Package ‘osDesign’

February 20, 2015

Type Package
Title Design and analysis of observational studies
Version 1.7
Date 2011-08-22
Author Sebastien Haneuse, Takumi Saegusa, Nilanjan Chaterjee, Norman Breslow, Elizabeth Smoot
Maintainer Sebastien Haneuse <shaneuse@hsph.harvard.edu>
Description The osDesign serves for planning an observational study. Currently, functionality is focused on the two-phase and case-control designs. Functions in this packages provide Monte Carlo based evaluation of operating characteristics such as powers for estimators of the components of a logistic regression model.

Depends R (>= 2.10)
License GPL (>= 3)
LazyLoad yes
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-08-06 20:48:01

R topics documented:

- beta0 ... 2
- ccPower .. 3
- ccSim ... 6
- enumerate ... 10
- hybdes .. 11
- hybdesEco .. 12
- infants ... 13
- infants0709 ... 14
- logit ... 15
- Ohio ... 16
- phase1 .. 17
- plotPower .. 19
- rmvhyper .. 21
Calculate the intercept of a logistic regression model, given a vector of log-odds ratio parameters and an overall prevalence.

Description

When conducting power calculations, one is often interested in examining power for various 'effect sizes'. Suppose the logistic regression is specified via the vector of coefficients (beta0, betaX); the first element is the intercept and the second consists of a vector of log odds ratio parameters. In many settings, the overall outcome prevalence in the population of interest is known or, at least, fixed. Modifying any given element of betaX will automatically modify the overall prevalence, unless there is a corresponding change in beta0. The function beta0() calculates the value of beta0 that minimizes the difference between the target outcome prevalence, rhoY, and prevalence induced by the model in conjunction with the assumed marginal exposure distribution.

Usage

beta0(betaX, X, N, rhoY, expandX="all")

Arguments

betaX Numeric vector of log-odds ratio parameters for the logistic regression model.
X Design matrix for the logistic regression model. The first column should correspond to intercept. For each exposure, the baseline group should be coded as 0, the first level as 1, and so on.
N A numeric vector providing the sample size for each row of the design matrix, X.
rhoY Target outcome prevalence in the population.
expandX Character vector indicating which columns of X to expand as a series of dummy variables. Useful when at least one exposure is continuous (and should not be expanded). Default is ‘all’; the other option is ‘none’ or character vector of column names.

Details

The minimization is performed using the optimize function.

Value

Numeric value of the intercept parameter in a logistic regression model.
ccPower

Author(s)

Sebastien Haneuse, Takumi Saegusa

References

Examples

```r
##
data(ohio)

## X <- cbind(Int=1, Ohio[,1:3])
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=ohio, family=binomial)

## Overall prevalence in the observed data
## sum(ohio$Death)/sum(ohio$N)

## Intercept corresponding to the original vector of log-odds ratios
## fitM$coef
beta0(betaX=fitM$coef[-1], X=X, N=Ohio$N, rhoY=sum(ohio$Death)/sum(ohio$N))

## Reduction of Sex effect by 50%
##
## betaXm <- fitM$coef[-1]
betaXm[3] <- betaXm[3] * 0.5
beta0(betaX=betaXm, X=X, N=Ohio$N, rhoY=sum(ohio$Death)/sum(ohio$N))

## Doubling of Race effect
##
## betaXm <- fitM$coef[-1]
beta0(betaX=betaXm, X=X, N=Ohio$N, rhoY=sum(ohio$Death)/sum(ohio$N))
```

ccPower

Simulation-based estimation of power for the case-control design

Description

Monte Carlo based estimation of statistical power for maximum likelihood estimator (MLE) of the components of a logistic regression model, based on the case-control design.
Usage

ccPower(B=1000, betaTruth, X, N, expandX="all", etaTerms=NULL, nCC, r=1, alpha=0.05,
digits=1, betaNames=NULL, monitor=NULL)

Arguments

B The number of datasets generated by the simulation.
betaTruth Regression coefficients from the logistic regression model.
X Design matrix for the logistic regression model. The first column should correspond to intercept. For each exposure, the baseline group should be coded as 0, the first level as 1, and so on.
N A numeric vector providing the sample size for each row of the design matrix, X.
expandX Character vector indicating which columns of X to expand as a series of dummy variables. Useful when at least one exposure is continuous (and should not be expanded). Default is ‘all’; other options include ‘none’ or character vector of column names. See Details, below.
etaTerms Character vector indicating which columns of X are to be included in the model. See Details, below.
nCC A numeric value indicating the total case-control sample size. If a vector is provided, separate simulations are run for each value.
r A numeric value indicating the control:case ratio in the case-control sample.
alpha Type I error rate assumed for the evaluation of coverage probabilities and power.
digits Integer indicating the precision to be used for the output.
betaNames An optional character vector of names for the regression coefficients, betaTruth.
monitor Numeric value indicating how often ccPower() reports real-time progress on the simulation, as the B datasets are generated and evaluated. The default of NULL indicates no output.

Details

A simulation study is conducted to evaluate statistical power for the MLE of a logistic regression model, based on the case-control design. The overall simulation approach is the same as that described in ccSim. Power is estimated as the proportion of simulated datasets for which a hypothesis test of no effect is rejected. Each hypothesis test is performed using the generic glm function.

The correspondence between betaTruth and X, specifically the ordering of elements, is based on successive use of factor to each column of X which is expanded via the expandX argument. Each exposure that is expanded must conform to a 0, 1, 2, ... integer-based coding convention.

The etaTerms argument is useful when only certain columns in X are to be included in the model.

A balanced case-control design is specified by setting r=1; setting r=2 indicates twice as many controls are sampled, relative to the number cases, from the total nCC.

When evaluating operating characteristics of the MLE, some simulated datasets may result in unusually large or small estimates. Particularly, when the the case-control sample size, nCC, is small.
In some settings, it may be desirable to truncate the Monte Carlo sampling distribution prior to evaluating operating characteristics. The threshold argument indicates the interval beyond which MLEs are ignored. The default is such that all B datasets are kept.

Value

ccPower() returns an object of class "ccPower", a list containing all the input arguments, as well as the following components:

- **betaPower**: Power against the null hypothesis that the regression coefficient is zero for a Wald-based test with an alpha type I error rate.
- **failed**: A vector consisting of the number of datasets excluded from the power calculations (i.e. set to NA), for each simulation performed. For power calculations, the two reasons are: (1) lack of convergence indicated by NA point estimates returned by glm, (2) lack of convergence indicated by NA standard error point estimates returned by glm.

Note

A generic print method provides formatted output of the results.

A generic plot function plotPower provides plots of powers against different sample sizes for each estimate of a regression coefficient.

Author(s)

Sebastien Haneuse, Takumi Saegusa

References

Examples

```r
## Power for a single CC design
## Not run:
ccResult1 <- ccPower(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N, r=1,
```
ccSim

Simulation function for case-control study designs.

Description

Monte Carlo based evaluation of operating characteristics of the maximum likelihood estimator (MLE) for the coefficients of a logistic regression model, based on the case-control.

Usage

ccSim(B=1000, betaTruth, X, N, expandX="all", etaTerms=NULL, nCC, r, refDesign=1, alpha=0.05, threshold=c(-Inf, Inf), digits=1, betaNames=NULL, monitor=NULL, returnRaw=FALSE)

Arguments

B The number of datasets generated by the simulation.

betaTruth Regression coefficients from the logistic regression model.
Details

A simulation study is performed to evaluate the operating characteristics of the MLE for `betaTruth` from a case-control design (Prentice and Pyke, 1979). The operating characteristics are evaluated using the Monte Carlo sampling distribution of the estimator. The latter is generated using the following steps:

- (i) Specify the (joint) marginal exposure distribution of underlying population, using `X` and `N`.
- (ii) Simulate outcomes for all `sum(N)` individuals in the population, based on an underlying logistic regression model specified via `betaTruth`.
- (iii) Sample `n0` controls and `n1` cases, on the basis of `nCC` and `r`.
- (iv) Evaluate the MLE estimator, its estimated standard error and store the results.
- (v) Repeat steps (ii)-(iv) `B` times.

All case-control MLEs are evaluated using the generic `glm` function.

The correspondence between `betaTruth` and `X`, specifically the ordering of elements, is based on successive use of `factor` to each column of `X` which is expanded via the `expandX` argument. Each exposure that is expanded must conform to a 0, 1, 2, ... integer-based coding convention.
The `etaTerms` argument is useful when only certain columns in \(X \) are to be included in the model. When evaluating operating characteristics of the MLE, some simulated datasets may result in unusually large or small estimates. Particularly, when the the case-control sample size, \(nCC \), is small. In some settings, it may be desirable to truncate the Monte Carlo sampling distribution prior to evaluating operating characteristics. The `threshold` argument indicates the interval beyond which MLEs are ignored. The default is such that all 8 datasets are kept.

Value

`ccSim()` returns an object of class "ccSim", a list containing all the input arguments, as well list results with the following components:

- `betaMean`: Mean of the Monte Carlo sampling distribution for each regression coefficient estimator.
- `betaMeanBias`: Bias based on the mean, calculated as `betaMean` - `betaTruth`.
- `betaMeanPB`: Percent bias based on mean, calculated as `((betaMean - betaTruth) / betaTruth)` x 100. If a regression coefficient is zero, percent bias is not calculated and an NA is returned.
- `betaMedian`: Median of the Monte Carlo sampling distribution for each regression coefficient estimator.
- `betaMedianBias`: Bias based on the median, calculated as `betaMedian` - `betaTruth`.
- `betaMedianPB`: Percent bias based on median, calculated as `((betaMedian - betaTruth) / betaTruth)` x 100. If a regression coefficient is zero, median percent bias is not calculated and an NA is returned.
- `betaSD`: Standard deviation of the Monte Carlo sampling distribution for each regression coefficient estimator.
- `betaMSE`: Mean squared error of the Monte Carlo sampling distribution for each regression coefficient estimator.
- `seMean`: Mean of the Monte Carlo sampling distribution for the standard error estimates reported by `glm()`.
- `seRatio`: Ratio of the mean reported standard error to the standard deviation of the Monte Carlo sampling distribution for each regression coefficient estimator. The ratio is multiplied by 100.
- `betaCP`: Coverage probability for Wald-based confidence intervals, evaluated on the basis of an \(\alpha \) type I error rate.
- `betaPower`: Power against the null hypothesis that the regression coefficient is zero for a Wald-based test with an \(\alpha \) type I error rate.
- `betaRU`: The ratio of the standard deviation of the Monte Carlo sampling distribution for each estimator to the standard deviation of the Monte Carlo sampling distribution for the estimator corresponding to `refDesign`. The ratio is multiplied by 100.

Also returned is an object `failed` which is a vector consisting of the number of datasets excluded from the power calculations (i.e. set to NA), for each simulation performed. For the evaluation of general operating characteristics, the three reasons are: (1) lack of convergence indicated by NA point estimates returned by `glm`, (2) lack of convergence indicated by NA standard error point estimates returned by `glm`, (3) exclusion on the basis of the `threshold` argument.
Note

A generic print method provides formatted output of the results.

Author(s)

Sebastien Haneuse, Takumi Saegusa

References

See Also

plotPower.

Examples

```r
##
data(Ohio)

##
XM <- cbind(Int=1, Ohio[,1:3])
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=Ohio,
            family=binomial)
betanamesM <- c("Int", "Age1", "Age2", "Sex", "Race")

## Single case-control design
##
## Not run:
cresults1 <- ccSim(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N,
                   nCC=500, r=1, betanames=betanamesM, monitor=100)
cresults1
## End(Not run)

## Examining unbalanced case-control designs
##
## Not run:
cresults2 <- ccSim(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N,
                   nCC=500, r=c(0.25, 0.33, 0.5, 1, 2, 3, 4),
                   betanames=betanamesM, monitor=100)
cresults2
## End(Not run)
```
Enumerate Function

Description

enumerate() generates a matrix of vectors that meet the margin totals MM and NN. enumerate.count() gives the total number of vectors that meet the margin totals MM and NN.

Usage

enumerate(MM, NN)
enumerate.count(MM, NN)

Arguments

MM MM is a matrix of margin totals. Rows are groups, columns are margin totals
NN NN is a matrix of outcome margin totals. Rows are groups, columns are margin totals. NN is always a K x 2 matrix, where K is the number of groups

Value

enumerate returns a matrix enumerate.count returns a number

Author(s)

G. Malecha, E. Smoot

References

Examples

data(infants0709, package = "osDesign")

Get marginal totals for low birth weight and smoking status by county
MM = table(infants0709$county, infants0709$smoker)
NN = table(infants0709$county, infants0709$lowbw)

Determine the number of possible solutions to margin totals for county 48
enumerate.count(MM[48,,], NN[48,,])

Generate matrix with all possible solutions to margin totals for county 48
enumerate(MM[48,,], NN[48,,])
Description

`hybdes()` computes the MLE for a Hybrid Design. `hyblik()` computes the likelihood for a Hybrid Design at a specified parameter vector.

Usage

```r
hybdes(MM, NN, cc, ntrue = 0, aprx = 'binom', start.mle = NA, group.int = FALSE, betafct = function(x) { return(x[1] + c(0, x[-1]) ) }, print.level = 0, iterlim = 100)
hyblik(beta.matrix, MM, NN, cc, aprx = 'binom', ntrue = 0, group.int = FALSE)
```

Arguments

- **MM**
 - MM is a matrix of margin totals. Rows are groups, columns are margin totals.

- **NN**
 - NN is a matrix of outcome margin totals. Rows are groups, columns are margin totals. NN is always a K x 2 matrix, where K is the number of groups.

- **cc**
 - cc is a list of case-control data. Each element is a table with exposure (rows) and outcome (columns).

- **ntrue**
 - The number of groups that should be calculated using the true hybrid likelihood, rather than an approximation.

- **aprx**
 - Type of approximation to use when calculating the hybrid likelihood. Default is the binomial approximation.

- **start.mle**
 - Starting value for the Newton-Raphson algorithm used to determine Hybrid Design MLE.

- **group.int**
 - A logical indicator of whether or not groups should be treated as having different intercept parameters.

- **betafct**
 - A function used to specify the model of interest by reparameterizing the hybrid likelihood. `betafct()` takes in group-specific parameters associated with each level of the exposure variable. The default function corresponds to a model with an intercept parameter and log-odds-ratio parameters relating levels of X to the baseline level, X = 0 (i.e. column 1 of MM).

- **print.level**
 - Argument passed into `nlm()`

- **iterlim**
 - Argument passed into `nlm()`

- **beta.matrix**
 - Parameter values for likelihood calculation; used only in `hyblik()`. This should be entered in the form of a matrix, with one row per group and one column per parameter.

Value

- **mle**
 - MLE of the hybrid design

- **start.mle**
 - Result of `clogit` function (stratified case-control MLE)
Author(s)
E. Smoot

References

Examples

```R
#hybdes(MM, NN, cc, approx='NA')
```

__

hybdesEco
Hybrid Design in the Pure Ecological setting – MLE

__

Description
Computes the MLE for a Hybrid Design in the pure ecological setting, with two binary covariates, Z and W, in the model. hybdesEco is specific to the model \(\logit(P(Y=1)) = b0 + b1*Z + b2*W \)

Usage
```
hybdesEco(MM.Z, MM.W, NN, cc, aprx = "binom", start.mle = NA, group.int = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM.Z</td>
<td>MM.Z is a matrix of margin totals for covariate Z. Rows are groups, columns are margin totals</td>
</tr>
<tr>
<td>MM.W</td>
<td>MM.W is a matrix of margin totals for covariate W. Rows are groups, columns are margin totals</td>
</tr>
<tr>
<td>NN</td>
<td>NN is a matrix of outcome margin totals. Rows are groups, columns are margin totals. NN is always a K x 2 matrix, where K is the number of groups</td>
</tr>
<tr>
<td>cc</td>
<td>cc is a list of case-control data. Each element is a table with joint Z-W exposure (rows) and outcome (columns)</td>
</tr>
<tr>
<td>aprx</td>
<td>Type of approximation to use when calculating the hybrid likelihood. Default is the binomial approximation.</td>
</tr>
<tr>
<td>start.mle</td>
<td>Starting value for the Newton-Raphson algorithm used to determine Hybrid Design MLE.</td>
</tr>
<tr>
<td>group.int</td>
<td>A logical indicator of whether or not groups should be treated as having different intercept parameters.</td>
</tr>
</tbody>
</table>

Author(s)
E. Smoot
References

infants

Infant mortality data from North Carolina

Description

Usage
data(infants)

Format
A data frame consisting of 235,464 observations, with the following columns:

- **year**: Year of birth; either 2003 or 2004.
- **race**: A 9-level categorical variable indicating the race of the baby. See Details, below.
- **male**: A binary variable; 0=female; 1=male.
- **mage**: Age of the mother, years.
- **weeks**: Number of completed weeks of gestation.
- **cignum**: Average number of cigarettes. A value of ‘98’ indicates smoking but unknown amount.
- **gained**: Weight gained during pregnancy, lbs.
- **weight**: Birth weight, grams.
- **death**: A binary variable indicating death within 1st year of life; 0=alive; 1=death.

Details
The data were compiled by the North Carolina State Center for Health Statistics (http://www.irss.unc.edu/).

The `race` variable is coded as follows: 0 = Other non-white 1 = White 2 = Black 3 = American Indian 4 = Chinese 5 = Japanese 6 = Hawaiian 7 = Filipino 8 = Other Asian or Pacific Islander

Examples
```r
## Code to generate an aggregated dataset
##
## Not run:
data(infants)
##
infects$smoker <- as.numeric(infants$cignum > 0)
infects$teen <- as.numeric(infants$mage < 20)
```
Infant vital statistic data from North Carolina

Description

Usage

data(infants0709)

Format

A data frame with 387,705 observations on the following 17 variables.

- county North Carolina county in which birth occurred
- year Year of birth
- sex Infant’s gender
- race Race of mother/child
- mage Age of mother
- plural Plurality
- weeks Completed weeks of gestation (calculated)
- weight Birth weight group
- gained Weight gained by mother during pregnancy, in pounds (up to 98 lbs; values of 98 represent 98 or more pounds gained during pregnancy)
- cignum Number of cigarettes smoked by mother per day, up to 97. 98 represents a smoking mother, where the number of cigarettes smoked per day is unknown.
- nonwhite Logical vector: race variable not equal to 1
- smoker Logical vector: cignum not equal to 0
- olderm Logical vector: mother’s age >= 35
- lowbw Logical vector: infant’s birth weight <= 2500 grams
- lowgain Logical vector: mother gained less than 15 pounds during pregnancy
- female Logical vector: infant’s sex is female
- preemie Logical vector: infant born before completing gestational week 37

```r
infants$lowgain <- as.numeric(infants$gained < 20)
infants$early <- as.numeric(infants$weeks < 32)
infants$lbw <- as.numeric(infants$weight < 2500)
##
listAgg <- list(year=infants$year, smoker=infants$smoker, teen=infants$teen,
lowgain=infants$lowgain, race=infants$race, male=infants$male,
early=infants$early, lbw=infants$lbw)
infantsAgg <- aggregate(rep(1, nrow(infants)), listAgg, FUN=sum)
names(infantsAgg)[ncol(infantsAgg)] <- "N"
infantsAgg$Y <- aggregate(infants$death, listAgg, FUN=sum)$x
## End(Not run)
```
Details

The sex variable is coded as follows: 1 = Male 2 = Female

The race variable is coded as follows: 0 = Other non-white 1 = White 2 = Black 3 = American Indian 4 = Chinese 5 = Japanese 6 = Hawaiian 7 = Filipino 8 = Other Asian or Pacific Islander

The plural variable is coded as follows: 1 = Singleton 2 = Twins 3 = Triplets 4 = Quadruplets 5 = Quintuplets of higher 9 = Unknown

The weight variable is coded as follows: 0 = 500 grams or less 1 = 501 to 1000 grams 2 = 1001 to 1500 grams 3 = 1501 to 2000 grams 4 = 2001 to 2500 grams 5 = 2501 to 3000 grams 6 = 3001 to 3500 grams 7 = 3501 to 4000 grams 8 = 4001 to 4500 grams 9 = 4501 grams or more

Source

The data were compiled by the North Carolina State Center for Health Statistics (http://www.irss.unc.edu/).

logit

Logit and inverse-logit functions

Description

logit() performs the logit function expit() performs the inverse logit function

Usage

logit(p)
expit(x)

Arguments

p A vector of probabilities on the interval [0,1] to be transformed into numbers on the real line.
x A vector of numbers on the real line to be transformed into probabilities.

Details

The logit function is \(\log(p / (1 - p)) \). The expit function is \(\exp(x)/(1 + \exp(x)) \).

Value

logit returns a vector of real numbers. expit returns a vector of probabilities.
Ohio lung cancer data

Description

Population estimates and lung cancer death counts for the state of Ohio in 1988, among 55-84 year olds. Counts are stratified by age, sex and race.

Usage

data(Ohio)

Format

A data frame consisting of 12 observations, with the following columns:

- Age A 3-level categorical level variable; 0=55-64 years; 1=65-74 years; 2=75-84 years.
- Sex A binary variable; 0=male; 1=female.
- Race A binary variable; 0=white; 1=non-white.
- n A numeric vector of estimated population counts.
- death A numeric vector of lung cancer death counts.

Details

The data were obtained from the National Center for Health Statistics Compressed Mortality File and correspond to a population of 2,220,177 individuals with 5,533 lung cancer deaths. A more comprehensive dataset, providing counts further stratified by county as well as for the years 1968 to 1988, is described by Xia and Carlin (1998).

Source

phaseI

Expected phase I stratification

Description

phaseI() provides the expected phase I counts, based on a pre-specified population and outcome model. If phase II sample sizes are provided, the (expected) phase II sampling probabilities are also reported.

Usage

phaseI(betatruth, X, N, strata=NULL, expandX="all", etaTerms=NULL, nII0=NULL, nII1=NULL, cohort=TRUE, NI=NULL, digits=NULL)

Arguments

betatruth Regression coefficients from the logistic regression model.
X Design matrix for the logistic regression model. The first column should correspond to intercept. For each exposure, the baseline group should be coded as 0, the first level as 1, and so on.
N A numeric vector providing the sample size for each row of the design matrix, X.
strata A numeric vector indicating which columns of the design matrix, X, are used to form the phase I stratification variable. strata=1 specifies the intercept and is, therefore, equivalent to a case-control study.
expandX Character vector indicating which columns of X to expand as a series of dummy variables. Useful when at least one exposure is continuous (and should not be expanded). Default is 'all'; other options include 'none' or character vector of column names. See Details, below.
etaTerms Character vector indicating which columns of X are to be included in the model. See Details, below.
nII0 A vector of sample sizes at phase II for controls. The length must correspond to the number of unique values for phase I stratification variable.
nII1 A vector of sample sizes at phase II for cases. The length must correspond to the number of unique values phase I stratification variable.
cohort Logical flag. TRUE indicates phase I is drawn as a cohort; FALSE indicates phase I is drawn as a case-control sample.
NI A pair of integers providing the outcome-specific phase I sample sizes when the phase I data are drawn as a case-control sample. The first element corresponds to the controls and the second to the cases.
digits Integer indicating the precision to be used for the reporting of the (expected) sampling probabilities.
Details

The correspondence between betaTruth and X, specifically the ordering of elements, is based on successive use of factor to each column of X which is expanded via the expandX argument. Each exposure that is expanded must conform to a 0, 1, 2, ... integer-based coding convention.

The etaTerms argument is useful when only certain columns in X are to be included in the model. In the context of the two-phase design, this might be the case if phase I stratifies on some surrogate exposure and a more detailed/accurate measure is to be included in the main model.

Author(s)

Sebastien Haneuse, Takumi Saegusa

References

Examples

```r
##
data(Ohio)

## Design matrix that forms the basis for model and phase I
## stata specification
##
XM <- cbind(Int=1, Ohio[,1:3])  ## main effects only
XI <- cbind(XM, SbyR=XM[,3]*XM[,4])  ## interaction between sex and race

## 'True' values for the underlying logistic model
##
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=Ohio, family=binomial)
fitI <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex * Race, data=Ohio, family=binomial)

## Stratified sampling by race
##
phaseI(betatruth=fitM$coef, X=XM, N=Ohio$N, strata=4,
     nII0=c(125, 125),
     nII1=c(125, 125))

## Stratified sampling by age and sex
##
phaseI(betatruth=fitM$coef, X=XM, N=Ohio$N, strata=c(2,3))

##
phaseI(betatruth=fitM$coef, X=XM, N=Ohio$N, strata=c(2,3),
     nII0=(30+1:6),
     nII1=(40+1:6))
```
plotPower

plotPower

Plot function for power, based on two-phase and case-control design

Description

The `plotPower` function plots estimates of power obtained from objects returned by either the `tpspower` or `ccpower` functions.

Usage

```r
plotPower(x, coefNum=1, include="All", yAxis=seq(from=0, to=100, by=20),
          xAxis=NULL, main=NULL, legendXY=NULL)
```

Arguments

- `x`: An object in a class `tpspower` or `ccpower` obtained as a result of `tpspower` or `ccpower` functions, respectively.
- `coefNum`: A numeric vector number specifying the regression coefficient in `beta` for the plot.
- `include`: Character string indicating which estimators from a `tpspower` object are to be printed. The default is "All" in which case all four estimators (two-phase WL, PL, ML and case-control CC) are presented. Other options include "TPS" which solely presents the three two-phase estimators; options "WL", "PL", "ML" and "CC" solely present the corresponding estimators. If the object is of class `ccpower` then only the case-control MLE (CC) is presented (i.e., the `include` argument is ignored).
- `yAxis`: A scale marking the y-axis for the plot.
- `xAxis`: A scale marking the x-axis for the plot. If left as the default NULL, the x-axis scale is taken from nII in the `tpsResults` object.
- `main`: Title for the plot.
- `legendXY`: Optional vector indicating the co-ordinates for the top-left hand corner of the legend box.

Details

Produces a plot of statistical power (to reject a null hypothesis H0: beta = 0), for estimators of a regression coefficient from a logistic regression model, based on a two-phase and/or case-control design.

Author(s)

Sebastien Haneuse, Takumi Saegusa
References

See Also

tpsPower.

Examples

```r
##
data(Ohio)
##
## XM <- cbind(Inf=1, Ohio[,1:3])
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=Ohio,
    family=binomial)
betaNamesM <- c("Int", "Age1", "Age2", "Sex", "Race")

## Power for the TPS design where phase I stratification is based on Age
##
newBetaM <- fitM$coef
##
## Not run:
powerRaceTPS <- tpsPower(B=10000, betaTruth=fitM$coef, X=XM, N=Ohio$N,
    strata=4,
    nII=seq(from=100, to=1000, by=100),
    betaNames=c("Int", "Age1", "Age2", "Sex", "Race"), monitor=1000)
##
par(mfrow=c(2,2))
plotPower(powerRaceTPS, include="TPS", coefNum=2,
    xAxis=seq(from=100, to=1000, by=100),
    main=expression("Age effect (65-74 vs. 55-64 years)" * beta[1]),
    legendXY=c(800, 65))
plotPower(powerRaceTPS, include="ML", coefNum=2,
    xAxis=seq(from=100, to=1000, by=100),
    main=expression("Age effect (65-74 vs. 55-64 years)" * beta[1]),
    legendXY=c(800, 65))
plotPower(powerRaceTPS, include="WL", coefNum=2,
    xAxis=seq(from=100, to=1000, by=100),
    main=expression("Age effect (65-74 vs. 55-64 years)" * beta[1]),
    legendXY=c(800, 65))
plotPower(powerRaceTPS, include="CC", coefNum=2,
    xAxis=seq(from=100, to=1000, by=100),
    main=expression("Age effect (65-74 vs. 55-64 years)" * beta[1]),
    legendXY=c(800, 65))
## End(Not run)
##
## Power
##
```
Not run:

```r
# Random generation for the multivariate hypergeometric distribution
ccResult <- ccPower(B=1000, betaTruth=newBetaM, X=XM, N=Ohio$N, r=0.5,  
   nCC=seq(from=100, to=500, by=50), betaNames=betaNamesM,  
   monitor=100)
```

```r
## Not run
```

```r
par(mfrow=c(2,2))
plotPower(ccResult, coefNum=2, yAxis=seq(from=0, to=100, by=20),  
   xAxis=seq(from=100, to=500, by=100),  
   main=expression("Age effect (65-74 vs. 55-64 years), \( \beta \star \text{beta[A1]} \))
```

```r
plotPower(ccResult, coefNum=3, yAxis=seq(from=0, to=100, by=20),  
   xAxis=seq(from=100, to=500, by=100),  
   main=expression("Age effect (75-84 vs. 55-64 years), \( \beta \star \text{beta[A2]} \))
```

```r
plotPower(ccResult, coefNum=4, yAxis=seq(from=0, to=100, by=20),  
   xAxis=seq(from=100, to=500, by=100),  
   main=expression("Sex effect, \( \beta \star \text{beta[S]} \))
```

```r
plotPower(ccResult, coefNum=5, yAxis=seq(from=0, to=100, by=20),  
   xAxis=seq(from=100, to=500, by=100),  
   main=expression("Race effect, \( \beta \star \text{beta[R]} \))
```

```r
## End(Not run)
```
rXhyper

Random generation for the multivariate hypergeometric distribution

Description

Generates random observations from a multivariate hypergeometric distribution.

Usage

rXhyper(theta, data, number = 1)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>data</td>
<td>Population margins</td>
</tr>
<tr>
<td>number</td>
<td>Number of random observations to be drawn</td>
</tr>
</tbody>
</table>

Value

Returns a vector.
tps

Author(s)
Sebastien Haneuse

See Also
rhyper.

Examples

```r
##
mdata = list(M0 = 50, M1 = 50, N0 = 70, N1 = 30)
rXhyper(1.2, mdata, 1)
```

Description

Fits a logistic regression model to data arising from two phase designs.

Usage

```r
tps(formula, data=sys.parent(), nn0, nn1, group, contrasts=NULL, method="PL", cohort=TRUE, alpha=1)
```

Arguments

- `formula`: A formula expression as for other binomial response regression models, of the form `response ~ predictors`, where both the response and predictors corresponds to observations at phase II sample. The response can be either a vector of 0’s and 1’s or else a matrix with two columns representing number of cases (response=1) and controls (response=0) corresponding to the rows of the design matrix.
- `data`: An optional data frame for phase two sample in which to interpret the variables occurring in the formula.
- `nn0`: A numeric vector of length K, indicating the numbers of controls for each Phase I strata.
- `nn1`: A numeric vector of length K, indicating the numbers of cases for each Phase I strata.
- `group`: A numeric vector providing stratum identification for phase II data. Values should be in \{1, \ldots, K\}, where K is the number of strata (vector of same length as the response and predictors). A vector indicating a stratum for each row of the design matrix.
- `contrasts`: A list of contrasts to be used for some or all of the factors appearing as variables in the model formula. See the documentation of `glm` for more details.
Three different procedures are available. The default method is "PL" which implements pseudo-likelihood as developed by Breslow and Cain (1988). Other possible choices are "WL" and "ML" which implements, respectively, weighted likelihood (Flanders and Greenland, 1991; Zhao and Lipsitz, 1992) and maximum likelihood (Breslow and Holubkov, 1997; Scott and Wild, 1997).

Logical flag. TRUE indicates phase I is drawn as a cohort; FALSE indicates phase I is drawn as a case-control sample.

Marginal odds of observing a case in the population. This is only used when cohort=F is specified and must be correctly specified in order to obtain a correct estimate of the intercept.

Returns estimates and standard errors from logistic regression fit to data arising from two phase designs. Three semiparametric methods are implemented to obtain estimates of the regression coefficients and their standard errors. Use of this function requires existence of a finite number of strata (K) so that the phase one data consist of a joint classification into 2K cells according to binary outcome and stratum. This function can also handle certain missing value and measurement error problems with validation data.

The phase I sample can involve either cohort or case-control sampling. This software yields correct estimates (and standard errors) of all the regression coefficients (including the intercept) under cohort sampling at phase I. When phase I involves case-control sampling one cannot estimate the intercept, except, when the marginal odds of observing a case in the population is specified. Then the software yields a correct estimate and standard error for the intercept also.

The WL method fits a logistic regression model to the phase II data with a set of weights. Each unit is weighted by the ratio of frequencies (phase I/phase II) for the corresponding outcome X stratum cell. This estimator has its origins in sampling theory and is well known as Horvitz-Thompson method. The PL method maximizes the product of conditional probabilities of "being a case" given the covariates and the fact of inclusion in the phase II sample. This is called the "complete data likelihood" by some researchers. The estimate is obtained by fitting a logistic regression model to the phase II data with a set of offsets. The ML procedure maximizes the full likelihood of the data (phase I and II) jointly with respect to the regression parameters and the marginal distribution of the covariates. The resulting concentrated score equations (Breslow and Holubkov (1997), eq. 18) were solved using a modified Newton-Raphson algorithm. Schill’s (1993) partial likelihood estimates are used as the starting values.

NOTE: In some settings, the current implementation of the ML estimator returns point estimates that do not satisfy the phase I and/or phase II constraints. If this is the case a warning is printed and the "fail" elements of the returned list is set to TRUE. An example of this is phenomenon is given below. When this occurs, users are encouraged to either report the PL estimator or consider using Chris Wild’s "missreg" package.

tps() returns a list that includes estimated regression coefficients and one or two estimates of their asymptotic variance-covariance matrix:

Regression coefficient estimates
covm Model based variance-covariance matrix. This is available for method = "PL" and "ML".

cove Empirical variance-covariance matrix. This is available for all the three methods.

fail Indicator of whether or not the phase I and/or the phase II constraints are satisfied; only relevant for the ML estimator.

Author(s)
Nilanjan Chaterjee, Norman Breslow, Sebastien Haneuse

References

Examples

```r
##
data(ohio)
##
## Phase I stratification based on age
##
Ohio$S <- Ohio$Age + 1
K <- length(unique(Ohio$S))

## Phase I data
##
Ohio$nonDeath <- Ohio$N-Ohio$Death
m0 <- aggregate(Ohio$nonDeath, list(S=Ohio$S), FUN=sum)$x
m1 <- aggregate(Ohio$Death, list(S=Ohio$S), FUN=sum)$x

## Phase II sample sizes
```
tpsPower

Simulation-based estimation of power for the two-phase study design

Description

Monte Carlo based estimation of statistical power for estimators of the components of a logistic regression model, based on balanced two-phase and case-control study designs (Breslow and Chatterjee, 1999; Prentice and Pykle, 1979).

Usage

```r
tpsPower(B=1000, betaTruth, X, N, strata, expandX="all", etaTerms=NULL, 
nII, alpha=0.05, digits=1, betaNames=NULL, 
monitor=NULL, cohort=TRUE, NI=NULL)
```

Arguments

- **B**: The number of datasets generated by the simulation.
- **betaTruth**: Regression coefficients from the logistic regression model.
Design matrix for the logistic regression model. The first column should correspond to intercept. For each exposure, the baseline group should be coded as 0, the first level as 1, and so on.

A numeric vector providing the sample size for each row of the design matrix, X.

A numeric vector indicating which columns of the design matrix, X, are used to form the phase I stratification variable. strata=1 specifies the intercept and is, therefore, equivalent to a case-control study. strata=0 is not permitted in tpsPower(), although multiple two-phase stratifications can be investigated with tpsSim().

Character vector indicating which columns of X to expand as a series of dummy variables. Useful when at least one exposure is continuous (and should not be expanded). Default is ‘all’; other options include ‘none’ or character vector of column names. See Details, below.

Character vector indicating which columns of X are to be included in the model. See Details, below.

A numeric value indicating the phase II sample size. If a vector is provided, separate simulations are run for each element.

Type I error rate assumed for the evaluation of coverage probabilities and power.

Integer indicating the precision to be used for the output.

An optional character vector of names for the regression coefficients, \(\beta_a \).

Numeric value indicating how often tpsPower() reports real-time progress on the simulation, as the B datasets are generated and evaluated. The default of NULL indicates no output.

Logical flag. TRUE indicates phase I is drawn as a cohort; FALSE indicates phase I is drawn as a case-control sample.

A pair of integers providing the outcome-specific phase I sample sizes when the phase I data are drawn as a case-control sample. The first element corresponds to the controls and the second to the cases.

A simulation study is performed to estimate power for various estimators of \(\beta \):

- (a) complete data maximum likelihood (CD)
- (b) case-control maximum likelihood (CC)
- (c) two-phase weighted likelihood (WL)
- (d) two-phase pseudo- or profile likelihood (PL)
- (e) two-phase maximum likelihood (ML)

The overall simulation approach is the same as that described in tpsSim.

In each case, power is estimated as the proportion of simulated datasets for which a hypothesis test of no effect is rejected.
The correspondence between \texttt{betaTruth} and \(X \), specifically the ordering of elements, is based on successive use of \texttt{factor} to each column of \(X \) which is expanded via the \texttt{expandX} argument. Each exposure that is expanded must conform to a 0, 1, 2, ... integer-based coding convention.

The \texttt{etaTerms} argument is useful when only certain columns in \(X \) are to be included in the model. In the context of the two-phase design, this might be the case if phase I stratifies on some surrogate exposure and a more detailed/accurate measure is to be included in the main model.

Only balanced designs are considered by \texttt{tpsPower()]. For unbalanced designs, power estimates can be obtained from \texttt{tpsSim}.

\textbf{NOTE:} In some settings, the current implementation of the ML estimator returns point estimates that do not satisfy the phase I and/or phase II constraints. If this is the case a warning is printed and the "fail" elements of the returned list is set to TRUE. An example of this is phenomenon is given the help file for \texttt{tps}. When this occurs, \texttt{tpsPower()} considers ML estimation for the particular dataset to have failed.

\textbf{Value}

\texttt{tpsPower()} returns an object of class "tpsPower", a list containing all the input arguments, as well as the following components:

- \texttt{betaPower}
 Power against the null hypothesis that the regression coefficient is zero for a Wald-based test with an \texttt{alpha} type I error rate.

- \texttt{failed}
 A vector consisting of the number of datasets excluded from the power calculations (i.e. set to \texttt{NA}), for each simulation performed. For power calculations, the three reasons are: (1) lack of convergence indicated by \texttt{NA} point estimates returned by \texttt{glm} or \texttt{tps}; (2) lack of convergence indicated by \texttt{NA} standard error point estimates returned by \texttt{glm} or \texttt{tps}; and (3) for the ML estimator only, the phase I and/or phase II constraints are not satisfied.

\textbf{Note}

A generic print method provides formatted output of the results.

A generic plot function \texttt{plotPower} provides plots of powers against different sample sizes for each estimate of a regression coefficient.

\textbf{Author(s)}

Sebastien Haneuse, Takumi Saegusa

\textbf{References}

tpsSim

See Also

plotPower.

Examples

```r
##
data(Ohio)
##
XM <- cbind(Int=1, Ohio[,1:3])
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=Ohio,
family=binomial)
betanamesM <- c("Int", "AgeI", "Age2", "Sex", "Race")

## Power for the TPS design where phase I stratification is based on Race.
##
## Not run:
tpsResult1 <- tpsPower(B=1000, beta=fitM$coef, X=XM, N=Ohio$N, strata=4,
nII=seq(from=100, to=1000, by=100),
betanames=betanamesM, monitor=100)

## End(Not run)

## Power for the TPS design where phase I stratification is based on Age
##  * consider the setting where the age coefficients are halved from
##    their observed true values
##  * the intercept is modified, accordingly, using the beta0() function
##
newBetaM <- fitM$coef
newBetaM[1] <- beta0(beta=newBetaM[-1], X=XM, N=Ohio$N,
rhoY=sum(Ohio$Death)/sum(Ohio$N))

##
## Not run:
tpsResult2 <- tpsPower(B=1000, beta=fitM$coef, X=XM, N=Ohio$N, strata=2,
nII=seq(from=100, to=500, by=50),
betanames=betanamesM, monitor=100)

## End(Not run)
```

tpsSim

Simulation function for two-phase study designs.

Description

Monte Carlo based evaluation of operating characteristics for estimators of the components of a logistic regression model, based on the two-phase and case-control study designs (Breslow and Chatterjee, 1999; Prentice and Pykle, 1979).
Usage

tpsSim(B=1000, betaTruth, X, N, strata, expandX="all", etaTerms=NULL, nII0=NULL, nII1=NULL, nII=NULL, nCC=NULL, alpha=0.05, threshold=c(-Inf, Inf), digits=1, betaNames=NULL, referent=2, monitor=NULL, cohort=TRUE, NI=NULL, returnRaw=FALSE)

Arguments

B: The number of datasets generated by the simulation.

betaTruth: Design matrix for the logistic regression model. The first column corresponds to intercept. For each exposure, the baseline group should be coded as 0, the first level as 1, and so on.

X: A numeric vector providing the sample size for each row of the design matrix, X.

N: A list of numeric vectors indicating which columns of the design matrix, X, are used to form the phase I stratification schemes. strata=1 specifies the intercept and is, therefore, equivalent to a case-control study. strata=0 indicates all possible stratified two-phase sampling schemes. strata=list(2, 3) indicates 2 two-phase designs (that stratify on the 2nd and 3rd columns, separately) are to be considered.

expandX: Character vector indicating which columns of X to expand as a series of dummy variables. Useful when at least one exposure is continuous (and should not be expanded). Default is ‘all’; other options include ‘none’ or character vector of column names. See Details, below.

etaTerms: Character vector indicating which columns of X are to be included in the model. See Details, below.

nII0: A numeric vector of sample sizes at phase II for controls. The length must correspond to the number of unique values for the strata specification.

nII1: A numeric vector of sample sizes at phase II for cases. The length must correspond to the number of unique values for the strata specification.

nII: A pair of numbers providing the sample sizes for controls and cases at phase II. This is only used when simulating all stratified two-phase sampling schemes (i.e., strata=0).

nCC: A pair of sample sizes at phase II for controls and cases in a case-control design. If left NULL, the values case-control sample sizes are taken as the sums of nII and nII0, respectively.

alpha: Type I error rate assumed for the evaluation of coverage probabilities and power.

threshold: An interval that specifies truncation of the Monte Carlo sampling distribution of each estimator.

digits: Integer indicating the precision to be used for the output.

betaNames: An optional character vector of names for the regression coefficients, betaTruth.

referent: A numeric value specifying which estimator is taken as the referent (denominator) for the relative uncertainty calculation. 1=CD, 2=CC, 3=WL, 4=PL, 5=ML (see Details below).
monitor

Numeric value indicating how often \texttt{tpsSim()} reports real-time progress on the simulation, as the B datasets are generated and evaluated. The default of \texttt{NULL} indicates no output.

cohort

Logical flag. \texttt{TRUE} indicates phase I is drawn as a cohort; \texttt{FALSE} indicates phase I is drawn as a case-control sample.

\texttt{NI}

A pair of integers providing the outcome-specific phase I sample sizes when the phase I data are drawn as a case-control sample. The first element corresponds to the controls and the second to the cases.

\texttt{returnRaw}

Logical indicator of whether or not the raw coefficient and standard error estimates for each of the design/estimator combinations should be returned.

Details

A simulation study is performed to evaluate the operating characteristics of various designs/estimators for \texttt{betaTruth}:

- (a) complete data maximum likelihood (CD)
- (b) case-control maximum likelihood (CC)
- (c) two-phase weighted likelihood (WL)
- (d) two-phase pseudo- or profile likelihood (PL)
- (e) two-phase maximum likelihood (ML)

The operating characteristics are evaluated using the Monte Carlo sampling distribution of each estimator. The latter is generated using the following steps:

- (i) Specify the (joint) marginal exposure distribution of underlying population, using \(X\) and \(N\).
- (ii) Simulate outcomes for all \(\text{sum}(N)\) individuals in the population, based on an underlying logistic regression model specified via \texttt{betaTruth}.
- (iii) Evaluate the CD estimator on the basis of the complete data.
- (iv) Sample either (a) \texttt{ccDesign} controls and cases or (b) \text{sum}(nQ) controls and \text{sum}(nL) cases, (without regard to the \texttt{strata} variable) and evaluate the CC estimator.
- (v) Stratify the population according to outcome and the \texttt{strata} argument, to form the phase I data.
- (vi) Sample \(nQ\) controls and \(nL\) cases from their respective phase I strata.
- (vii) Evaluate the WL, PL and ML estimators.
- (viii) Repeat steps (ii)-(vii) B times.

Both the CD and CC estimators are evaluated using the generic \texttt{glm} function. The three two-phase estimators are based on the \texttt{tps} function.

The correspondence between \texttt{betaTruth} and \(X\), specifically the ordering of elements, is based on successive use of \texttt{factor} to each column of \(X\) which is expanded via the \texttt{expandX} argument. Each exposure that is expanded must conform to a 0, 1, 2, ... integer-based coding convention.

The \texttt{etaTerms} argument is useful when only certain columns in \(X\) are to be included in the model. In the context of the two-phase design, this might be the case if phase I stratifies on some surrogate exposure and a more detailed/accurate measure is to be included in the main model.
When evaluating operating characteristics, some simulated datasets may result in unusually large or small estimates. Particularly, when the the case-control/phase II sample sizes are small. In some settings, it may be desirable to truncate the Monte Carlo sampling distribution prior to evaluating operating characteristics. The threshold argument indicates the interval beyond which point estimates are ignored. The default is such that all B datasets are kept.

NOTE: In some settings, the current implementation of the ML estimator returns point estimates that do not satisfy the phase I and/or phase II constraints. If this is the case a warning is printed and the "fail" elements of the returned list is set to TRUE. An example of this is phenomenon is given the help file for tps. When this occurs, tppSim() considers ML estimation for the particular dataset to have failed.

Value

tppSim() returns an object of class "tppSim", a list containing all the input arguments, as well list results with the following components:

- **betaMean**: Mean of the Monte Carlo sampling distribution for each regression coefficient estimator.
- **betaMeanBias**: Bias based on the mean, calculated as betaMean - betaTruth.
- **betaMeanPB**: Percent bias based on mean, calculated as ((betaMean - betaTruth)/betaTruth) x 100. If a regression coefficient is zero, percent bias is not calculated and an NA is returned.
- **betaMedian**: Median of the Monte Carlo sampling distribution for each regression coefficient estimator.
- **betaMedianBias**: Bias based on the median, calculated as betaMedian - betaTruth.
- **betaMedianPB**: Percent bias based on median, calculated as ((betaMedian - betaTruth)/betaTruth) x 100. If a regression coefficient is zero, median percent bias is not calculated and an NA is returned.
- **betaSD**: Standard deviation of the Monte Carlo sampling distribution for each regression coefficient estimator.
- **betaMSE**: Mean squared error of the Monte Carlo sampling distribution for each regression coefficient estimator.
- **seMean**: Mean of the Monte Carlo sampling distribution for the standard error estimates reported by glm().
- **seRatio**: Ratio of the mean reported standard error to the standard deviation of the Monte Carlo sampling distribution for each regression coefficient estimator. The ratio is multiplied by 100.
- **betaCP**: Coverage probability for Wald-based confidence intervals, evaluated on the basis of an alpha type I error rate.
- **betaPower**: Power against the null hypothesis that the regression coefficient is zero for a Wald-based test with an alpha type I error rate.
- **betaRU**: The ratio of the standard deviation of the Monte Carlo sampling distribution for each estimator to the standard deviation of the Monte Carlo sampling distribution for the estimator corresponding to refDesign. The ratio is multiplied by 100.
Also returned is an object `failed` which is a vector consisting of the number of datasets excluded from the power calculations (i.e. set to NA), for each simulation performed. For the evaluation of general operating characteristics, the four reasons are: (1) lack of convergence indicated by NA point estimates returned by `glm` or `tps`; (2) lack of convergence indicated by NA standard error point estimates returned by `glm` or `tps`; (3) exclusion on the basis of the `threshold` argument; and (4) for the ML estimator only, the phase I and/or phase II constraints are not satisfied.

Note

A generic print method provides formatted output of the results.

Author(s)

Sebastien Haneuse, Takumi Saegusa

References

Examples

```r
##
data(ohio)
## Design matrix that forms the basis for model and phase I strata specification
##
XM <- cbind(Int=1, Ohio[,1:3])  ## main effects only
XI <- cbind(XM, SbyR=XM[,3]*XM[,4])  ## interaction between sex and race

## 'True' values for the underlying logistic model
##
fitM <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex + Race, data=Ohio, family=binomial)
fitI <- glm(cbind(Death, N-Death) ~ factor(Age) + Sex * Race, data=Ohio, family=binomial)

##
betaNamesM <- c("Int", "Age1", "Age2", "Sex", "Race")
betaNamesI <- c("Int", "Age1", "Age2", "Sex", "Race", "SexRace")

## Two-phase design stratified by age
## * sample 50 from each of 6 phase I strata
## * show primary output (% bias, 95% CP, relative uncertainty)
##
## Not run:
```
ocAge <- tpsSim(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N, strata=2,
 nII=c(50,50,50), nII=c(50,50,50), betaNames=betaNamesM,
 monitor=100)

ocAge
End(Not run)

All possible balanced two-phase designs
* 250 controls and 250 cases
* only show the relative uncertainty output
##
Not run:
ocAll <- tpsSim(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N, strata=0,
 nII=c(250, 250), betaNames=betaNamesM, monitor=100)

ocAll
End(Not run)

Two-phase design stratified by race
* balanced solely on outcome
* only show the relative uncertainty output
##
Not run:
ocRace <- tpsSim(B=1000, betaTruth=fitM$coef, X=XI, N=Ohio$N, strata=4,
 nII=c(200, 50), nII=c(200, 50), betaNames=betaNamesI,
 monitor=100)

ocRace
End(Not run)

Comparison of two case-control designs
* 240 controls and 260 cases
* 240 controls and 260 cases
* only show the relative uncertainty output
##
Not run:
ocCC <- tpsSim(B=1000, betaTruth=fitM$coef, X=XM, N=Ohio$N, strata=1,
 nII=240, nII=260, ccDesign=c(200,300),
 betaNames=betaNamesM, monitor=100)

ocCC
End(Not run)

Illustration of setting where one of the covariates is continuous
* restrict to black and white children born in 2003
* dichotomize smoking, mothers age, weight gain during pregnancy and weight weight
* note the use of 'etaTerms' to restrict to specific variables
(the majority of which are created)
* note the use of 'strata=list(11,12)' to simultaneously investigate stratification by
- 11th column in XM: derived 'smoker' variable
- 12th column in XM: derived 'teen' variable
##
Warning: takes a long time!
Not run:
data(infants)
##
infants <- infants[infants$year == 2003,]
```
#
infants$race[is.element(infants$race, c(1,2))] <- NA  ## White/Black = 0/1
infants$race <- infants$race - 1
infants <- na.omit(infants)
#
infants$smoker <- as.numeric(infants$cignum > 0)
infants$teen <- as.numeric(infants$mage < 20)
infants$lowgain <- as.numeric(infants$gained < 20)
infants$lbw <- as.numeric(infants$weight < 2500)
infants$weeks <- (infants$weeks - 36) / 4  # estimate a 4-week contrast
#
fitM <- glm(death ~ smoker + teen + race + male + lowgain + lbw + weeks,
data=infants, family=binomial)
betaM <- fitM$coef
XM <- cbind(Int=1, infants)
etaM <- c("Int", "smoker", "teen", "race", "male", "lowgain", "lbw", "weeks")
#
tpsSim(B=1000, betaTruth=fitM$coef, X=XM, N=rep(1, nrow(XM)), strata=list(11,12),
expand="none", etaTerms=etaM, nI=c(1000,1000),
threshold=c(-20,20), monitor=100)
# End(Not run)
```
Index

*Topic datasets
 infants, 13
 infants0709, 14
 Ohio, 16

beta0, 2

cPower, 3, 19
ccSim, 4, 6

enumerate, 10
expit (logit), 15

factor, 4, 7, 18, 28, 31

glm, 4, 5, 7, 8, 23, 28, 31, 33

hybdes, 11
hybdesEco, 12
hyblik (hybdes), 11

infants, 13
infants0709, 14

logit, 15

Ohio, 16
optimize, 2

phaseI, 17
plotPower, 5, 9, 19, 28, 29

rhyper, 22, 23
rmvhyper, 21
rXhyper, 22

tps, 23, 28, 31–33
tpsPower, 19, 20, 26
tpsSim, 27, 28, 29

36