Package ‘partialOR’

February 20, 2015

Type Package
Title Partial Odds Ratio
Version 0.9
Date 2013-01-03
Author Vaclav Fidler and Nico Nagelkerke
Maintainer Vaclav Fidler <vaclav.fidler@gmail.com>
Description Computes Odds Ratio adjusted for a vector of possibly continuous covariates
License GPL (>= 2)
Depends nnet
Repository CRAN
Date/Publication 2013-01-03 11:56:54
NeedsCompilation no

R topics documented:

partialOR-package .. 1
fitOR ... 2
partialOR .. 2
reportOR ... 3
simData ... 4

Index

PARTIAL ODDS RATIO ESTIMATION

Description

Estimates odds ratio between two binary variables adjusted for a vector of covariates ("confounders"). It generalizes the Mantel-Haenszel procedure.
fitOR | Fitting H- and F-Models

Description
Fits the multinomial logistic regression models. See partialOR() for details.

Usage
fitOR(dd)

Arguments
dd data frame with variables x,y,z1,...,zm

Value
fitH details of the H-model fit as returned by the optimization procedure optim()
fitF details of the F-model fit as returned by the function summary.nnet()
fit0 details of the null model, i.e. the model without covariates, as returned by nnet()

Author(s)
Vaclav.Fidler and Nico.Nagelkerke

Examples
simulate example data
dd <- simData(50,2,1.5,123)
fit the models
ff <- fitOR(dd)
display parameter estimates of the H-model
ff$fitH$coefficients

partialOR | Partial Odds Ratio Estimation

Description
Estimates odds ratio adjusted for a vector of covariates

Usage
partialOR(dd, ci=0.95)
Arguments

dd Data frame with binary 0/1 response variables x,y and covariates z1,...,zm (in that order)

.ci Confidence level (default ci=0.95)

Details

partialOR() estimates the adjusted odds ratio OR(X,Y | Z1,...,Zm) between two binary variables X and Y adjusted for a vector (Z1,...,Zm) of m numerical covariates ("confounders"). It is based on fitting a multinomial logistic regression model to the data. In this model the categorical response variable corresponds to the four possible outcomes of (X,Y), namely (0,0), (0,1), (1,0) and (1,1). The program fits the null model (without covariates), the full F-model and the H-model with parameters restricted by the hypothesis of homogeneity of odds ratio's. The homogeneity hypothesis is tested by comparing the two models by the Likelihood Ratio test. The program reports OR estimates under the respective models, the standard errors of log(OR) and confidence intervals. Note: to include categorical covariates the user has to transform them into dummy variables.

Value

The program prints information about the convergence of the optimizer, the model deviances, the LR-test and the adjusted odds ratios. It calls the function fitOR() which, when called separately, returns detailed information on model fitting.

Author(s)

Vaclav Fidler and Nico Nagelkerke

References

Examples

simulate data from the H-model
dd <- simData(n=50, m=2, rr=1.5, rseed=123)
estimate the OR
partialOR(dd)

Description

Prints the results of fitOR().
Usage

reportOR(fit, dd, ci)

Arguments

fit list containing output of fitOR()
dd data frame used to fit the models
ci confidence level (default 0.95)

Value

Prints the deviances of the null, F- and H-models, the LR-test, the odds ratio, standard error of log(OR) and confidence intervals based on parameters of the H- and F-models.

Examples

generate data
dd <- simData(n=50, m=2, rr=1.5, rseed = 123)
fit the models
fit <- fitOR(dd)
report the results
reportOR(fit, dd, 0.95)

simData
DATA SIMULATION

Description

Simulates data to be used as an example for partialOR.

Usage

simData(n=50, m=2, rr=1.5, rseed = 123)

Arguments

n number of independent observations
m number of covariates
rr common Odds Ratio
rseed seed for the random number generator (default 123)

Details

The covariates are i.i.d. N(0,1) variables.
Value

Data frame with \(n \) columns and \(m+2 \) variables \(x, y, z_1, \ldots, z_m \); \(x, y \) are 0/1 binary variables and \(z \)'s are the covariates.

Examples

```r
dd <- simData(50, 2, 1.5, rseed=123)
head(dd)
```
Index

fitOR, 2
partialOR, 2
partialOR-package, 1
reportOR, 3
simData, 4