Package ‘pacbpred’

February 20, 2015

Type Package

Title PAC-Bayesian Estimation and Prediction in Sparse Additive Models.

Version 0.92.2

Date 2013-02-05

Author Benjamin Guedj

Maintainer Benjamin Guedj <benjamin.guedj@upmc.fr>

Description This package is intended to perform estimation and prediction in high-dimensional additive models, using a sparse PAC-Bayesian point of view and a MCMC algorithm. The method is fully described in Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models', Electronic Journal of Statistics, 7, 264--291.

License GPL (>= 2)

URL http://www.lsta.upmc.fr/doct/guedj/index.html

Repository CRAN

Date/Publication 2013-02-05 13:41:35

NeedsCompilation no

R topics documented:

pacbpred-package ... 2
pacbpred ... 3

Index 6
Description

This package is intended to perform estimation and prediction in high-dimensional additive models, using a PAC-Bayesian point of view and a MCMC algorithm.

Details

Package: pacbpred
Type: Package
Version: 0.92.2
Date: 2013-02-05
License: GPL (>= 2)

Author(s)

Benjamin Guedj
Maintainer: Benjamin Guedj <benjamin.guedj@upmc.fr>

References

http://www.lsta.upmc.fr/doct/guedj/index.html

See Also

pacbpred

Examples

ndata <- 100
ntrain <- 80
ntest <- ndata - ntrain
p <- 10
Y <- numeric(ndata)
X <- matrix(nr = ndata, nc = p, data = 2*runif(n = ndata*p) - 1)
for(i in 1:ndata)
{
Y[i] <- X[i,1]^3*sin(pi*X[i,2])
}
pacbpred

Xtrain <- X[1:ntrain,]
Xtest <- X[(ntrain+1):ndata,]
Ytrain <- Y[1:ntrain]
Ytest <- Y[(ntrain+1):ndata]

niter <- 100
cst <- Inf
alpha <- .1
sigma2 <- .1
delta <- ntrain/2

res <- pacbpred(niter = niter, Xtrain = Xtrain, Xtest = Xtest, Y = Ytrain, cst = cst,
sigma2 = sigma2, delta = delta, alpha = alpha)

print(cbind(res$predict,Ytest))

Description

This package is intended to perform estimation and prediction in high-dimensional additive models, using a PAC-Bayesian point of view and a MCMC algorithm. The method is fully described in Guedj and Alquier (2013), 'PAC-Bayesian Estimation and Prediction in Sparse Additive Models', see http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ejs/1359041592.

Usage

pacbpred(niter, burnin = floor(niter * 2/3), Xtrain, Xtest, Y, K = 8,
cst,
sigma2, alpha = 0.1, delta)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>niter</td>
<td>Mandatory. The number of MCMC iterations.</td>
</tr>
<tr>
<td>burnin</td>
<td>Optional. How many iterations should be discarded in the beginning of the chain?</td>
</tr>
<tr>
<td>Xtrain</td>
<td>Mandatory. The design matrix of the training sample.</td>
</tr>
<tr>
<td>Xtest</td>
<td>Optional. The design matrix of the test sample.</td>
</tr>
<tr>
<td>Y</td>
<td>Mandatory. The vector of responses corresponding to Xtrain. Y is assumed to have the same number of rows as Xtrain.</td>
</tr>
<tr>
<td>K</td>
<td>Optional. The maximal order of the development on the trigonometric basis.</td>
</tr>
</tbody>
</table>
Optional. A numerical constant bounding from above the sup norm of true regression function.

Optional. The variance of the proposal density along the algorithm.

Optional. The penalization term over the complexity of a model.

Optional. The inverse temperature parameter.

Details

Value

A list composed of the following items.

predict If xtest is provided, the predicted values of the corresponding responses.
estimates The vector of estimates over the trigonometric basis.
ratio.mcmc A vector of the MCMC ratio for each iteration.
accept A logical vector whose length is the number of iterations. For each iteration, has the proposed move been accepted?
models.mcmc The current models all along the MCMC chain.

Note

This is still an early stage development. Use at your own risk!

Author(s)

Benjamin Guedj

References

http://www.lsta.upmc.fr/doct/guedj/index.html

See Also

pacbpred-package
Examples

ndata <- 100
ntrain <- 80
ntest <- ndata - ntrain
p <- 10
Y <- numeric(ndata)
X <- matrix(nr = ndata, nc = p, data = 2*runif(n = ndata*p) - 1)
for(i in 1:ndata)
{
 Y[i] <- X[i,1]^3+sin(pi*X[i,2])
}

Xtrain <- X[1:ntrain,]
Xtest <- X[(ntrain+1):ndata,]
Ytrain <- Y[1:ntrain]
Ytest <- Y[(ntrain+1):ndata]

niter <- 100
cst <- Inf
alpha <- .1
sigma2 <- .1
delta <- ntrain/2

res <- pacbpred(niter = niter, Xtrain = Xtrain, Xtest = Xtest, Y = Ytrain, cst = cst,
 sigma2 = sigma2, delta = delta, alpha = alpha)

print(cbind(res$predict,Ytest))
Index

*Topic nonlinear
 pacbprep, 3
*Topic pac-bayesian
 pacbprep, 3
*Topic package
 pacbprep-package, 2
*Topic prediction
 pacbprep, 3

pacbprep, 3
pacbprep-package, 2