Usage

```r
orientlm(observed, leftformula, trueorient = rotmatrix(diag(3)),
          rightformula, data = list(), subset, weights, na.action,
          iterations = 5)
```

Arguments

- **observed**: Observed orientations
- **leftformula**: Formula for “left” model (see below)
- **trueorient**: “True” orientation (see below)
- **rightformula**: Formula for “right” model (see below)
- **data**: Optional data frame for predictors in linear model
- **subset**: Optional logical vector indicating subset of data
- **weights**: Optional weights
- **na.action**: Optional NA function for predictors
- **iterations**: How many iterations to use. Ignored unless both leftformula and rightformula are specified.

Details

The Prentice (1989) model for matched pairs of orientations was

\[
E(V_i) = kA_1^T U_i A_2
\]

where \(V_i\) is the observed orientation, \(A_1\) and \(A_2\) are orientation matrices, and \(U_i\) is the “true” orientation, and \(k\) is a constant. It was assumed that errors were symmetrically distributed about the identity matrix.

This function generalizes this model, allowing \(A_1\) and \(A_2\) to depend on regressor variables through leftformula and rightformula respectively. These formulas should include the predictor variables (right hand side) only, e.g. use \(~ x + y + z\) rather than response \(~ x + y + z\). Specify the response using the observed argument. If both formulas are \(~ 1\), i.e. intercepts only, then Prentice’s original model is recovered. More general models are fit by coordinatewise linear regression.
in the \texttt{rotmatrix} representation of the orientation, with fitted values projected onto SO(3) using the \texttt{nearest.SO3} function.

When both left and right models are given, Prentice’s iterative approach is used with a fixed number of iterations. Note that Shin (1999) found that Prentice’s scheme sometimes fails to find the global minimum; this function presumably suffers from the same failing.

\textbf{Value}

Returns a list containing the following components:

- \texttt{leftfit} Result of \texttt{lm} call based on \texttt{leftformula}
- \texttt{rightfit} Result of \texttt{lm} call based on \texttt{rightformula}
- \texttt{A1} Fitted values of A_1 for each observation
- \texttt{A2} Fitted values of A_2 for each observation
- \texttt{predict} Fitted values of $A_1^T U_i A_2$ for each observation

\textbf{Author(s)}

Duncan Murdoch

\textbf{References}

\textbf{Examples}

\begin{verbatim}
x <- rep(1:10, 10)
y <- rep(1:10, each=10)
A1 <- skewvector(cbind(x/10, y/10, rep(0, 10)))
A2 <- skewvector(c(1,1,1))
trueorientation <- skewvector(matrix(rnorm(300),100))
noise <- skewvector(matrix(rnorm(300)/10, 100))
obs <- t(A1) %*% trueorientation %*% A2 %*% noise

fit <- orientlm(obs ~ x + y, trueorientation, ~ 1)

context <- boat3d(A1, x, z=y, col = 'green', graphics='scatterplot3d')
boat3d(fit$A1, x, z=y, add=context)
\end{verbatim}
Create an orientation using quaternions

Description

Creates a quaternion-class object.

Usage

quaternion(m)

Arguments

m n x 4 matrix or 4 element vector containing a unit quaternion, or an orientation object

Details

The rows of m are 4 element unit vectors interpreted as follows: the first 3 (x, y, z) define the axis of rotation, and the last element gives the cosine of half the angle of rotation in a counter-clockwise direction when looking down the axis towards the origin.

Value

A quaternion-class object.

Author(s)

Duncan Murdoch

See Also

quaternion-class, rotmatrix, rotvector, eulerzyx, eulerzxz, skewvector, skewmatrix

Examples

x <- quaternion(c(1,0,0))
x
rotmatrix(x)
rotation.distance

Rotation angle or distance

Description

Calculates the angle (in radians) of the rotation taking one orientation to another.

Usage

rotation.angle(x)
rotation.distance(x, y)

Arguments

x, y
Two orientation objects

Details

If y is missing in a call to rotation.distance, it is treated as the identity, i.e. rotation.angle(x) is calculated.

Value

rotation.distance returns a vector of length \(\max(\text{length}(x), \text{length}(y)) \) containing the angle of the rotation taking corresponding elements of x to y (with the usual recycling rules if they are different lengths).

rotation.angle is equivalent to calculating the rotation.distance to the identity matrix.

Author(s)

Duncan Murdoch

See Also

orientation-class, rotation.angle

Examples

rotation.angle(eulerzyx(1,0,0))
rotation.distance(eulerzyx(1,0,0), eulerzyx(0,1,0))
rotmatrix

Create an orientation using Euler angles

Description
Creates a rotmatrix-class object.

Usage
rotmatrix(a)

Arguments
a A 3 x 3 matrix or 3 x 3 x n array of matrices or an orientation object.

Value
A rotmatrix-class object.

Author(s)
Duncan Murdoch

See Also
rotmatrix-class, rotvector, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix

Examples
x <- rotmatrix(matrix(c(1,0,0, 0,1,0, 0,0,1), n = 3, 3))
x

rotvector
Create an orientation using vectorized 3x3 matrices

Description
Creates a rotvector-class object.

Usage
rotvector(m)

Arguments
m n x 9 matrix or 9 element vector whose rows are vectorized 3x3 matrices, or an orientation object.
skewmatrix

Details
Converts a matrix whose rows are vectorized 3x3 matrices (in column-major form) into an \texttt{rotvector-class} object.

Value
A \texttt{rotvector-class} object.

Author(s)
Duncan Murdoch

See Also
\texttt{rotvector-class, rotmatrix, eulerzyx, eulerzxz, quaternion, skewvector, skewmatrix}

Examples

```r
x <- rotvector(c(0,1,0,-1,0,0,0,0,1))
x
rotmatrix(x)
```

skewmatrix
Create an orientation using the entries in a skew-symmetric matrix representation

Description
Creates a \texttt{skewmatrix-class} object.

Usage

```
skewmatrix(a)
```

Arguments

- \texttt{a}
 3 x 3 x n array or 3 x 3 matrix containing the entries of a skew-symmetric matrix, or an orientation object.

Details
The entries \(a[,,i]\) are 3 x 3 skew-symmetric matrices. The matrix exponential of these give \(SO(3)\) matrices.

Value
A \texttt{skewmatrix-class} object.
skewvector

Author(s)
Duncan Murdoch

See Also

`skewvector-class, skewvector, rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion`

Examples

```r
x <- skewmatrix(matrix(c(0,1,2,-1,0,3,-2,-3,0),3,3))
x
rotmatrix(x)
skewvector(x)
rotation.angle(x)
```

Description

Creates a `skewvector-class` object.

Usage

```r
skewvector(m)
```

Arguments

- **m**

 n x 3 matrix or 3 element vector containing a the entries of a skew-symmetric matrix, or an orientation object.

Details

The rows of m are 3 element vectors (x,y,z) interpreted as follows: the matrix exponential of the matrix

$$
\begin{pmatrix}
0 & -z & y \\
 z & 0 & -x \\
- y & x & 0
\end{pmatrix}
$$

is the SO(3) matrix.

Value

A `skewvector-class` object.

Author(s)
Duncan Murdoch

See Also

`skewvector-class, skewmatrix, rotmatrix, rotvector, eulerzyx, eulerzxz, quaternion`
Examples

```r
x <- skewvector(c(1, 0, 0))
x
rotmatrix(x)
rotation.angle(x)
```

vector-classes

<table>
<thead>
<tr>
<th>Orientation classes</th>
</tr>
</thead>
</table>

Description

An vector of orientations, each represented by a vector of numbers. Each of these types stores orientations as rows of a matrix in slot `x`.

The `eulerzyx` class uses 3 Euler angles in the roll-pitch-yaw scheme (rotation about Z axis, then Y axis, then X axis).

The `eulerzxz` class uses 3 Euler angles in the X system scheme (rotation about Z axis, then X axis, then Z axis again).

The `rotvector` class uses the 9 components of a 3 x 3 rotation matrix, stored in column-major order.

The `quaternion` class uses the 4 components of a unit quaternion.

The `skewvector` class uses the 3 non-zero components of a skew-symmetric matrix, where \((x, y, z)\) stores the matrix \((\begin{array}{ccc}0 & -z & y \\
z & 0 & -x \\
-x & y & 0\end{array})\).

Objects from the Class

Objects of each class can be created by calls to the corresponding constructor functions: `eulerzyx`, `eulerzxz`, `rotvector`, `quaternion`, `skewmatrix` and `skewvector`.

Slots

- `x`: An n x m matrix object holding the vector representations, where m is 3, 4, or 9.

Extends

Class "orientation", directly. Class "vector", by class "orientation".

Methods

- `[`, `[<- Extract or assign to subvector
- `[[`, `[[<-` Extract or assign to an entry
- `length` The length of the orientation vector
- `coerce` Coerce methods are defined to convert all `orientation` descendants from one to another, and to coerce an appropriately shaped matrix or array to a `rotmatrix`
Weighted mean method

Description

The weighted mean function.

Details

The weighted mean for orientations is the nearest SO(3) matrix to the entrywise weighted mean of the \texttt{rotmatrix-class} matrices.

Methods

\begin{verbatim}
x = "ANY", w = "ANY" the standard \texttt{stats::weighted.mean}
x = "orientation", w = "numeric" weighted mean for orientations
\end{verbatim}
Index

*Topic algebra
 eulerzxz, 4
eulerzyx, 5
 nearest, 8
 quaternion, 13
 rotation.distance, 14
 rotmatrix, 15
 rotvector, 15
 skewmatrix, 16
 skewvector, 17

*Topic array
 eulerzxz, 4
eulerzyx, 5
 nearest, 8
orientlib, 10
 quaternion, 13
 rotation.distance, 14
 rotmatrix, 15
 rotvector, 15
 skewmatrix, 16
 skewvector, 17

*Topic classes
 matrix-classes, 6
 orientation-class, 9
 vector-classes, 18

*Topic dynamic
 boat3d, 2
orientlib, 10

*Topic hplot
 boat3d, 2
orientlib, 10

*Topic methods
 coerce-methods, 3
 index-methods, 6
 length-methods, 6
 matrix-methods, 7
 mean-methods, 7
 weighted.mean-methods, 19

*Topic regression
orientlm, 11
 [,eulerzxz-method (index-methods), 6
 [,eulerzyx-method (index-methods), 6
 [,quaternion-method (index-methods), 6
 [,rotmatrix-method (index-methods), 6
 [,rotvector-method (index-methods), 6
 [,skewmatrix-method (index-methods), 6
 [,skewvector-method (index-methods), 6
 [,<-,eulerzxz-method (index-methods), 6
 [,<-,eulerzyx-method (index-methods), 6
 [,<-,quaternion-method (index-methods), 6
 [,<-,rotmatrix-method (index-methods), 6
 [,<-,rotvector-method (index-methods), 6
 [,<-,skewmatrix-method (index-methods), 6
 [,<-,skewvector-method (index-methods), 6
 [,][,eulerzxz-method (index-methods), 6
 [,][,eulerzyx-method (index-methods), 6
 [,][,quaternion-method (index-methods), 6
 [,][,rotmatrix-method (index-methods), 6
 [,][,rotvector-method (index-methods), 6
 [,][,skewmatrix-method (index-methods), 6
 [,][,skewvector-method (index-methods), 6
 [,][<-,eulerzxz-method (index-methods), 6
 [,][<-,eulerzyx-method (index-methods), 6
 [,][<-,quaternion-method (index-methods), 6
 [,][<-,rotmatrix-method (index-methods), 6
 [,][<-,rotvector-method (index-methods), 6
 [,][<-,skewmatrix-method (index-methods), 6
 [,][<-,skewvector-method (index-methods), 6
 [,][<-,eulerzxz-method (index-methods), 6
 [,][<-,eulerzyx-method (index-methods), 6
 [,][<-,quaternion-method (index-methods), 6
 [,][<-,rotmatrix-method (index-methods), 6
 [,][<-,rotvector-method (index-methods), 6
 [,][<-,skewmatrix-method (index-methods), 6
 [,][<-,skewvector-method (index-methods), 6
 [,][<-],eulerzxz-method (index-methods), 6
 [,][<-],eulerzyx-method (index-methods), 6
 [,][<-],quaternion-method (index-methods), 6
 [,][<-],rotmatrix-method (index-methods), 6
 [,][<-],rotvector-method (index-methods), 6
 [,][<-],skewmatrix-method (index-methods), 6
 [,][<-],skewvector-method (index-methods), 6
 [,][<-],quaternion-method (index-methods), 6
 [,][<-],rotmatrix-method (index-methods), 6
 [,][<-],rotvector-method (index-methods), 6
 [,][<-],skewmatrix-method (index-methods), 6
 [,][<-],skewvector-method (index-methods), 6
 [,][<-,eulerzxz-method (index-methods), 6
 [,][<-,eulerzyx-method (index-methods), 6
 [,][<-,quaternion-method (index-methods), 6
 [,][<-,rotmatrix-method (index-methods), 6
 [,][<-,rotvector-method (index-methods), 6
 [,][<-,skewmatrix-method (index-methods), 6
 [,][<-,skewvector-method (index-methods), 6
 [,][<-],eulerzxz-method (index-methods), 6
 [,][<-],eulerzyx-method (index-methods), 6
 [,][<-],quaternion-method (index-methods), 6
 [,][<-],rotmatrix-method (index-methods), 6
 [,][<-],rotvector-method (index-methods), 6
 [,][<-],skewmatrix-method (index-methods), 6
 [,][<-],skewvector-method (index-methods), 6

coerce, array, orientation-method

boat3d, 2, 10
INDEX

(coerce-methods), 3
coerce, eulerzxz, rotmatrix-method (coerce-methods), 3
coerce, eulerzyx, rotmatrix-method (coerce-methods), 3
coerce, matrix, eulerzxz-method (coerce-methods), 3
coerce, matrix, eulerzyx-method (coerce-methods), 3
coerce, matrix, orientation-method (coerce-methods), 3
coerce, orientation, eulerzxz-method (coerce-methods), 3
correct, orientation, eulerzyx-method (coerce-methods), 3
coerce, orientation, quaternion-method (coerce-methods), 3
correct, orientation, rotvector-method (coerce-methods), 3
correct, orientation, skewmatrix-method (coerce-methods), 3
correct, orientation, skewvector-method (coerce-methods), 3
coerce, quaternion, rotmatrix-method (coerce-methods), 3
correct, rotvector, rotmatrix-method (coerce-methods), 3
correct, skewmatrix, rotmatrix-method (coerce-methods), 3
correct, skewmatrix, skewvector-method (coerce-methods), 3
correct, skewvector, quaternion-method (coerce-methods), 3
correct, skewvector, rotmatrix-method (coerce-methods), 3
correct-methods, 3
eulerzxz, 4, 10, 13, 15–19
eulerzxz, orientation, missing, missing-method (eulerzxz), 4
eulerzxz-class (vector-classes), 18
eulerzyx, 5, 10, 13, 15–19
eulerzyx, orientation, missing, missing-method (eulerzyx), 5
eulerzyx-class (vector-classes), 18
index-methods, 6
length, eulerzxz-method (length-methods), 6
length, eulerzyx-method (length-methods), 6
length, quaternion-method (length-methods), 6
length, rotmatrix-method (length-methods), 6
length, rotvector-method (length-methods), 6
length, skewmatrix-method (length-methods), 6
length, skewvector-method (length-methods), 6
length-methods, 6
lm, 12
matrix-classes, 6
matrix-methods, 7
mean, ANY-method (mean-methods), 7
mean, orientation-method (mean-methods), 7
mean-methods, 7
nearest, 8
nearest.orthog, 10
nearest.S03, 10, 12
orientation, 2, 7, 10, 18
orientation (orientation-class), 9
orientation-class, 9
orientlib, 10
orientlm, 2, 10, 11
quaternion, 4, 5, 10, 13, 15–19
quaternion, orientation-method (quaternion), 13
quaternion-class (vector-classes), 18
rgl, 2, 3, 10
rotation.angle, 10, 14
rotation.angle (rotation.distance), 14
rotation.distance, 10, 14
rotmatrix, 4–7, 10, 12, 13, 15, 16, 17, 19
rotmatrix, orientation-method (rotmatrix), 15
rotmatrix-class (matrix-classes), 6
rotvector, 4, 5, 10, 13, 15, 17–19
rotvector, orientation-method (rotvector), 15
rotvector-class (vector-classes), 18
scatterplot3d, 2, 3, 10
skewmatrix, 4–7, 10, 13, 15, 16, 17, 18
skewmatrix, orientation-method
 (skewmatrix), 16
skewmatrix-class (matrix-classes), 6
skewvector, 4, 5, 10, 13, 15–17, 17, 18, 19
skewvector, orientation-method
 (skewvector), 17
skewvector-class (vector-classes), 18
t, orientation-method (matrix-methods), 7
vector-classes, 18

weighted.mean, 19
weighted.mean, ANY, ANY-method
 (weighted.mean-methods), 19
weighted.mean, orientation, numeric-method
 (weighted.mean-methods), 19
weighted.mean-methods, 19