Package ‘orloca’

February 20, 2015

Type Package
Depends methods
Suggests grDevices, graphics, png, ucminf
Title The package deals with Operations Research LOCational Analysis models
Version 4.2
Date 2014-06-02
Author Fernando Fernandez-Palacin <fernando.fernandez@uca.es> and Manuel Munoz-Marquez <manuel.munoz@uca.es>
Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>
Description This version of the package deals with the min-sum location problem, also known as Fermat--Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized.
License GPL (>= 3)
URL http://knuth.uca.es/orloca
Collate 'andalusia.R' 'as.R' 'loca.p.R' 'orloca-package.R'
'plot.loca.p.R' 'plot.zsum.R' 'rloca.p.R' 'split.R'
'zsuml2min.R' 'zsuml2.R' 'zsumlpmin.R' 'zsumlp.R' 'zsummin.R'
'zsum.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2014-06-02 22:17:02

R topics documented:
orloca-package .. 2
andalusia-data ... 3
as-methods ... 4
loca.p-class ... 5
plot-methods ... 6
The package deals with Operations Research LOCational Analysis models

Description
This version of the package deals with the min-sum location problem, also known as Fermat–Weber problem.

Details
The min-sum location problem look for a point such that the weighted sum of the distances to the demand points are minimized.

Package: orloca
Type: Package
Version: 4.2
Date: 2014-06-02
License: GPL (>= 3)

The package provides a class (loca.p) that represents a location problem with a finite set of demand points over the plane. Also, it is possible to plot the points and the objective function. Such objective function is the total weighted distances travelled by all the customers to the service.

Non-planar location problems could be handle in future versions of the package.

For a demo, load the package with library(orloca), and use demo(orloca).

The package is ready for internationalization. The authors ask for translated version of the .mo file to include in the package.

Author(s)
Fernando Fernandez-Palacin <fernando.fernandez@uca.es> and Manuel Munoz-Marquez <manuel.munoz@uca.es>
Mantainer: Manuel Munoz-Marquez <manuel.munoz@uca.es>
andalusia-data

References

See Also

Para la version en espanol, instale el paquete orloca.es y consulte la ayuda sobre orloca.es-package. (For the spanish version, install the package orloca.es and see the help about orloca.es-package).

Examples

A new unweighted loca.p object
o <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Compute the sum of distances to point (3, 4)
zsum(o, 3, 4)

Compute the sum of distances to point (3, 4) using lp norm
zsum(o, 3, 4, lp=2.5)

Solve the optimization problem
zsummin(o)

Contour plot
contour(o)

Make a demo of the package
demo(orloca)

andalusia-data Cities of Andalusia

Description

The ‘andalusia’ data frame has 12 rows and 4 columns, which are the geographical position of the main capital cities of andalusia.

Format

name: The name of the city or relative position label.
x: The x coordinate of points.
y: The y coordinate of points.
city: If yes the point is a city in other case is a limit.

Usage

data(‘andalusia’)

as-methods

Conversions between loca.p class and some others

Description

Methods to convert from and to loca.p class.

Usage

```r
## S3 method for class 'data.frame'
as.loca.p(x, ...)
## S3 method for class 'matrix'
as.loca.p(x, ...)
## S3 method for class 'loca.p'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
## S3 method for class 'loca.p'
as.matrix(x, ...)
```

Arguments

- `x` is the object to convert to the new class object.
- `row.names` Unused.
- `optional` Unused
- `...` Other arguments, unused.

Details

NA's values are not allowed in any of the arguments.

The `matrix` to convert into `loca.p` must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of w.

The `data.frame` to convert into `loca.p` must have at least an x column for x coordinates, and an y column for y coordinates. Optionally, it can have w column, as the values of w.

Source

The data are taken from wikipedia.

See Also

See also orloca-package.
Value

If the arguments have valid values, it returns a new object of the new class.

See Also

See also loca.p.

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

Conversion to matrix
m <- as.matrix(loca)

Show matrix
m

Conversion from matrix
as.loca.p(m)

loca.p-class

locap class for Operations Research LOCational Analysis

Description

An object of class loca.p represents a weighted location problem with a finite demand points set. The orloca-package is mainly devoted to deals with location problems.

Details

The lengths of x and y vector must be equals. The length of w must be equal to the previous ones or must be 0. NA's values are not allowed at any of the arguments.

Value

If the arguments have valid values, it returns a new object of class loca.p, else it returns an error. summary(x) returns a summary of the x loca.p object and print(x) prints a summary of the x loca.p object.

Generators

The main generator is loca.p(x, y, w = numeric(0), label = ""). An alternative form is new("loca.p", x, y, w = numeric(0), label = "").

x is a vector of the x coordinates of the demand points.
y is a vector of the y coordinates of the demand points.
w is a vector of weights of the demand points. If w is omitted then all weights are considered as 1.
label If given, it is the label of the new object.
plot-methods

See Also

See also orloca-package.

Examples

A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
or
loca <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

An example with weights and name
locb <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1),
 w = c(1, 2, 1, 2), label = "Weighted case")

Description

This method provides a graphical representation of an object of class loca.p.

Usage

S3 method for class 'loca.p'
plot(x, xlab="", ylab="", main=gettext("Plot of loca.p object", domain = "R-orloca"),
 img=NULL, xlim=c(min(xleft, min(x@x)), max(xright, max(x@x))),
 ylim=c(min(ybottom, min(x@y)), max(ytop, max(x@y))),
 xleft=min(x@x), ybottom=min(x@y), xright=max(x@x),
 ytop=max(x@y), ...)

Arguments

x The loca.p object to plot.
xlab The label for x axis.
ylab The label for y axis.
main The main title for the plot.
img A raster image to plot on background.
xlim Limit over the x axes of the plot.
ylim Limit over the y axes of the plot.
xleft The left position of the image.
ybottom The bottom position of the image.
xright The right position of the image.
ytop The top position of the image.
... Other graphical options.
Details

The function plots the demand points with automatic limits evaluation.

Value

The function plots the required graphics.

See Also

See also `orloca-package`, `loca.p` and `plot.zsum`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The plot of loca object
plot(loca)
```

Description

`contour` and `persp` provide two graphical representations of min-sum function (`zsum`).

Usage

```r
## S3 method for class 'loca.p'
contour(x, lp=numeric(0), xmin=min(min(x@x), xleft),
        xmax=max(max(x@x), xright), ymin=min(min(x@y), ybottom),
        ymax=max(max(x@y), ytop), n=100, img=NULL, xleft=min(x@x),
        ybottom=min(x@y), xright=max(x@x), ytop=max(x@y), ...)

## S3 method for class 'loca.p'
persp(x, lp=numeric(0), xmin=min(x@x), xmax=max(x@x),
       ymin=min(x@y), ymax=max(x@y), n=100, ...)
```

Arguments

- **x**: The `loca.p` object to compute the objective.
- **lp**: If given, then l_p norm will be used instead of the Euclidean norm.
- **xmin**: The minimum value for x axis.
- **xmax**: The maximum value for x axis.
- **ymin**: The minimum value for y axis.
- **ymax**: The maximum value for y axis.
- **n**: The number of divisions for grid.
img A raster image to plot on background.

xleft The left position of the image.

ybottom The bottom position of the image.

xright The right position of the image.

ytop The top position of the image.

... Other options.

Details

If \(p < 1 \) then \(l_p \) ara not a norm, so only \(p \geq 1 \) are valid values.

Value

`contour.loca.p` plots a contour like graphics and `persp.loca.p` a 3D plot.

See Also

See also `orloca-package`, `plot.loca.p` and `loca.p`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The contour plot of min-sum function for loca (a loca.p object)
contour(loca)

# The 3D graphics
persp(loca)
```

rloca.p

Random instances generator of loca.p class object

Description

`rloca.p` function returns a random instance of `loca.p` class object at a given rectangular region.

Usage

```r
rloca.p(n, xmin = 0, xmax = 1, ymin = 0, ymax = 1, 
groups = 0, xgmin = xmin, xgmax = xmax, ygmin = ymin, 
ygmax = ymax)
```
Arguments

- **n** The number of demand points.
- **xmin** Minimum value for the x coordinates of the demand points.
- **xmax** Maximum value for the x coordinates of the demand points.
- **ymin** Minimum value for the y coordinates of the demand points.
- **ymax** Maximum value for the y coordinates of the demand points.
- **groups** The number of (almost) equal size groups to generate, or a list size of the groups to generate. In the second case n will be ignored.
- **xgmin** Minimum value for the x coordinate of demand points with respect to the group reference point.
- **xgmax** Maximum value for the x coordinate of demand points with respect to the group reference point.
- **ygmin** Minimum value for the y coordinate of demand points with respect to the group reference point.
- **ygmax** Maximum value for the y coordinate of demand points with respect to the group reference point.

Details

- **n** must be at least 1.
- **xmin** must be less or equal than **xmax**.
- **ymin** must be less or equal than **ymax**. If a non zero value is given for **groups** parameter, then a reference point for each group are generated. At second stage, the offset part for each demand point are generated, and added to the reference point generated at the first stage. Note that **groups** = 1 is not equivalent to the default value **groups** = 0, because in the first case a reference point are generated at the first stage.

Value

If the arguments are valid values, it returns a new object of **loca.p** class, else it returns an error.

See Also

See also **orloca-package** and **loca.p**.

Examples

```r
# A random loca.p object at unit square with 5 demand points
rloca.p(5)
# At another region
rloca.p(10, xmin=-2, xmax=2, ymin=-2, ymax=2)
# Five groups
rloca.p(48, groups=5)
# Three unequal groups
rloca.p(1, groups=c(10, 7, 2))
```
Description

The objective function and the gradient function for the min-sum location problem.

Usage

```r
zsum(o, x=0, y=0, lp=numeric(0))
zsumgra(o, x=0, y=0, lp=numeric(0), partial=F)
```

Arguments

- `o`: An object of `locaNp` class.
- `x`: The x coordinate of the point to be evaluated.
- `y`: The y coordinate of the point to be evaluated.
- `lp`: If given, then l_p norm will be used instead of the Euclidean norm.
- `partial`: If (x,y) is a demand point $\text{partial}=T$ means ignore such point to compute the gradient. This option is mainly for internal use.

Value

- `zsum` returns the objective function of the min-sum location problem, $\sum_{a_i \in o} w_i d(a_i, (x, y))$, where $d(a_i, (x, y))$ gives the euclidean or the l_p distances between a_i and the point (x, y).
- `zsumgra` returns the gradient vector of the function `zsum`.

See Also

See also `orloca-package` and `zsummin`.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# Evaluation of zsum at (0, 0)
zsum(loca)

# Evaluation of zsum at (1, 3)
zsum(loca, 1, 3)

# Compute the objective function at point (3, 4) using lp norm and p = 2.5
zsum(loca, 3, 4, lp=2.5)

# The gradient function at (1,3)
zsumgra(loca, 1, 3)
```
zsuml2

zsuml2 and zsuml2gra at orloca package

Description

zsum and zsumgra functions for the Euclidean norm (l_2). Mainly for internal use.

Usage

```r
zsuml2(oL x, y)
zsuml2gra(oL x, y, partial=F)
```

Arguments

- `o` An object of `loca.p` class.
- `x` The x coordinate of the point to be evaluated.
- `y` The y coordinate of the point to be evaluated.
- `partial` If (x, y) is a demand point partial=T means ignore such point to compute the gradient. This option is mainly for internal use.

Value

zsuml2 returns the objective function of the min-sum location problem, \(\sum_{a_i \in o} w_i d(a_i, (x, y)) \), where \(d(a_i, (x, y)) \) gives the euclidean distances between \(a_i \) and the point \((x, y) \).

zsumgra returns the gradient vector of the function zsum.

See Also

See also `orloca-package`, `zsum`, `zsumgra` and `zsummin`.

zsuml2min

zsuml2min at orloca package

Description

zsummin function for the Euclidean norm (l_2). Mainly for internal use.

Usage

```r
zsuml2min(oL x, y, max.iter=100, eps=1.e-3, verbose=FALSE, algorithm="weisfeld", ...)
```
Arguments

- `o`: An object of `loca.p` class.
- `x`: The x coordinate of the starting point.
- `y`: The y coordinate of the starting point.
- `max.iter`: Maximum number of iterations allowed.
- `eps`: The module of the gradient in the stop rule.
- `verbose`: If TRUE the function produces detailed output.
- `algorithm`: The method to be use. For this version of the package, the valid values are: "gradient" or "g" for a gradient based method, "search" or "s" for local search method (this option is deprecated), "ucminf" or "u" for optimization with ucminf from ucminf package, and "weiszfeld" or "w" for the weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "weiszfeld" is the default value.
- `...`: Other options for optimization algorithms.

Value

`zsumlpmin` returns an array with the coordinates of the solution point.

See Also

See also `orloca-package`, `zsummin`, `loca.p` and `zsum`.

Description

`zsum` and `zsumgra` functions with \(l_p\) norm. Mainly for internal use.

Usage

```
zsumlp(o, x=0, y=0, p=2)
zsumlgpra(o, x=0, y=0, p=2, partial=F)
```

Arguments

- `o`: An object of `loca.p` class.
- `x`: The x coordinate of the point to be evaluated.
- `y`: The y coordinate of the point to be evaluated.
- `p`: The \(l_p\) norm to use.
- `partial`: If \((x,y)\) is a demand point `partial=F` means ignore such point to compute the gradient. This option is mainly for internal use.
zsumlpmin

Details

If $p < 1$ then l_p are not a norm, so only $p \geq 1$ are valid values.

Value

$zsumlp$ returns the objective function of the min-sum location problem with l_p norm, $\sum_{a_i \in o} w_i d(a_i, (x, y))$, where $d(a_i, (x, y))$ gives the distances between a_i and the point (x, y) using l_p norm.

$zsumlpgra$ returns the gradient vector of the function $zsumlp$.

Note

Since l_2 norm is the Euclidean norm, when $p = 2$ $zsumlp$ are equal to $zsum$, and $zsumlpgra$ are equal to $zsumgra$. But the computations involved are greater for the firsts form.

See Also

See also $zsum$, orloca-package and $zsumlpmin$.

zsumlpmin

zsumlpmin at orloca package

Description

$zsummin$ function with l_p norm. Mainly for internal use.

Usage

$zsumlpmin(o, x=0, y=0, p=2, maxiter=100, eps=1.e-3, verbose=FALSE, algorithm="weiszfeld", ...)$

Arguments

- **o**: An object of loca.p class.
- **x**: The x coordinate of the starting point.
- **y**: The y coordinate of the starting point.
- **p**: p value for l_p norm.
- **max.iter**: Maximum number of iterations allowed.
- **eps**: The module of the gradient in the stop rule.
- **verbose**: If TRUE, then the function produces detailed output.
- **algorithm**: The method to be use. For this version of the package, the valid values are: "gradient" or "g" for a gradient based method, "search" or "s" for local search method (this option is deprecated), "ucminf" or "u" for optimization with ucminf from ucminf package, and "weiszfeld" or "w" for the weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "weiszfeld" is the default value.
- **...**: Other options for optimization algorithms.
Details

If \(p < 1 \) then \(l_p \) is not a norm, so only \(p \geq 1 \) are valid values.

Value

\(zsumlpmin \) returns an array with the coordinates of the solution point.

Note

Since \(l_2 \) norm is the Euclidean norm, when \(p = 2 \) \(zsumlpmin \) are equal to \(zsummin \). But the computations involved are greater for the first form.

See Also

See also \(zsummin \), \(orloca-package \), \(loca.p \) and \(zsum \).

Description

Solve the min-sum location problem for a given \(loca.p \) class object.

Usage

\[
zsummin(o, x=0, y=0, lp=numeric(0), max.iter=100, eps=1.e-3,
 verbose=FALSE, algorithm="weiszfeld", \ldots)
\]

Arguments

- **o**: An object of \(loca.p \) class.
- **x**: The \(x \) coordinate of the starting point.
- **y**: The \(y \) coordinate of the starting point.
- **lp**: If given, the \(l_p \) norm will be used instead of the Euclidean norm.
- **max.iter**: Maximum number of iterations allowed.
- **eps**: The module of the gradient in the stop rule.
- **verbose**: If TRUE the function produces detailed output.
- **algorithm**: The algorithm to use. For this version of the package, the valid values are: "gradient" or "g" for a gradient based method, "search" or "s" for local search method, "ucminf" or "u" for optimization with ucminf from ucminf package, and "weiszfeld" or "w" for the Weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "weiszfeld" is the default value.

... Other options for optimization algorithms.
Details

If \(p < 1 \) thus \(l_p \) is not a norm, so, only \(p \geq 1 \) are valid values.

Value

\texttt{zsummin} returns an array with the coordinates of the solution point.

See Also

See also \texttt{orloca-package}, \texttt{loca.p} and \texttt{zsum}.

Examples

```r
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# Compute the minimum
sol <- zsummin(loca)

# Show the result
sol

# Evaluation of the objective function at solution point
zsum(loca, sol[1], sol[2])
```
Index

*Topic **andalusia**
 andalusia-data, 3
*Topic **classes**
 as-methods, 4
 loca.p-class, 5
 plot-methods, 6
 plot.zsum, 7
 zsum, 10
 zsuml2, 11
 zsuml2min, 11
 zsumlp, 12
 zsuml1min, 13
 zsummin, 14
*Topic **datagen**
 rloca.p, 8
*Topic **datasets**
 andalusia-data, 3
*Topic **data**
 andalusia-data, 3
*Topic **hplot**
 plot-methods, 6
 plot.zsum, 7
*Topic **methods**
 as-methods, 4
*Topic **optimize**
 loca.p-class, 5
 orloca-package, 2
 zsum, 10
 zsuml2, 11
 zsuml2min, 11
 zsumlp, 12
 zsuml1min, 13
 zsummin, 14
*Topic **package**
 orloca-package, 2
 andalusia (andalusia-data), 3
 andalusia-data, 3
 as, loca.p-method (as-methods), 4
 as-methods, 4
 as.data.frame (as-methods), 4
 as.data.frame.loca.p-method (as-methods), 4
 as.data.frame.loca.p (as-methods), 4
 as.loca.p (as-methods), 4
 as.loca.p.data.frame-method (as-methods), 4
 as.loca.p.matrix-method (as-methods), 4
 as.loca.p.data.frame (as-methods), 4
 as.loca.p.matrix (as-methods), 4
 as.matrix (as-methods), 4
 as.matrix.loca.p-method (as-methods), 4
 as.matrix.loca.p (as-methods), 4
 contour, loca.p-method (plot.zsum), 7
 contour.loca.p (plot.zsum), 7
 initialize, loca.p-method (loca.p-class), 5
 loca.p, 5, 7, 8, 12, 14, 15
 loca.p (loca.p-class), 5
 loca.p-class, 5
 orloca-package, 2
 persp, loca.p-method (plot.zsum), 7
 persp.loca.p (plot.zsum), 7
 plot, loca.p-method (plot-methods), 6
 plot-methods, 6
 plot.loca.p, 8
 plot.loca.p (plot-methods), 6
 plot.zsum, 7, 7
 print, loca.p-method (loca.p-class), 5
 print.loca.p (loca.p-class), 5
 rloca.p, 8
 summary.loca.p-method (loca.p-class), 5
 summary-method (loca.p-class), 5
INDEX

zsum, 10, 11–15
zsum, loca.p-method (zsum), 10
zsumgra, 11
zsumgra (zsum), 10
zsumgra, loca.p-method (zsum), 10
zsuml2, 11
zsuml2, loca.p-method (zsuml2), 11
zsuml2gra (zsuml2), 11
zsuml2gra, loca.p-method (zsuml2), 11
zsuml2min, 11
zsuml2min, loca.p-method (zsuml2min), 11
zsumlp, 12
zsumlp, loca.p-method (zsumlp), 12
zsumlpgra (zsumlp), 12
zsumlpgra, loca.p-method (zsumlp), 12
zsumlpmin, 13, 13
zsumlpmin, loca.p-method (zsumlpmin), 13
zsummin, 10–12, 14, 14
zsummin, loca.p-method (zsummin), 14