Package ‘orloca’

April 21, 2018

Type Package

Depends methods, png, ucminf

Suggests grDevices, graphics, knitr

VignetteBuilder knitr

Title Operations Research LOCational Analysis Models

Version 4.5

Date 2018-04-23

Author Manuel Munoz-Marquez <manuel.munoz@uca.es>

Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>

Description Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See “The Fermat-Weber location problem revisited” by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>. General global optimization algorithms are used to solve the problem, along with the ad-hoc Weiszfeld method, see “Sur le point pour lequel la Somme des distances de n points donnes est minimum”, by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937.

License GPL (>= 3)

URL http://knuth.uca.es/orloca

RoxygenNote 6.0.1

Repository CRAN

Repository/R-Forge/Project orloca

Repository/R-Forge/Revision 33

Repository/R-Forge/DateTimeStamp 2018-04-21 17:55:44

Date/Publication 2018-04-21 21:22:20 UTC

NeedsCompilation no
R topics documented:

- orloca-package .. 2
- andalusia-data ... 4
- as-methods .. 4
- contour.loca.p ... 5
- loca.p .. 7
- persp.loca.p .. 8
- plot .. 9
- rloca.p .. 10
- zsum .. 11
- zsumgra ... 12
- zsummin ... 13

Index 15

| orloca-package | Operations Research LOCational Analysis Models |

Description

Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem.

Details

The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995.

General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnees est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937.

Package: orloca
Type: Package
Version: 4.5
Date: 2018-04-23
License: GPL (>= 3)

The package provides a class (loca.p) that represents a location problem with a finite set of demand points over the plane. Also, it is possible to plot the points and the objective function. Such objective function is the total weighted distances travelled by all the customers to the service.
Non-planar location problems could be handle in future versions of the package.
For a demo, load the package with library(orloca), and use demo(orloca).
The package is ready for internationalization. The authors ask for translated version of the .mo file to include in the package.

Author(s)
Manuel Munoz-Marquez <manuel.munoz@uca.es>
Mantainer: Manuel Munoz-Marquez <manuel.munoz@uca.es>

References

See Also
Para la version en espanol, instale el paquete orloca.es y consulte la ayuda sobre orloca.es-package.
(For the spanish version, install the package orloca.es and see the help about orloca.es-package).

Examples

A new unweighted loca.p object
o <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Compute the sum of distances to point (3, 4)
zsum(o, 3, 4)

Compute the sum of distances to point (3, 4) using lp norm
zsum(o, 3, 4, lp=2.5)

Solve the optimization problem
zsummin(o)

Contour plot
contour(o)

Make a demo of the package
demo(orloca)
Description

The 'andalusia' data frame has 12 rows and 4 columns, which are the geographical position of the main capital cities of Andalusia.

Format

- **name**: The name of the city or relative position label.
- **x**: The x coordinate of points.
- **y**: The y coordinate of points.
- **city**: If yes the point is a city in other case is a limit.

Usage

```r
data('andalusia')
```

Source

The data are taken from wikipedia.

See Also

See also orloca-package.
Details

Methods to convert from and to loca.p class.
NA’s values are not allowed in any of the arguments.
The matrix to convert into loca.p must have at least two columns. The first column will be
consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values
of w.
The data.frame to convert into loca.p must have at least an x column for x coordinates, and an y
column for y coordinates. Optionally, it can have w column, as the values of w.

Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

contour.locap

Plots of the min-sum objective function

Description

contour provides a graphical representations of min-sum function (zsum).

Usage

S3 method for class 'loca.p'
contour(x, lp = numeric(0), xmin = min(min(x@x), xleft),
 xmax = max(max(x@x), xright), ymin = min(min(x@y), ybottom),
 ymax = max(max(x@y), ytop), n = 100, img = NULL, xleft = min(x@x),
 ybottom = min(x@y), xright = max(x@x), ytop = max(x@y), ...)
Arguments

- **x**: The loca.p object to compute the objective.
- **lp**: If given, then l_p norm will be used instead of the Euclidean norm.
- **xmin**: The minimum value for x axis.
- **xmax**: The maximum value for x axis.
- **ymin**: The minimum value for y axis.
- **ymax**: The maximum value for y axis.
- **n**: The number of divisions for grid.
- **img**: A raster image to plot on background.
- **xleft**: The left position of the image.
- **ybottom**: The bottom position of the image.
- **xright**: The right position of the image.
- **ytop**: The top position of the image.
- **...**: Other options.

Details

If $p < 1$ then l_p are not a norm, so only $p \geq 1$ are valid values.

Value

`contour.loca.p` plots a contour plot of min-sum function ($zsum$).

See Also

See also `orloca-package`, `plot.loca.p` and `loca.p`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The contour plot of min-sum function for loca (a loca.p object)
contour(loca)
```
locap

locap class for Operations Research LOCational Analysis

Description

An object of class locap represents a weighted location problem with a finite demand points set. The orloca-package is mainly devoted to deals with location problems.

Arguments

x is a vector of the x coordinates of the demand points.
y is a vector of the y coordinates of the demand points.
w is a vector of weights of the demand points. If w is omitted then all weights are considered as 1.
label If given, it is the label of the new object.

Details

The main generator of the locap class is locap(x, y, w = numeric(0), label = ""). An alternative form is new("locap", x, y, w = numeric(0), label = ""). The lengths of x and y vector must be equals. The length of w must be equal to the previous ones or must be 0. NA's values are not allowed at any of the arguments.

Value

If the arguments have valid values, it returns a new object of class locap, else it returns an error.
summary(x) returns a summary of the x locap object and print(x) prints the x locap object in table format.

See Also

See also orloca-package.

Examples

A new unweighted locap object
loca <- locap(x = c(-1, 1, 1), y = c(-1, 1, 1))
or
loca <- new("locap", x = c(-1, 1, 1), y = c(-1, 1, 1))

An example with weights and name
locb <- new("locap", x = c(-1, 1, 1), y = c(-1, 1, 1),
w = c(1, 2, 1, 2), label = "Weighted case")
Description

persp provides a graphical representations of min-sum function (zsum).

Usage

```r
## S3 method for class 'loca.p'
persp(x, lp = numeric(0), xmin = min(x@x),
     xmax = max(x@x), ymin = min(x@y), ymax = max(x@y), n = 10, ...)
```

Arguments

- `x` The loca.p object to compute the objective.
- `lp` If given, then \(l_p \) norm will be used instead of the Euclidean norm.
- `xmin` The minimum value for x axis.
- `xmax` The maximum value for x axis.
- `ymin` The minimum value for y axis.
- `ymax` The maximum value for y axis.
- `n` The number of divisions for grid.
- `...` Other options.

Details

If \(p < 1 \) then \(l_p \) are not a norm, so only \(p \geq 1 \) are valid values.

Value

A plot a 3D plot or min-sum function.

See Also

See also `orloca-package`, `plot.loca.p` and `loca.p`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The 3D graphics
persp(loca)
```
Description

This method provides a graphical representations of an object of class loca.p.

Usage

```r
## S3 method for class 'loca.p'
plot(x, xlab = "", ylab = "",
     main = paste(gettext("Plot of loca.p", domain = "R-orloca"), ifelse(x@label
     == "", "", paste0(" ", x@label, \\
""))), img = NULL,
     xlim = c(min(xleft, min(x@x)), max(xright, max(x@x)));
     ylim = c(min(ybottom, min(x@y)), max(ytop, max(x@y))),
     xleft = min(x@x),
     ybottom = min(x@y), xright = max(x@x), ytop = max(x@y), ...)
```

Arguments

- `x` The loca.p object to plot.
- `xlab` The label for x axis.
- `ylab` The label for y axis.
- `main` The main title for the plot.
- `img` A raster image to plot on background.
- `xlim` Limit over the x axes of the plot.
- `ylim` Limit over the y axes of the plot.
- `xleft` The left position of the image.
- `ybottom` The bottom position of the image.
- `xright` The right position of the image.
- `ytop` The top position of the image.
- `...` Other graphical options.

Details

The function plots the demand points with automatic limits evaluation.

Value

The function plots the required graphics.

See Also

See also orloca-package, loca.p and plot.
Examples

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# The plot of loca object
plot(loca)
```

rloca.p

Random instances generator of loca.p class object

Description

rloca.p function returns a random instance of loca.p class object at a given rectangular region.

Usage

```
rloca.p(n, xmin = 0, xmax = 1, ymin = 0, ymax = 1, label = "",
        groups = 0, xgmin = xmin, xgmax = xmax, ygmin = ymin, ygmax = ymax)
```

Arguments

- **n**
The number of demand points.
- **xmin**
Minimum value for the x coordinates of the demand points.
- **xmax**
Maximum value for the x coordinates of the demand points.
- **ymin**
Minimum value for the y coordinates of the demand points.
- **ymax**
Maximum value for the y coordinates of the demand points.
- **label**
The label for the new loca.p object.
- **groups**
The number of (almost) equal size groups to generate, or a list size of the groups to generate. In the second case n will be ignored.
- **xgmin**
Minimum value for the x coordinate of demand points with respect to the group reference point.
- **xgmax**
Maximum value for the x coordinate of demand points with respect to the group reference point.
- **ygmin**
Minimum value for the y coordinate of demand points with respect to the group reference point.
- **ygmax**
Maximum value for the y coordinate of demand points with respect to the group reference point.
Details

\(n \) must be at least 1.
\(\text{xmin} \) must be less or equal than \(\text{xmax} \).
\(\text{ymin} \) must be less or equal than \(\text{ymax} \).

If a non zero value is given for \(\text{groups} \) parameter, then a reference point for each group are generated. At second stage, the offset part for each demand point are generated, and added to the reference point generated at the first stage.

Note that \(\text{groups} = 1 \) is not equivalent to the default value \(\text{groups} = 0 \), because in the first case a reference point are generated at the first stage.

Value

If the arguments are valid values, it returns a new object of \text{loca.p} class, else it returns an error.

See Also

See also \text{orloca-package} and \text{loca.p}.

Examples

\begin{verbatim}
A random \text{loca.p} object at unit square with 5 demand points
rloca.p(5)
At another region
rloca.p(10, xmin=-2, xmax=2, ymin=-2, ymax=2)
Five groups
rloca.p(48, groups=5)
Three unequal groups
rloca.p(1, groups=c(10, 7, 2))
\end{verbatim}
zsum returns the objective function of the min-sum location problem, \(\sum_{a_i \in o} w_i d(a_i, (x, y)) \), where
\(d(a_i, (x, y)) \) gives the euclidean or the \(l_p \) distances between \(a_i \) and the point \((x, y) \).

See Also
See also orloca-package and zsummin.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Evaluation of zsum at (0, 0)
zsum(loca)

# Evaluation of zsum at (1, 3)
zsum(loca, 1, 3)
# Compute the objective function at point (3, 4) using lp norm and p = 2.5
zsum(loca, 3, 4, lp=2.5)
# The gradient function at (1,3)
zsumgra(loca, 1, 3)
```

zsumgra

Computes the gradient of zsum function

Description

The gradient function for the min-sum location problem.

Usage

```r
zsumgra(o, x = 0, y = 0, lp = numeric(0), partial = F)
```

Arguments

- `o` An object of `loca.p` class.
- `x` The x coordinate of the point to be evaluated.
- `y` The y coordinate of the point to be evaluated.
- `lp` If given, then \(l_p \) norm will be used instead of the Euclidean norm.
- `partial` If \((x,y)\) is a demand point `partial=T` means ignore such point to compute the gradient. This option is mainly for internal use.

Value

`zsumgra` returns the gradient vector of the function of the min-sum location problem, \(\sum_{a_i \in o} w_i d(a_i, (x, y)) \), where
\(d(a_i, (x, y)) \) gives the euclidean or the \(l_p \) distances between \(a_i \) and the point \((x, y) \).
See Also

See also orloca-package and zsum.

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
Evaluation of zsum at (0, 0)
zsum(loca)

Evaluation of zsum at (1, 3)
zsum(loca, 1, 3)
Compute the objective function at point (3, 4) using lp norm and p = 2.5
zsum(loca, 3, 4, lp=2.5)
The gradient function at (1,3)
zsumgra(loca, 1, 3)

zsummin

zsummin at orloca package returns the solution of the minimization problem

Description

Solve the min-sum location problem for a given loca.p class object.

Usage

zsummin(o, x = 0, y = 0, lp = numeric(0), max.iter = 100, eps = 0.001,
verbose = FALSE, algorithm = "weiszfeld", ...)

Arguments

o An object of loca.p class.
x The x coordinate of the starting point.
y The y coordinate of the starting point.
lp If given, the l_p norm will be used instead of the Euclidean norm.
max.iter Maximum number of iterations allowed.
eps The module of the gradient in the stop rule.
verbose If TRUE the function produces detailed output.
algorithn The algorithm to be use. For this version of the package, the valid values are: "gradient" or "g" for a gradient based method, "search" or "s" for local search method, "ucminf" or "u" for optimization with ucminf from ucminf package, and "weiszfeld" or "w" for the Weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "weiszfeld" is the default value.
...
Other options for optimization algorithms.
Details

If \(p < 1 \) thus \(l_p \) is not a norm, so, only \(p \geq 1 \) are valid values.

Value

\texttt{zsummin} returns an array with the coordinates of the solution point.

See Also

See also \texttt{orloca-package}, \texttt{loca.p} and \texttt{zsum}.

Examples

\begin{verbatim}
A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(1, -1, -1, 1))
Compute the minimum
sol<-zsummin(loca)

Show the result
sol

Evaluation of the objective function at solution point
zsum(loca, sol[1], sol[2])
\end{verbatim}
Index

*Topic andalusia
andalusia-data, 4

*Topic classes
as-methods, 4
contour.loca.p, 5
loca.p, 7
persp.loca.p, 8
plot, 9
zsum, 11
zsumgra, 12
zsummin, 13

*Topic datagen
rloca.p, 10

*Topic data
andalusia-data, 4

*Topic hplot
contour.loca.p, 5
persp.loca.p, 8
plot, 9

*Topic methods
as-methods, 4

*Topic optimize
loca.p, 7
orloca-package, 2
zsum, 11
zsumgra, 12
zsummin, 13

*Topic package
orloca-package, 2

andalusia (andalusia-data), 4
andalusia-data, 4
as-methods, 4
as.data.frame (as-methods), 4
as.data.frame.loca.p-method (as-methods), 4
as.data.frame.loca.p (as-methods), 4
as.loca.p (as-methods), 4
as.loca.p.data.frame-method (as-methods), 4
as.loca.p.matrix-method (as-methods), 4
as.loca.p.data.frame (as-methods), 4
as.loca.p.matrix (as-methods), 4
as.matrix (as-methods), 4
as.matrix.loca.p-method (as-methods), 4
as.matrix.loca.p (as-methods), 4
contour.loca.p-method (contour.loca.p), 5
contour.loca.p, 5
initialize, loca.p-method (loca.p), 7
loca.p, 5, 6, 7, 8, 9, 14
loca.p-class (loca.p), 7
orloca-package, 2
persp, loca.p-method (persp.loca.p), 8
persp.loca.p, 8
plot, 9, 9
plot, loca.p-method (plot), 9
plot-methods (plot), 9
plot.loca.p, 6, 8
plot.loca.p (plot), 9
print, loca.p-method (loca.p), 7
print.loca.p (loca.p), 7
rloca.p, 10
summary, loca.p-method (loca.p), 7
summary-method (loca.p), 7
zsum, 11, 13, 14
zsum, loca.p-method (zsum), 11
zsumgra, 12
zsumgra, loca.p-method (zsumgra), 12
zsummin, 12, 13
zsummin, loca.p-method (zsummin), 13