Package ‘partykit’

June 5, 2018

Title A Toolkit for Recursive Partitioning

Date 2018-06-05

Version 1.2-2

Description A toolkit with infrastructure for representing, summarizing, and visualizing tree-structured regression and classification models. This unified infrastructure can be used for reading/coercing tree models from different sources (rpart, RWeka, PMML) yielding objects that share functionality for print()/plot()/predict() methods. Furthermore, new and improved reimplementations of conditional inference trees (ctree()) and model-based recursive partitioning (mob()) from the ‘party’ package are provided based on the new infrastructure. A description of this package was published by Hothorn and Zeileis (2015) <http://jmlr.org/papers/v16/hothorn15a.html>.

Depends R (>= 3.1.0), graphics, grid, libcoin (>= 1.0-0), mvtnorm

Imports grDevices, stats, utils, survival, Formula (>= 1.2-1), inum (>= 1.0-0), rpart (>= 4.1-11)

Suggests XML, pmml, rJava, sandwich, strucchange, vcd, AER, mlbench, TH.data (>= 1.0-3), coin (>= 1.1-0), RWeka (>= 0.4-19), datasets, parallel, psychotools (>= 0.3-0), psychotree, party (>= 1.3-0)

LazyData yes

License GPL-2 | GPL-3

URL http://partykit.R-Forge.R-project.org/partykit

NeedsCompilation yes

Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>), Heidi Seibold [ctb] (<https://orcid.org/0000-0002-8960-9642>), Achim Zeileis [aut] (<https://orcid.org/0000-0003-0918-3766>)

Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>

Repository CRAN

Date/Publication 2018-06-05 07:19:23 UTC
R topics documented:

cforest ... 2
ctree ... 7
ctree_control ... 10
extree_data .. 13
extree_fit ... 14
glm.tree ... 15
HuntingSpiders ... 17
lm.tree ... 19
mob ... 22
mob_control .. 24
model.frame.rpart ... 27
nodeapply ... 28
nodeids ... 29
panelfunctions ... 31
party ... 34
party-coercion ... 37
party-methods ... 38
party-plot .. 40
party-predict .. 42
partynode .. 44
partynode-methods ... 47
partysplit ... 49
prune.modelparty ... 52
varimp ... 54
WeatherPlay ... 56

Index 58

cforest Conditional Random Forests

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional
inference trees as base learners.

Usage

cforest(formula, data, weights, subset, offset, cluster, strata,
na.action = na.pass,
control = ctree_control(teststat = "quad", testtype = "Univ",
 mincriterion = 0, saveinfo = FALSE, ...),
ytrafo = NULL, scores = NULL, ntree = 500L,
perturb = list(replace = FALSE, fraction = 0.632),
mtry = ceiling(sqrt(nvar)), applyfun = NULL, cores = NULL,
trace = FALSE, ...)
S3 method for class 'cforest'

```r
predict(object, newdata = NULL,
  type = c("response", "prob", "weights", "node"),
  OOB = FALSE, FUN = NULL, simplify = TRUE, scale = TRUE, ...)
```

S3 method for class 'cforest'

```r
gettree(object, tree = 1L, ...)
```

Arguments

- **formula**: a symbolic description of the model to be fit.
- **data**: a data frame containing the variables in the model.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **weights**: an optional vector of weights to be used in the fitting process. Non-negative integer valued weights are allowed as well as non-negative real weights. Observations are sampled (with or without replacement) according to probabilities \(\text{weights} \div \text{sum(weights)} \). The fraction of observations to be sampled (without replacement) is computed based on the sum of the weights if all weights are integer-valued and based on the number of weights greater zero else. Alternatively, weights can be a double matrix defining case weights for all \(\text{ncol(weights)} \) trees in the forest directly. This requires more storage but gives the user more control.
- **offset**: an optional vector of offset values.
- **cluster**: an optional factor indicating independent clusters. Highly experimental, use at your own risk.
- **strata**: an optional factor for stratified sampling.
- **na.action**: a function which indicates what should happen when the data contain missing value.
- **control**: a list with control parameters, see `ctree_control`. The default values correspond to those of the default values used by `cforest` from the `party` package. `saveinfo = FALSE` leads to less memory hungry representations of trees. Note that arguments `mtry`, `cores` and `applyfun` in `ctree_control` are ignored for `cforest`, because they are already set.
- **ytrafo**: an optional named list of functions to be applied to the response variable(s) before testing their association with the explanatory variables. Note that this transformation is only performed once for the root node and does not take weights into account (which means, the forest bootstrap or subsetting is ignored, which is almost certainly not a good idea). Alternatively, `ytrafo` can be a function of `data` and `weights`. In this case, the transformation is computed for every node and the corresponding weights. This feature is experimental and the user interface likely to change.
- **scores**: an optional named list of scores to be attached to ordered factors.
- **ntree**: Number of trees to grow for the forest.
- **perturb**: a list with arguments `replace` and `fraction` determining which type of resampling with `replace = TRUE` referring to the n-out-of-a bootstrap and `replace = FALSE`
to sample splitting. fraction is the number of observations to draw without replacement.

mtry

number of input variables randomly sampled as candidates at each node for random forest like algorithms. Bagging, as special case of a random forest without random input variable sampling, can be performed by setting mtry either equal to Inf or manually equal to the number of input variables.

applyfun

an optional lapply-style function with arguments function(X, FUN, ...). It is used for computing the variable selection criterion. The default is to use the basic lapply function unless the cores argument is specified (see below).

cores

numeric. If set to an integer the applyfun is set to mclapply with the desired number of cores.

trace

a logical indicating if a progress bar shall be printed while the forest grows.

object

An object as returned by cforest

newdata

An optional data frame containing test data.

type

a character string denoting the type of predicted value returned, ignored when argument FUN is given. For "response", the mean of a numeric response, the predicted class for a categorical response or the median survival time for a censored response is returned. For "prob" the matrix of conditional class probabilities (simplify = TRUE) or a list with the conditional class probabilities for each observation (simplify = FALSE) is returned for a categorical response. For numeric and censored responses, a list with the empirical cumulative distribution functions and empirical survivor functions (Kaplan-Meier estimate) is returned when type = "prob", "weights" returns an integer vector of prediction weights. For type = "where", a list of terminal node ids for each of the trees in the forest ist returned.

OOB

a logical defining out-of-bag predictions (only if newdata = NULL).

FUN

a function to compute summary statistics. Predictions for each node have to be computed based on arguments (y, w) where y is the response and w are case weights.

simplify

a logical indicating whether the resulting list of predictions should be converted to a suitable vector or matrix (if possible).

scale

a logical indicating scaling of the nearest neighbor weights by the sum of weights in the corresponding terminal node of each tree. In the simple regression forest, predicting the conditional mean by nearest neighbor weights will be equivalent to (but slower!) the aggregation of means.

tree

an integer, the number of the tree to extract from the forest.

... additional arguments.

Details

This implementation of the random forest (and bagging) algorithm differs from the reference implementation in randomForest with respect to the base learners used and the aggregation scheme applied.
Conditional inference trees, see `ctree`, are fitted to each of the `ntree` perturbed samples of the learning sample. Most of the hyper parameters in `ctree_control` regulate the construction of the conditional inference trees.

Hyper parameters you might want to change are:

1. The number of randomly preselected variables `mtry`, which is fixed to the square root of the number of input variables.
2. The number of trees `ntree`. Use more trees if you have more variables.
3. The depth of the trees, regulated by `mincriterion`. Usually unstopped and unpruned trees are used in random forests. To grow large trees, set `mincriterion` to a small value.

The aggregation scheme works by averaging observation weights extracted from each of the `ntree` trees and NOT by averaging predictions directly as in `randomForest`. See Hothorn et al. (2004) and Meinshausen (2006) for a description.

Predictions can be computed using `predict`. For observations with zero weights, predictions are computed from the fitted tree when `newdata = NULL`.

Ensembles of conditional inference trees have not yet been extensively tested, so this routine is meant for the expert user only and its current state is rather experimental. However, there are some things available in `cforest` that can’t be done with `randomForest`, for example fitting forests to censored response variables (see Hothorn et al., 2004, 2006a) or to multivariate and ordered responses. Using the rich partykit infrastructure allows additional functionality in `cforest`, such as parallel tree growing and probabilistic forecasting (for example via quantile regression forests). Also plotting of single trees from a forest is much easier now.

Unlike `cforest`, `cforest` is entirely written in R which makes customisation much easier at the price of longer computing times. However, trees can be grown in parallel with this R only implementation which renders speed less of an issue. Note that the default values are different from those used in package party, most importantly the default for `mtry` is now data-dependent. `predict(type = “node”)` replaces the `where` function and `predict(type = “prob”)` the `treeresponse` function.

Moreover, when predictors vary in their scale of measurement of number of categories, variable selection and computation of variable importance is biased in favor of variables with many potential cutpoints in `randomForest`, while in `cforest` unbiased trees and an adequate resampling scheme are used by default. See Hothorn et al. (2006b) and Strobl et al. (2007) as well as Strobl et al. (2009).

Value

An object of class `cforest`.

References

Examples

```r
## basic example: conditional inference forest for cars data
cf <- cforest(dist ~ speed, data = cars)

## prediction of fitted mean and visualization
nd <- data.frame(speed = 4:25)
nd$mean <- predict(cf, newdata = nd, type = "response")
plot(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd)

## predict quantiles (aka quantile regression forest)
myquantile <- function(y, w) quantile(rep(y, w), probs = c(0.1, 0.5, 0.9))
p <- predict(cf, newdata = nd, type = "response", FUN = myquantile)
colnames(p) <- c("lower", "median", "upper")
nd <- cbind(nd, p)

## visualization with conditional (on speed) prediction intervals
plot(dist ~ speed, data = cars, type = "n")
with(nd, polygon(c(speed, rev(speed)), c(lower, rev(upper)),
    col = "lightgray", border = "transparent"))
points(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
legend("topleft", c("mean", "median", "10% - 90% quantile"),
    lwd = c(1.5, 1.5, 10), lty = c(1, 2, 1),
    col = c("black", "black", "lightgray"), bty = "n")

### we may also use predicted conditional (on speed) densities
mydensity <- function(y, w) approxfun(density(y, weights = w/sum(w))[1:2], rule = 2)
pd <- predict(cf, newdata = nd, type = "response", FUN = mydensity)

## visualization in heatmap (instead of scatterplot)
## with fitted curves as above
dist <- -10:150
dens <- t(sapply(seq_along(pd), function(i) pd[[i]][dist]))
image(nd$speed, dist, dens, xlab = "speed", col = rev(gray.colors(9)))
```
ctree

Conditional Inference Trees

Description

Recursive partitioning for continuous, censored, ordered, nominal and multivariate response variables in a conditional inference framework.

Usage

ctree(formula, data, subset, weights, na.action = na.pass, offset, cluster,
 control = ctree_control(...), ytrafo = NULL,
 converged = NULL, scores = NULL, doFit = TRUE, ...)

Arguments

formula a symbolic description of the model to be fit.
data a data frame containing the variables in the model.
subset an optional vector specifying a subset of observations to be used in the fitting process.
weights an optional vector of weights to be used in the fitting process. Only non-negative integer valued weights are allowed.
offset an optional vector of offset values.
cluster an optional factor indicating independent clusters. Highly experimental, use at
your own risk.
na.action a function which indicates what should happen when the data contain missing
value.
control a list with control parameters, see ctree_control.
ytrafo an optional named list of functions to be applied to the response variable(s) be-
fore testing their association with the explanatory variables. Note that this trans-
formation is only performed once for the root node and does not take weights
into account. Alternatively, ytrafo can be a function of data and weights.
In this case, the transformation is computed for every node with corresponding
weights. This feature is experimental and the user interface likely to change.
converged an optional function for checking user-defined criteria before splits are imple-
mented. This is not to be used and very likely to change.
scores an optional named list of scores to be attached to ordered factors.
doFit a logical, if FALSE, the tree is not fitted.
... arguments passed to ctree_control.

Details

Function partykit::ctree is a reimplementation of (most of) party::ctree employing the new
party infrastructure of the partykit infrastructure. Although the new code was already extensively
tested, it is not yet as mature as the old code. If you notice differences in the structure/predictions of
the resulting trees, please contact the package maintainers. See also vignette("ctree", package = "partykit")
for some remarks about the internals of the different implementations.

Conditional inference trees estimate a regression relationship by binary recursive partitioning in a
conditional inference framework. Roughly, the algorithm works as follows: 1) Test the global null
hypothesis of independence between any of the input variables and the response (which may be
multivariate as well). Stop if this hypothesis cannot be rejected. Otherwise select the input variable
with strongest association to the response. This association is measured by a p-value corresponding
to a test for the partial null hypothesis of a single input variable and the response. 2) Implement a
binary split in the selected input variable. 3) Recursively repeat steps 1) and 2).

The implementation utilizes a unified framework for conditional inference, or permutation tests,
developed by Strasser and Weber (1999). The stop criterion in step 1) is either based on multi-
plicity adjusted p-values (testtype = "Bonferroni" in ctree_control) or on the univariate
p-values (testtype = "Univariate"). In both cases, the criterion is maximized, i.e., 1 - p-value
is used. A split is implemented when the criterion exceeds the value given by mncriterion as
specified in ctree_control. For example, when mncriterion = 0.95, the p-value must be
smaller than 0.05 in order to split this node. This statistical approach ensures that the right-sized
tree is grown without additional (post-)pruning or cross-validation. The level of mncriterion can
either be specified to be appropriate for the size of the data set (and 0.95 is typically appropriate
for small to moderately-sized data sets) or could potentially be treated like a hyperparameter (see
Section~3.4 in Hothorn, Hornik and Zeileis, 2006). The selection of the input variable to split in
is based on the univariate p-values avoiding a variable selection bias towards input variables with
many possible cutpoints. The test statistics in each of the nodes can be extracted with the stctest
method. (Note that the generic is in the strucchange package so this either needs to be loaded or
sctest. constparty has to be called directly.) In cases where splitting stops due to the sample size (e.g., minsplit or minbucket etc.), the test results may be empty.

Predictions can be computed using predict, which returns predicted means, predicted classes or median predicted survival times and more information about the conditional distribution of the response, i.e., class probabilities or predicted Kaplan-Meier curves. For observations with zero weights, predictions are computed from the fitted tree when newdata = NULL.

By default, the scores for each ordinal factor x are 1:length(x), this may be changed for variables in the formula using scores = list(x = c(1, 5, 6)), for example.

Value

An object of class party.

References

Examples

Regression
airq <- subset(airquality, !is.na(Ozone))
airct <- ctree(Ozone ~ ., data = airq)
airct
plot(airct)
mean((airq$Ozone - predict(airct)) ^ 2)

Classification
irisct <- ctree(Species ~ ., data = iris)
irisct
plot(irisct)
table(predict(irisct), iris$Species)

Estimated Class Probabilities, a List
tr <- predict(irisct, newdata = iris[1:10,], type = "prob")

Survival Analysis
if (require("TH.data") && require("survival") && require("coin") && require("Formula")) {
 data("GBSG2", package = "TH.data")
ctree_control

Control for Conditional Inference Trees

Description

Various parameters that control aspects of the ‘ctree’ fit.

Usage

ctree_control(teststat = c("quadratic", "maximum"),
 splitstat = c("quadratic", "maximum"),
 splittest = FALSE,
 testtype = c("Bonferroni", "MonteCarlo", "Univariate", "Teststatistic"),
 pargs = GenzBretz(),
 nmax = c(yx = Inf, z = Inf), alpha = 0.05, mincriterion = 1 - alpha,
 logmincriterion = log(mincriterion), minsplit = 20L, minbucket = 7L,
 minprob = 0.01, stump = FALSE, lookahead = FALSE, MIA = FALSE, nresample = 9999L,
 tol = sqrt(.Machine$double.eps), maxsurrogate = 0L, numsurrogate = FALSE,
 mtry = Inf, maxdepth = Inf,
 multiway = FALSE, splittry = 2L, intersplit = FALSE, majority = FALSE,
 caseweights = TRUE, applyfun = NULL, cores = NULL, saveinfo = TRUE,
 update = NULL, splitflavour = c("ctree", "exhaustive"))
Arguments

teststat a character specifying the type of the test statistic to be applied for variable selection.

splitstat a character specifying the type of the test statistic to be applied for splitpoint selection. Prior to version 1.2-0, maximum was implemented only.

splittest a logical changing linear (the default FALSE) to maximally selected statistics for variable selection. Currently needs testtype = ”MonteCarlo”.

testtype a character specifying how to compute the distribution of the test statistic. The first three options refer to p-values as criterion, Teststatistic uses the raw statistic as criterion. Bonferroni and Univariate relate to p-values from the asymptotic distribution (adjusted or unadjusted). Bonferroni-adjusted Monte-Carlo p-values are computed when both Bonferroni and MonteCarlo are given.

pargs control parameters for the computation of multivariate normal probabilities, see GenzBretz.

nmax an integer of length two defining the number of bins each variable (in the response yx and the partitioning variables z) and is divided into prior to tree building. The default Inf does not apply any binning. Highly experimental, use at your own risk.

alpha a double, the significance level for variable selection.

mincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to implement a split.

logmincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to implement a split on the log-scale.

minsplits the minimum sum of weights in a node in order to be considered for splitting.

minbucket the minimum sum of weights in a terminal node.

minprob proportion of observations needed to establish a terminal node.

stump a logical determining whether a stump (a tree with a maximum of three nodes only) is to be computed.

lookahead a logical determining whether a split is implemented only after checking if tests in both daughter nodes can be performed.

MIA a logical determining the treatment of NA as a category in split, see Twala et al. (2008).

nresample number of permutations for testtype = ”MonteCarlo”.

tol tolerance for zero variances.

maxsurrogate number of surrogate splits to evaluate.

numsurrogate a logical for backward-compatibility with party. If TRUE, only at least ordered variables are considered for surrogate splits.

mtry number of input variables randomly sampled as candidates at each node for random forest like algorithms. The default mtry = Inf means that no random selection takes place. If ctree_control is used in cforest this argument is ignored.
maxdepth maximum depth of the tree. The default maxdepth = Inf means that no restrictions are applied to tree sizes.

multiway a logical indicating if multiway splits for all factor levels are implemented for unordered factors.

splittry number of variables that are inspected for admissible splits if the best split doesn’t meet the sample size constraints.

intersplit a logical indicating if splits in numeric variables are simply $x < a$ (the default) or interpolated $x \leq (a + b) / 2$. The latter feature is experimental, see Galili and Meilijson (2016).

majority if FALSE, observations which can’t be classified to a daughter node because of missing information are randomly assigned (following the node distribution). If TRUE, they go with the majority (the default in ctree).

caseweights a logical interpreting weights as case weights.

applyfun an optional `lapply`-style function with arguments `function(x, FUN, ...)`. It is used for computing the variable selection criterion. The default is to use the basic `lapply` function unless the `cores` argument is specified (see below). If `ctree_control` is used in `cforest` this argument is ignored.

cores numeric. If set to an integer the `applyfun` is set to `mclapply` with the desired number of cores. If `ctree_control` is used in `cforest` this argument is ignored.

saveinfo logical. Store information about variable selection procedure in info slot of each partynode.

update logical. If TRUE, the data transformation is updated in every node. The default always was and still is not to update unless `ytrafo` is a function.

splitflavour use exhaustive search over splits instead of maximally selected statistics (ctree). This feature may change.

Details

The arguments `teststat`, `testtype` and `mincriterion` determine how the global null hypothesis of independence between all input variables and the response is tested (see ctree). The variable with most extreme p-value or test statistic is selected for splitting. If this isn’t possible due to sample size constraints explained in the next paragraph, up to `splittry` other variables are inspected for possible splits.

A split is established when all of the following criteria are met: 1) the sum of the weights in the current node is larger than `minsplit`, 2) a fraction of the sum of weights of more than `minprob` will be contained in all daughter nodes, 3) the sum of the weights in all daughter nodes exceeds `minbucket`, and 4) the depth of the tree is smaller than `maxdepth`. This avoids pathological splits deep down the tree. When `stump = TRUE`, a tree with at most two terminal nodes is computed.

The argument `mtry > 0` means that a random forest like ‘variable selection’, i.e., a random selection of `mtry` input variables, is performed in each node.

In each inner node, `maxsurrogate` surrogate splits are computed (regardless of any missing values in the learning sample). Factors in test samples whose levels were empty in the learning sample are treated as missing when computing predictions (in contrast to ctree). Note also the different behaviour of `majority` in the two implementations.
Value
A list.

References

extree_data Data Preprocessing for Extensible Trees.

Description
A routine for preprocessing data before an extensible tree can be grown by extree_fit.

Usage
```r
extree_data(formula, data, subset, na.action = na.pass, weights, offset,
cluster, strata, scores = NULL, yx = c("none", "matrix"),
ytype = c("vector", "data.frame", "matrix"),
nmax = c(yx = Inf, z = Inf), ...)
```

Arguments
- `formula`: a formula describing the model of the form \(y_1 + y_2 + \ldots \sim x_1 + x_2 + \ldots \mid z_1 + z_2 + \ldots \).
- `data`: an optional data.frame containing the variables in the model.
- `subset`: an optional vector specifying a subset of observations to be used in the fitting process.
- `na.action`: a function which indicates what should happen when the data contain missing values.
- `weights`: an optional vector of weights.
- `offset`: an optional offset vector.
- `cluster`: an optional factor describing clusters. The interpretation depends on the specific tree algorithm.
- `strata`: an optional factor describing strata. The interpretation depends on the specific tree algorithm.
- `scores`: an optional named list of numeric scores to be assigned to ordered factors in the \(z \) part of the formula.
- `yx`: a character indicating if design matrices shall be computed.
- `ytype`: a character indicating how response variables shall be stored.
- `nmax`: a numeric vector of length two with the maximal number of bins in the response and \(x \)-part (first element) and the \(z \) part. Use \(\text{Inf} \) to switch-off binning.
- `...`: additional arguments.
Details

This internal functionality will be the basis of implementations of other tree algorithms in future versions. Currently, only ctree relies on this function.

Value

An object of class extree_data.

Examples

data("iris")

ed <- extree_data(Species ~ Sepal.Width + Sepal.Length | Petal.Width + Petal.Length,
 data = iris, nmax = c("yx" = 25, "z" = 10), yx = "matrix")

the model.frame
mf <- model.frame(ed)
all.equal(mf, iris[, names(mf)])

binned y ~ x part
model.frame(ed, yxonly = TRUE)

binned Petal.Width
ed[,4, type = "index"]

response
edyxy

model matrix
edyxx

extree_fit

Fit Extensible Trees.

Description

Basic infrastructure for fitting extensible trees.

Usage

```r
extree_fit(data, trafo, converged, selectfun = ctrl$selectfun, splitfun = ctrl$splitfun,
           svselectfun = ctrl$svselectfun, svsplitfun = ctrl$svsplitfun, partyvars,
           subset, weights, ctrl, doFit = TRUE)
```
Arguments

data an object of class extree_data, see extree_data.
trafo a function with arguments subset, weights, info, estfun and object.
converged a function with arguments subset, weights.
selectfun an optional function for selecting variables.
splitfun an optional function for selecting splits.
svselectfun an optional function for selecting surrogate variables.
svsplitfun an optional function for selecting surrogate splits.
partyvars a numeric vector assigning a weight to each partitioning variable (z in extree_data).
subset a sorted integer vector describing a subset.
weights an optional vector of weights.
ctrl control arguments.
dofit a logical indicating if the tree shall be grown (TRUE) or not FALSE.

Details

This internal functionality will be the basis of implementations of other tree algorithms in future versions. Currently, only ctree relies on this function.

Value

An object of class partynode.

Description

Model-based recursive partitioning based on generalized linear models.

Usage

glmtree(formula, data, subset, na.action, weights, offset, cluster,
family = gaussian, epsilon = 1e-8, maxit = 25, ...)

Arguments

formula symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... + xk | z1 + ... + zl; for details see below).
data, subset, na.action arguments controlling formula processing via model.frame.
weights optional numeric vector of weights. By default these are treated as case weights but the default can be changed in mob_control.
offset optional numeric vector with an a priori known component to be included in the model $y \sim x_1 + \ldots + x_k$ (i.e., only when x variables are specified).

cluster optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.

family specification of a family for glm.

epsilonL, maxit control parameters passed to glm.control.

... optional control parameters passed to mob.control.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the mob function. glmtree internally sets up a model fit function for mob, using glm.fit. Then mob is called using the negative log-likelihood as the objective function.

Compared to calling mob by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class glmtree inheriting from modelparty. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also

mob, mob_control, lmtree

Examples

if(require("mlbench")) {

 ## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

 ## recursive partitioning of a logistic regression model
pid_tree2 <- glmtree(diabetes ~ glucose | pregnant + pressure + triceps + insulin + mass + pedigree + age,
 data = PimaIndiansDiabetes, family = binomial)

 ## printing whole tree or individual nodes
print(pid_tree2)
print(pid_tree2, node = 1)

 ## visualization
plot(pid_tree2)
plot(pid_tree2, tp_args = list(cdpplot = TRUE))
plot(pid_tree2, terminal_panel = NULL)
Abundance of Hunting Spiders

Description

Abundances for 12 species of hunting spiders along with environmental predictors, all rated on a 0–9 scale.

Usage

data("HuntingSpiders")

Format

A data frame containing 28 observations on 18 variables (12 species abundances and 6 environmental predictors).

- **arct.lute** numeric. Abundance of species *Arctosa lutetiana* (on a scale 0–9).
- **pard.lugu** numeric. Abundance of species *Pardosa lugubris* (on a scale 0–9).
- **zora.spin** numeric. Abundance of species *Zora spinimana* (on a scale 0–9).
- **pard.nigr** numeric. Abundance of species *Pardosa nigriceps* (on a scale 0–9).
- **pard.pull** numeric. Abundance of species *Pardosa pullata* (on a scale 0–9).
- **aulo.albi** numeric. Abundance of species *Aulonia albimana* (on a scale 0–9).
- **troc.terr** numeric. Abundance of species *Trochosa terricola* (on a scale 0–9).
- **alop.cune** numeric. Abundance of species *Alopecosa cuneata* (on a scale 0–9).
- **pard.mont** numeric. Abundance of species *Pardosa monticola* (on a scale 0–9).
The data were originally analyzed by Van der Aart and Smeenk-Enserink (1975). De’ath (2002) transformed all variables to the 0–9 scale and employed multivariate regression trees.

References

Examples

```r
## load data
data("HuntingSpiders", package = "partykit")

## fit multivariate tree for 12-dimensional species abundance
sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr + pard.pull +
   aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce + alop.fabr +
   arct.peri ~ herbs + reft + moss + sand + twigs + water, data = HuntingSpiders,
   teststat = "max", msplit = 5)
plot(sptree, terminal_panel = node_barplot)
```
Description

Model-based recursive partitioning based on least squares regression.

Usage

`lmtree(formula, data, subset, na.action, weights, offset, cluster, ...)`

Arguments

- `formula`: symbolic description of the model (of type `y ~ z1 + ... + zl` or `y ~ x1 + ... + xk | z1 + ... + zl`; for details see below).
- `data`, `subset`, `na.action`: arguments controlling formula processing via `model.frame`.
- `weights`: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in `mob_control`.
- `offset`: optional numeric vector with an a priori known component to be included in the model `y ~ x1 + ... + xk` (i.e., only when `x` variables are specified).
- `cluster`: optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.
- `...`: optional control parameters passed to `mob_control`.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the `mob` function. `lmtree` internally sets up a model fit function for `mob`, using either `lm.fit` or `lm.wfit` (depending on whether weights are used or not). Then `mob` is called using the residual sum of squares as the objective function.

Compared to calling `mob` by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class `lmtree` inheriting from `modelparty`. The `info` element of the overall `party` and the individual nodes contain various informations about the models.

References

See Also

`mob`, `mob_control`, `glmtree`
Examples

```r
if(require("mlbench")) {

## Boston housing data
data("BostonHousing", package = "mlbench")
BostonHousing <- transform(BostonHousing,
    chas = factor(chas, levels = 0:1, labels = c("no", "yes")),
    rad = factor(rad, ordered = TRUE))

## linear model tree
bh_tree <- lmtree(medv ~ log(lstat) + I(rm^2) | zn +
    indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
    data = BostonHousing, minsize = 40)

## printing whole tree or individual nodes
print(bh_tree)
print(bh_tree, node = 7)

## plotting
plot(bh_tree)
plot(bh_tree, tp_args = list(which = "log(lstat"))
plot(bh_tree, terminal_panel = NULL)

## estimated parameters
coef(bh_tree)
coef(bh_tree, node = 9)
summary(bh_tree, node = 9)

## various ways for computing the mean squared error (on the training data)
mean((BostonHousing$medv - fitted(bh_tree))^2)
mean(residuals(bh_tree)^2)
deviance(bh_tree)/sum(weights(bh_tree))
deviance(bh_tree)/nobs(bh_tree)

## log-likelihood and information criteria
logLik(bh_tree)
AIC(bh_tree)
BIC(bh_tree)

## (Note that this penalizes estimation of error variances, which
## were treated as nuisance parameters in the fitting process.)

## different types of predictions
bh <- BostonHousing[c(1, 10, 50), ]
predict(bh_tree, newdata = bh, type = "node")
predict(bh_tree, newdata = bh, type = "response")
predict(bh_tree, newdata = bh, type = function(object) summary(object)$r.squared)
}

if(require("AER")) {

```
Demand for economics journals data

data("Journals", package = "AER")
Journals <- transform(Journals,
 age = 2000 - foundingyear,
 chars = charpp * pages)

linear regression tree (OLS)
j_tree <- lmtree(log(subs) ~ log(price/citations) | price + citations +
 age + chars + society, data = Journals, minsize = 10, verbose = TRUE)

printing and plotting
j_tree
plot(j_tree)

coefficients and summary
coef(j_tree, node = 1:3)
summary(j_tree, node = 1:3)

if(require("AER")) {

Beauty and teaching ratings data

data("TeachingRatings", package = "AER")

linear regression (WLS)
null model
tr_null <- lm(eval ~ 1, data = TeachingRatings, weights = students,
 subset = credits == "more")
main effects
tr_lm <- lm(eval ~ beauty + gender + minority + native + tenure + division,
 data = TeachingRatings, weights = students, subset = credits == "more")
tree
tr_tree <- lmtree(eval ~ beauty | minority + age + gender + division + native + tenure,
 data = TeachingRatings, weights = students, subset = credits == "more",
 caseweights = FALSE)

visualization
plot(tr_tree)

beauty slope coefficient
coef(tr_lm)[2]
coef(tr_tree)[, 2]

R-squared
1 - deviance(tr_lm)/deviance(tr_null)
1 - deviance(tr_tree)/deviance(tr_null)
}
MOB is an algorithm for model-based recursive partitioning yielding a tree with fitted models associated with each terminal node.

Usage

```r
mob(formula, data, subset, na.action, weights, offset, cluster,
    fit, control = mob.control(), ...) 
```

Arguments

- `formula`: symbolic description of the model (of type `y ~ z1 + ... + zl` or `y ~ x1 + ... + xk | z1 + ... + zl` for details see below).
- `data, subset, na.action`: arguments controlling formula processing via `model.frame`.
- `weights`: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in `mob_control`.
- `offset`: optional numeric vector with an a priori known component to be included in the model `y ~ x1 + ... + xk` (i.e., only when `x` variables are specified).
- `cluster`: optional vector (typically numeric or factor) with a cluster ID to be passed on to the `fit` function and employed for clustered covariances in the parameter stability tests.
- `fit`: function. A function for fitting the model within each node. For details see below.
- `control`: A list with control parameters as returned by `mob_control`.
- `...`: Additional arguments passed to the `fit` function.

Details

Model-based partitioning fits a model tree using two groups of variables: (1) The model variables which can be just a (set of) response(s) `y` or additionally include regressors `x1, ..., xk`. These are used for estimating the model parameters. (2) Partitioning variables `z1, ..., zl`, which are used for recursively partitioning the data. The two groups of variables are either specified as `y ~ z1 + ... + zl` (when there are no regressors) or `y ~ x1 + ... + xk | z1 + ... + zl` (when the model part contains regressors). Both sets of variables may in principle be overlapping.

To fit a tree model the following algorithm is used.

1. fit a model to the `y` or `y` and `x` variables using the observations in the current node
2. Assess the stability of the model parameters with respect to each of the partitioning variables `z1, ..., zl`. If there is some overall instability, choose the variable `z` associated with the smallest `p` value for partitioning, otherwise stop.
3. Search for the locally optimal split in z by minimizing the objective function of the model. Typically, this will be something like deviance or the negative logLik.

4. Refit the model in both kid subsamples and repeat from step 2.

More details on the conceptual design of the algorithm can be found in Zeileis, Hothorn, Hornik (2008) and some illustrations are provided in vignette(“MOB”). For specifying the fit function two approaches are possible:

1. It can be a function fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...).
 The arguments y, x, weights, offset will be set to the corresponding elements in the current node of the tree. Additionally, starting values will sometimes be supplied via start. Of course, the fit function can choose to ignore any arguments that are not applicable, e.g., if the are no regressors x in the model or if starting values or not supported. The returned object needs to have a class that has associated coef, logLik, and estfun methods for extracting the estimated parameters, the maximized log-likelihood, and the empirical estimating function (i.e., score or gradient contributions), respectively.

2. It can be a function fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ..., estfun = FALSE, object = FALSE).
 The arguments have the same meaning as above but the returned object needs to have a different structure. It needs to be a list with elements coefficients (containing the estimated parameters), objfun (containing the minimized objective function), estfun (the empirical estimating functions), and object (the fitted model object). The elements estfun, or object should be NULL if the corresponding argument is set to FALSE.

 Internally, a function of type (2) is set up by mob() in case a function of type (1) is supplied. However, to save computation time, a function of type (2) may also be specified directly.

 For the fitted MOB tree, several standard methods are provided such as print, predict, residuals, logLik, deviance, weights, coef and summary. Some of these rely on reusing the corresponding methods for the individual model objects in the terminal nodes. Functions such as coef, print, summary also take a node argument that can specify the node IDs to be queried. Some examples are given below.

 More details can be found in vignette(“mob”, package = ”partykit”). An overview of the connections to other functions in the package is provided by Hothorn and Zeileis (2015).

Value

An object of class modelparty inheriting from party. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also

mob_control, lmtree, glmtree
Examples

```r
if(require("mlbench")) {

  ## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

  ## a simple basic fitting function (of type 1) for a logistic regression
  logit <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
    glm(y ~ 0 + x, family = binomial, start = start, ...)
  }

  ## set up a logistic regression tree
  pid_tree <- mob(diabetes ~ glucose | pregnant + pressure + triceps + insulin + mass + pedigree + age, data = PimaIndiansDiabetes, fit = logit)
  ## see lmtree() and glmtree() for interfaces with more efficient fitting functions

  ## print tree
  print(pid_tree)

  ## print information about (some) nodes
  print(pid_tree, node = 3:4)

  ## visualization
  plot(pid_tree)

  ## coefficients and summary
  coef(pid_tree)
  coef(pid_tree, node = 1)
  summary(pid_tree, node = 1)

  ## average deviance computed in different ways
  mean(residuals(pid_tree)^2)
  deviance(pid_tree)/sum(weights(pid_tree))
  deviance(pid_tree)/nobs(pid_tree)

  ## log-likelihood and information criteria
  loglik(pid_tree)
  AIC(pid_tree)
  BIC(pid_tree)

  ## predicted nodes
  predict(pid_tree, newdata = head(PimaIndiansDiabetes, 6), type = "node")
  ## other types of predictions are possible using lmtree() / glmtree()
}
```

mob_control

Control Parameters for Model-Based Partitioning

Description

Various parameters that control aspects the fitting algorithm for recursively partitioned **mob** models.
Usage

mob_control(alpha = 0.05, bonferroni = TRUE, minsize = NULL, maxdepth = Inf, mtry = Inf, trim = 0.1, breakties = FALSE, parm = NULL, dfsplit = TRUE, prune = NULL, restart = TRUE, verbose = FALSE, caseweights = TRUE, ytype = "vector", xtype = "matrix", terminal = "object", inner = terminal, model = TRUE, nmsplit = "left", catsplit = "binary", vcov = "opg", ordinal = "chisq", nrep = 10000, minsplit = minsize, minbucket = minsize, applyfun = NULL, cores = NULL)

Arguments

alpha numeric significance level. A node is split when the (possibly Bonferroni-corrected) p value for any parameter stability test in that node falls below alpha (and the stopping criteria minsize and maxdepth are not fulfilled).

bonferroni logical. Should p values be Bonferroni corrected?

minsize, minsplit, minbucket integer. The minimum number of observations in a node. If NULL, the default is to use 10 times the number of parameters to be estimated (divided by the number of responses per observation if that is greater than 1). minsize is the recommended name and minsplit/minbucket are only included for backward compatibility with previous versions of mob and compatibility with ctree, respectively.

maxdepth integer. The maximum depth of the tree.

mtry integer. The number of partitioning variables randomly sampled as candidates in each node for forest-style algorithms. If mtry is greater than the number of partitioning variables, no random selection is performed. (Thus, by default all available partitioning variables are considered.)

trim numeric. This specifies the trimming in the parameter instability test for the numerical variables. If smaller than 1, it is interpreted as the fraction relative to the current node size.

breakties logical. Should ties in numeric variables be broken randomly for computing the associated parameter instability test?

parm numeric or character. Number or name of model parameters included in the parameter instability tests (by default all parameters are included).

dfsplit logical or numeric. as.integer(dfsplit) is the degrees of freedom per selected split employed when computing information criteria etc.

prune character, numeric, or function for specifying post-pruning rule. If prune is NULL (the default), no post-pruning is performed. For likelihood-based mob() trees, prune can be set to "AIC" or "BIC" for post-pruning based on the corresponding information criteria. More general rules (also in scenarios that are not likelihood-based), can be specified by function arguments to prune, for details see below.

restart logical. When determining the optimal split point in a numerical variable: Should model estimation be restarted with NULL starting values for each split? The default is TRUE. If FALSE, then the parameter estimates from the previous split point
are used as starting values for the next split point (because in practice the difference are often not huge). (Note that in that case a for loop is used instead of the applyfun for fitting models across sample splits.)

verbose
logical. Should information about the fitting process of `mob` (such as teststatistics, p values, selected splitting variables and split points) be printed to the screen?

caseweights
logical. Should weights be interpreted as case weights? If `TRUE`, the number of observations is `sum(weights)`, otherwise it is `sum(weights > 0)`.

ytype, xtype
character. Specification of how `mob` should preprocess y and x variables. Possible choice are: "vector" (for y only), i.e., only one variable; "matrix", i.e., the model matrix of all variables; "data.frame", i.e., a data frame of all variables.

terminal, inner
character. Specification of which additional information ("estfun", "object", or both) should be stored in each node. If `NULL`, no additional information is stored.

model
logical. Should the full model frame be stored in the resulting object?

numsplit
character indicating how splits for numeric variables should be justified. Because any splitpoint in the interval between the last observation from the left child segment and the first observation from the right child segment leads to the same observed split, two options are available in `mob_control`: Either, the split is "left"-justified (the default for backward compatibility) or "center"-justified using the midpoint of the possible interval.

catsplit
character indicating how (unordered) categorical variables should be splitted. By default the best "binary" split is searched (by minimizing the objective function). Alternatively, if set to "multiway", the node is simply splitted into all levels of the categorical variable.

vcov
character indicating which type of covariance matrix estimator should be employed in the parameter instability tests. The default is the outer product of gradients ("opg"). Alternatively, `vcov = "info"` employs the information matrix and `vcov = "sandwich"` the sandwich matrix (both of which are only sensible for maximum likelihood estimation).

ordinal
character indicating which type of parameter instability test should be employed for ordinal partitioning variables (i.e., ordered factors). This can be "chisq", "max", or "L2". If "chisq" then the variable is treated as unordered and a chi-squared test is performed. If "L2", then a maxLM-type test as for numeric variables is carried out but correcting for ties. This requires simulation of p-values via `catL2BB` and requires some computation time. For "max" a weighted double maximum test is used that computes p-values via `pmvnorm`.

nrep
numeric. Number of replications in the simulation of p-values for the ordinal "L2" statistic (if used).

applyfun
an optional `lapply`-style function with arguments `function(X, FUN, ...)`. It is used for refitting the model across potential sample splits. The default is to use the basic `lapply` function unless the `cores` argument is specified (see below).

cores
numeric. If set to an integer the `applyfun` is set to `mclapply` with the desired number of cores.
Details

See `mob` for more details and references.

For post-pruning, `prune` can be set to a function(objfun, df, nobs) which either returns TRUE to signal that a current node can be pruned or FALSE. All supplied arguments are of length two: objfun is the sum of objective function values in the current node and its child nodes, respectively. df is the degrees of freedom in the current node and its child nodes, respectively. nobs is vector with the number of observations in the current node and the total number of observations in the dataset, respectively.

If the objective function employed in the `mob()` call is the negative log-likelihood, then a suitable function is set up on the fly by comparing (2 * objfun + penalty * df) in the current and the daughter nodes. The penalty can then be set via a numeric or character value for `prune`: AIC is used if `prune = "AIC"` or `prune = 2` and BIC if `prune = "BIC"` or `prune = log(n)`.

Value

A list of class `mob_control` containing the control parameters.

See Also

`mob`

model_frame_rpart Model Frame Method for rpart

Description

A model.frame method for rpart objects.

Usage

`model_frame_rpart(formula, ...)`

Arguments

- `formula` an object of class `rpart`.
- `...` additional arguments.

Details

A `model.frame` method for `rpart` objects. Because it is no longer possible to overwrite existing methods, the function name is a little different here.

Value

A model frame.
nodeapply

Apply Functions Over Nodes

Description

Returns a list of values obtained by applying a function to party or partynode objects.

Usage

nodeapply(obj, ids = 1, FUN = NULL, ...)
S3 method for class 'partynode'
nodeapply(obj, ids = 1, FUN = NULL, ...)
S3 method for class 'party'
nodeapply(obj, ids = 1, FUN = NULL, by_node = TRUE, ...)

Arguments

obj an object of class partynode or party.
ids integer vector of node identifiers to apply over.
FUN a function to be applied to nodes. By default, the node itself is returned.
by_node a logical indicating if FUN is applied to subsets of party objects or partynode objects (default).
... additional arguments.

Details

Function FUN is applied to all nodes with node identifiers in ids for a partynode object. The method for party by default calls the nodeapply method on it's node slot. If by_node is FALSE, it is applied to a party object with root node ids.

Value

A list of results of length length(ids).

Examples

a tree as flat list structure
nodelist <- list(
 # root node
 list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
 kids = 2:3),
 # V4 <= 1.9, terminal node
 list(id = 2L, info = "terminal A"),
 # V4 > 1.9
 list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),
 kids = c(4L, 7L)),
 ...
nodeids

V5 <= 1.7
list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
 kids = 5:6),
V4 <= 4.8, terminal node
list(id = 5L, info = "terminal B"),
V4 > 4.8, terminal node
list(id = 6L, info = "terminal C"),
V5 > 1.7, terminal node
list(id = 7L, info = "terminal D")

convert to a recursive structure
node <- as.partynode(nodelist)

return root node
nodeapply(node)

return info slots of terminal nodes
nodeapply(node, ids = nodeids(node, terminal = TRUE),
 FUN = function(x) info_node(x))

fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

coerce to 'constparty'
rpk <- as.party(rp)

extract nodeids
nodeids(rpk)
unlist(nodeapply(node_party(rpk), ids = nodeids(rpk),
 FUN = id_node))
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = id_node))

but root nodes of party objects always have id = 1
unlist(nodeapply(rpk, ids = nodeids(rpk), FUN = function(x)
 id_node(node_party(x)), by_node = FALSE))

nodeids

Extract Node Identifiers

Description

Extract unique identifiers from inner and terminals nodes of a partynode object.

Usage

nodeids(obj, ...)
S3 method for class 'partynode'
nodeids(obj, from = NULL, terminal = FALSE, ...)
S3 method for class 'party'
nodeids(obj, from = NULL, terminal = FALSE, ...)
get_paths(obj, i)

Arguments
- **obj**: an object of class `partynode` or `party`.
- **from**: an integer specifying node to start from.
- **terminal**: logical specifying if only node identifiers of terminal nodes are returned.
- **i**: a vector of node identifiers.
- **...**: additional arguments.

Details
The identifiers of each node are extracted from `nodeids`. `get_paths` returns the paths for extracting the corresponding nodes using list subsets.

Value
A vector of node identifiers.

Examples
```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V1 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L),
  # V4 > 4.8, terminal node
  list(id = 6L),
  # V1 > 1.7, terminal node
  list(id = 7L)
)

## convert to a recursive structure
node <- as.partynode(nodelist)

## set up party object
data("iris")
```
Panelfunctions

Panel-Generators for Visualization of Party Trees

Description

The plot method for `party` and `constparty` objects are rather flexible and can be extended by panel functions. Some pre-defined panel-generating functions of class `grapcon_generator` for the most important cases are documented here.

Usage

node_inner(obj, id = TRUE, pval = TRUE, abbreviate = FALSE, fill = "white", gp = gpar())
	node_terminal(obj, digits = 3, abbreviate = FALSE, fill = c("lightgray", "white"), id = TRUE, just = c("center", "top"), top = 0.85, align = c("center", "left", "right"), gp = NULL, FUN = NULL, height = NULL, width = NULL)

dot_edge_simple(obj, digits = 3, abbreviate = FALSE, justmin = Inf, just = c("alternate", "increasing", "decreasing", "equal"), fill = "white")

node_boxplot(obj, col = "black", fill = "lightgray", bg = "white", width = 0.5, yscale = NULL, ylines = 3, cex = 0.5, id = TRUE, mainlab = NULL, gp = gpar())

node_barplot(obj, col = "black", fill = NULL, bg = "white",
beside = NULL, ymax = NULL, ylines = NULL, widths = 1, gap = NULL,
reverse = NULL, rot = 0, just = c("center", "top"), id = TRUE,
mainlab = NULL, text = c("none", "horizontal", "vertical"), gp = gpar()

node_surv(obj, col = "black", bg = "white", ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_ecdf(obj, col = "black", bg = "white", ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_bivplot(mobobj, which = NULL, id = TRUE, pop = TRUE,
pointcol = "black", pointcex = 0.5,
boxcol = "black", boxwidth = 0.5, boxfill = "lightgray",
bg = "white", fitmean = TRUE, linecol = "red",
cdplot = FALSE, fivenum = TRUE, breaks = NULL,
ylines = NULL, xlab = FALSE, ylab = FALSE, margins = rep(1.5, 4),
mainlab = NULL, ...)

node_mvar(obj, which = NULL, id = TRUE, pop = TRUE, ylines = NULL,
mainlab = NULL, varlab = TRUE, bg = "white", ...)

Arguments

obj
an object of class party.
digits
integer, used for formatting numbers.
abbreviate
logical indicating whether strings should be abbreviated.
col, pointcol, boxcol, linecol
a color for points and lines.
fill, boxfill, bg
a color to filling rectangles and backgrounds.
id
logical. Should node IDs be plotted?
pval
logical. Should node p values be plotted (if they are available)?
just
justification of terminal panel viewport (node_terminal), or labels (edge_simple,
node_barplot).
justmin
minimum average edge label length to employ justification via just in edge_panel,
otherwise just = "equal" is used. Thus, by default "equal" justification is always used but other justifications could be employed for finite justmin.
top
in case of top justification, the npc coordinate at which the viewport is justified.
align
alignment of text within terminal panel viewport.
ylines
number of lines for spaces in y-direction.
widths
widths in barplots.
boxwidth
width in boxplots (called width in node_boxplot).
gap
gap between bars in a barplot (node_barplot).
yscale
limits in y-direction
The plot methods for party and constparty objects provide an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. The panel functions to be used should depend only on the node being visualized, however, for setting up an appropriate panel function, information from the whole tree is typically required. Hence, party adopts the framework of grapcon_generator (graphical appearance control) from the vcd package (Meyer, Zeileis and Hornik, 2005) and provides several panel-generating functions. For convenience, the panel-generating functions node_inner and edge_simple return panel functions to draw inner nodes and left and right edges. For drawing terminal nodes, the functions returned by the other panel functions can be used. The panel generating function node_terminal is a terse text-based representation of terminal nodes.
Graphical representations of terminal nodes are available and depend on the kind of model and the measurement scale of the variables modeled.

For univariate regressions (typically fitted by), node_surv returns a functions that plots Kaplan-Meier curves in each terminal node; node_barplot, node_boxplot, node_hist, node_ecdf and node_density can be used to plot bar plots, box plots, histograms, empirical cumulative distribution functions and estimated densities into the terminal nodes.

For multivariate regressions (typically fitted by mob), node_bivplot returns a panel function that creates bivariate plots of the response against all regressors in the model. Depending on the scale of the variables involved, scatter plots, box plots, spinograms (or CD plots) and spine plots are created. For the latter two spine and cd_plot from the vcd package are re-used.

For multivariate responses in ctree, the panel function node_mvar generates one plot for each response.

References

party

Recursive Partitioning

Description

A class for representing decision trees and corresponding accessor functions.

Usage

```r
party(node, data, fitted = NULL, terms = NULL, names = NULL, info = NULL)
```

S3 method for class 'party'

names(x)

S3 replacement method for class 'party'

```r
names(x) <- value
data_party(party, id = 1L)
```

Default S3 method:

data_party(party, id = 1L)

node_party(party)

is_constparty(party)

is.simpleparty(party)

Arguments

- **node**: an object of class `partynode`.
- **data**: a (potentially empty) `data.frame`.
Objects of class party basically consist of a partynode object representing the tree structure in a recursive way and data. The data argument takes a data.frame which, however, might have zero columns. Optionally, a data.frame with at least one variable (fitted) containing the terminal node numbers of data used for fitting the tree may be specified along with a terms object or any additional (currently unstructured) information as info. Argument names defines names for all nodes in node.

Method names can be used to extract or alter names for nodes. Function node_party returns the node element of a party object. Further methods for party objects are documented in party-methods and party-predict. Trees of various flavors can be coerced to party, see party-coercion.

Two classes inherit from class party and impose additional assumptions on the structure of this object: Class constparty requires that the fitted slot contains a partitioning of the learning sample as a factor ("fitted") and the response values of all observations in the learning sample as ("response"). This structure is most flexible and allows for graphical display of the response values in terminal nodes as well as for computing predictions based on arbitrary summary statistics.

Class simpleparty assumes that certain pre-computed information about the distribution of the response variable is contained in the info slot nodes. At the moment, no formal class is used to describe this information.

Value

The constructor returns an object of class party:

node an object of class partynode.
data a (potentially empty) data.frame.
fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).
terms an optional terms object.
names an optional vector of names to be assigned to each node of node.
info additional information.
names can be used to set and retrieve names of nodes and node_party returns an object of class partynode. data_party returns a data frame with observations contained in node id.

References

Examples
```r
### data ###
## artificial WeatherPlay data
data("WeatherPlay", package = "partykit")
str(WeatherPlay)

### splits ###
## split in overcast, humidity, and windy
sp_o <- party_split(1L, index = 1:3)
sp_h <- party_split(3L, breaks = 75)
sp_w <- party_split(4L, index = 1:2)

## query labels
character_split(sp_o)

### nodes ###
## set up partynode structure
pn <- partynode(1L, split = sp_o, kids = list(
  partynode(2L, split = sp_h, kids = list(
    partynode(3L, info = "yes"),
    partynode(4L, info = "no"))),
  partynode(5L, info = "yes"),
  partynode(6L, split = sp_w, kids = list(
    partynode(7L, info = "yes"),
    partynode(8L, info = "no"))))))
pn
### tree ###
## party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
py
plot(py)

### variations ###
## tree stump
n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))
print(n1, data = WeatherPlay)

## query fitted nodes and kids ids
```
party-coercion

Coercion Functions

Description

Functions coercing various objects to objects of class party.

Usage

as.party(obj, ...)
S3 method for class 'rpart'
as.party(obj, data = TRUE, ...)
S3 method for class 'Weka_tree'
as.party(obj, data = TRUE, ...)
S3 method for class 'XMLNode'
as.party(obj, ...)

pmmlTreeModel(file, ...)
as.constparty(obj, ...)
as.simpleparty(obj, ...)
S3 method for class 'party'
as.simpleparty(obj, ...)
S3 method for class 'simpleparty'
as.simpleparty(obj, ...)
S3 method for class 'constparty'
as.simpleparty(obj, ...)
S3 method for class 'XMLNode'
as.simpleparty(obj, ...)

```r
defined_node(n1, data = WeatherPlay)
kids_node(n1, data = WeatherPlay)

## tree with full data sets
t1 <- party(n1, data = WeatherPlay)

## tree with empty data set
party(n1, data = WeatherPlay[0, ])

## constant-fit tree
t2 <- party(n1,
data = WeatherPlay,
fitted = data.frame(
  "(fitted)" = fitted_node(n1, data = WeatherPlay),
  "(response)" = WeatherPlay$play,
  check.names = FALSE),
terms = terms(play ~ ., data = WeatherPlay),
)
t2 <- as.constparty(t2)
t2
plot(t2)
```
Arguments

- **obj**: an object of class `rpart`, `Weka_tree`, `XMLnode` or objects inheriting from `party`.
- **data**: logical. Should the model frame associated with the fitted `obj` be included in the data of the `party`?
- **file**: a file name of a XML file containing a PMML description of a tree.
- ... additional arguments.

Details

Trees fitted using functions `rpart` or `J48` are coerced to `party` objects. By default, objects of class `constparty` are returned.

When information about the learning sample is available, `party` objects can be coerced to objects of class `constparty` or `simpleparty` (see `party` for details).

Value

All methods return objects of class `party`.

Examples

```r
## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to 'constparty'
as.party(rp)
```

Description

Methods for computing on `party` objects.

Usage

```r
## S3 method for class 'party'
print(x,
   terminal_panel = function(node)
      formatinfo_node(node, default = "*", prefix = ": "),
   tp_args = list(),
   inner_panel = function(node) "", ip_args = list(),
   header_panel = function(party) "",
   footer_panel = function(party) "",
   digits = getOption("digits") = 2, ...)
## S3 method for class 'simpleparty'
```
Arguments

- **x**: an object of class party.
- **i**: an integer specifying the root of the subtree to extract.
- **terminal_panel**: a panel function for printing terminal nodes.
- **tp_args**: a list containing arguments to terminal_panel.
- **inner_panel**: a panel function for printing inner nodes.
- **ip_args**: a list containing arguments to inner_panel.
- **header_panel**: a panel function for printing the header.
- **footer_panel**: a panel function for printing the footer.
- **digits**: number of digits to be printed.
- **header**: header to be printed.
- **footer**: footer to be printed.
- **FUN**: a function to be applied to nodes.
- **root**: a logical. Should the root count be counted in depth?
- **ids**: a vector of node ids (or their names) to be pruned-off.
- **...**: additional arguments.

Details

length gives the number of nodes in the tree (in contrast to the length method for partynode objects which returns the number of kid nodes in the root), depth the depth of the tree and width the number of terminal nodes. The subset methods extract subtrees and the print method generates a textual representation of the tree. nodeprune prunes-off nodes and makes sure that the node ids of the resulting tree are in pre-order starting with root node id 1. For constparty objects, the fitted slot is also changed.
Examples

```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V5 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L),
  # V4 > 4.8, terminal node
  list(id = 6L),
  # V5 > 1.7, terminal node
  list(id = 7L)
)

## convert to a recursive structure
node <- as.partynode(nodelist)

## set up party object
data("iris")
tree <- party(node, data = iris,
              fitted = data.frame("(fitted)" =
                                 fitted_node(node, data = iris),
                                 check.names = FALSE))
names(tree) <- paste("Node", nodeids(tree), sep = " ")

## number of kids in root node
length(tree)

## depth of tree
depth(tree)

## number of terminal nodes
width(tree)

## node number four
tree["Node 4"]
tree[["Node 4"]]
```

party-plot Visualization of Trees
Description

plot method for party objects with extended facilities for plugging in panel functions.

Usage

```r
taxonomy plot method for class 'party'
plot(x, main = NULL,
     terminal_panel = node_terminal, tp_args = list(),
     inner_panel = node_inner, ip_args = list(),
     edge_panel = edge_simple, ep_args = list(),
     drop_terminal = FALSE, tnex = 1,
     newpage = TRUE, pop = TRUE, gp = gpar(),
     margins = NULL, ...)
taxonomy plot method for class 'constparty'
plot(x, main = NULL,
     terminal_panel = NULL, tp_args = list(),
     inner_panel = node_inner, ip_args = list(),
     edge_panel = edge_simple, ep_args = list(),
     type = c("extended", "simple"), drop_terminal = NULL,
     tnex = NULL, newpage = TRUE, pop = TRUE, gp = gpar(),
     margins = NULL, ...)
taxonomy plot method for class 'simpleparty'
plot(x, digits = getOption("digits") - 4, tp_args = NULL, ...)
```

Arguments

- `x`
an object of class party or constparty.
- `main`
an optional title for the plot.
- `type`
a character specifying the complexity of the plot: extended tries to visualize the distribution of the response variable in each terminal node whereas simple only gives some summary information.
- `terminal_panel`
an optional panel function of the form function(node) plotting the terminal nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments `x` and `tp_args` to set up a panel function. By default, an appropriate panel function is chosen depending on the scale of the dependent variable.
- `tp_args`
a list of arguments passed to `terminal_panel` if this is a "grapcon_generator" object.
- `inner_panel`
an optional panel function of the form function(node) plotting the inner nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments `x` and `ip_args` to set up a panel function.
- `ip_args`
a list of arguments passed to `inner_panel` if this is a "grapcon_generator" object.
- `edge_panel`
an optional panel function of the form function(split, ordered = FALSE, left = TRUE) plotting the edges. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments `x` and `ip_args` to set up a panel function.
ep_args a list of arguments passed to edge_panel if this is a "grapcon_generator" object.
drop_terminal a logical indicating whether all terminal nodes should be plotted at the bottom.
tnex a numeric value giving the terminal node extension in relation to the inner nodes.
newpage a logical indicating whether grid.newpage() should be called.
pop a logical whether the viewport tree should be popped before return.
gp graphical parameters.
margins numeric vector of margin sizes.
digits number of digits to be printed.
... additional arguments passed to callies.

Details

This plot method for party objects provides an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. Panel functions for plotting inner nodes, edges and terminal nodes are available for the most important cases and can serve as the basis for user-supplied extensions, see node_inner.

More details on the ideas and concepts of panel-generating functions and "grapcon_generator" objects in general can be found in Meyer, Zeileis and Hornik (2005).

References

See Also

node_inner, node_terminal, edge_simple, node_barplot, node_boxplot.

party-predict Tree Predictions

Description

Compute predictions from party objects.
Usage

S3 method for class 'party'
predict(object, newdata = NULL, perm = NULL, ...)
predict_party(party, id, newdata = NULL, ...)

Default S3 method:
predict_party(party, id, newdata = NULL, FUN = NULL, ...)

S3 method for class 'constparty'
predict_party(party, id, newdata = NULL,
 type = c("response", "prob", "quantile", "density", "node"),
 at = if (type == "quantile") c(0.1, 0.5, 0.9),
 FUN = NULL, simplify = TRUE, ...)

S3 method for class 'simpleparty'
predict_party(party, id, newdata = NULL,
 type = c("response", "prob", "node"), ...)

Arguments

object objects of class party.
newdata an optional data frame in which to look for variables with which to predict, if
 omitted, the fitted values are used.
perm an optional character vector of variable names. Splits of nodes with a primary
 split in any of these variables will be permuted (after dealing with surrogates).
 Note that surrogate split in the perm variables will no be permuted.
party objects of class party.
id a vector of terminal node identifiers.
type a character string denoting the type of predicted value returned, ignored when
 argument FUN is given. For "response", the mean of a numeric response, the
 predicted class for a categorical response or the median survival time for a cen-
 cored response is returned. For "prob" the matrix of conditional class proba-
 bilities (simplify = TRUE) or a list with the conditional class probabilities for
 each observation (simplify = FALSE) is returned for a categorical response.
 For numeric and censored responses, a list with the empirical cumulative dis-
 tribution functions and empirical survivor functions (Kaplan-Meier estimate) is
 returned when type = "prob". "node" returns an integer vector of terminal
 node identifiers.
FUN a function to extract (default method) or compute (constparty method) sum-
 mary statistics. For the default method, this is a function of a terminal node
 only, for the constparty method, predictions for each node have to be com-
 puted based on arguments (y, w) where y is the response and w are case weights.
at if the return value is a function (as the empirical cumulative distribution function
 or the empirical quantile function), this function is evaluated at values at and
 these numeric values are returned. If at is NULL, the functions themselves are
 returned in a list.
simplify a logical indicating whether the resulting list of predictions should be converted
 to a suitable vector or matrix (if possible).
... additional arguments.
Details

The predict method for party objects computes the identifiers of the predicted terminal nodes, either for new data in newdata or for the learning samples (only possible for objects of class constparty). These identifiers are delegated to the corresponding predict_party method which computes (via FUN for class constparty) or extracts (class simpleparty) the actual predictions.

Value

A list of predictions, possibly simplified to a numeric vector, numeric matrix or factor.

Examples

```r
## fit tree using rpart
library("rpart")
rp <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel,
  data = solder, method = 'anova')

## coerce to 'constparty'
pr <- as.party(rp)

## mean predictions
predict(pr, newdata = solder[c(3, 541, 640),])

## ecdf
predict(pr, newdata = solder[c(3, 541, 640),], type = "prob")

## terminal node identifiers
predict(pr, newdata = solder[c(3, 541, 640),], type = "node")

## median predictions
predict(pr, newdata = solder[c(3, 541, 640),],
  FUN = function(y, w = 1) median(y))
```

Description

A class for representing inner and terminal nodes in trees and functions for data partitioning.

Usage

```r
partynode(id, split = NULL, kids = NULL, surrogates = NULL,
  info = NULL)

kidids_node(node, data, vmatch = 1:ncol(data),
  obs = NULL, perm = NULL)

fitted_node(node, data, vmatch = 1:ncol(data),
```
partynode

obs = 1:nrow(data), perm = NULL)

Arguments

id integer, a unique identifier for a node.

split an object of class `partysplit`.

kids a list of `partynode` objects.

surrogates a list of `partysplit` objects.

info additional information.

data an object of class `partynode`.

vmatch a permutation of the variable numbers in `data`.

obs a logical or integer vector indicating a subset of the observations in `data`.

perm a vector of integers specifying the variables to be permuted prior to splitting (i.e., for computing permutation variable importances). The default `NULL` doesn’t alter the data.

FUN function for formatting the `info`, for default see below.

default a character used if the `info` in `node` is `NULL`.

prefix an optional prefix to be added to the returned character.

... further arguments passed to `capture.output`.

Details

A node represents both inner and terminal nodes in a tree structure. Each node has a unique identifier `id`. A node consisting only of such an identifier (and possibly additional information in `info`) is a terminal node.

Inner nodes consist of a primary split (an object of class `partysplit`) and at least two kids (daughter nodes). Kid nodes are objects of class `partynode` itself, so the tree structure is defined recursively. In addition, a list of `partysplit` objects offering surrogate splits can be supplied. Like `partysplit` objects, `partynode` objects aren’t connected to the actual data.

Function `kidids_node()` determines how the observations in `data[obs,]` are partitioned into the kid nodes and returns the number of the list element in `list kids` each observations belongs to (and not it’s identifier). This is done by evaluating `split` (and possibly all surrogate splits) on `data` using `kidids_split`.

Function `fitted_node()` performs all splits recursively and returns the identifier `id` of the terminal node each observation in `data[obs,]` belongs to. Arguments `vmatch`, `obs` and `perm` are passed to `kidids_split`.
Function `formatinfo_node()` extracts the info from node and formats it to a character vector using the following strategy: If `is.null(info)`, the default is returned. Otherwise, `FUN` is applied for formatting. The default function uses `as.character` for atomic objects and applies `capture.output` to `print(info)` for other objects. Optionally, a prefix can be added to the computed character string.

All other functions are accessor functions for extracting information from objects of class `partynode`.

Value

The constructor `partynode()` returns an object of class `partynode`:

- `id` a unique integer identifier for a node.
- `split` an object of class `partysplit`.
- `kids` a list of `partynode` objects.
- `surrogates` a list of `partysplit` objects.
- `info` additional information.

`kidids_split()` returns an integer vector describing the partition of the observations into kid nodes by their position in list `kids`. `fitted_node()` returns the node identifiers (id) of the terminal nodes each observation belongs to.

References

Examples

```r
data("iris", package = "datasets")

# a stump defined by a binary split in Sepal.Length
stump <- partynode(id = 1L,
                    split = partysplit(which(names(iris) == "Sepal.Length"),
                                      breaks = 5),
                    kids = lapply(2:3, partynode))

# textual representation
print(stump, data = iris)

# list element number and node id of the two terminal nodes
table(kidids_node(stump, iris),
      fitted_node(stump, data = iris))

# assign terminal nodes with probability 0.5
# to observations with missing 'Sepal.Length'
iris NA <- iris
iris NA[sample(1:nrow(iris), 50), "Sepal.Length"] <- NA
table(fitted_node(stump, data = iris NA,
                   obs = !complete.cases(iris NA))
```
Methods for Node Objects

Methods for computing on `partyNode` objects.

Usage

- `is.partyNode(x)`
- `as.partyNode(x, ...)`
 - S3 method for class 'partyNode'
- `as.partyNode(x, from = NULL, recursive = TRUE, ...)`
 - S3 method for class 'list'
- `as.partyNode(x, ...)`
 - S3 method for class 'partyNode'
- `as.list(x, ...)`
 - S3 method for class 'partyNode'
- `length(x)`
 - S3 method for class 'partyNode'
- `x[i, ...]`
 - S3 method for class 'partyNode'
- `x[[i, ...]]`
 - S3 method for class 'partyNode'
- `is.terminal(x, ...)`
 - S3 method for class 'partyNode'
- `is.terminal(x, ...)`
 - S3 method for class 'partyNode'
- `depth(x, root = FALSE, ...)`
 - S3 method for class 'partyNode'
- `width(x, ...)`
 - S3 method for class 'partyNode'
- `width(x, ...)`
 - S3 method for class 'partyNode'
- `print(x, data = NULL, names = NULL, ...)`

```r
## a stump defined by a primary split in 'Sepal.Length'
## and a surrogate split in 'Sepal.Width' which
determines terminal nodes for observations with
## missing 'Sepal.Length'
stump <- partyNode(id = 1L,
  split = partySplit(which(names(iris) == "Sepal.Length"),
         breaks = 5),
  kids = lapply(2:3, partyNode),
surrogates = list(partySplit(
         which(names(iris) == "Sepal.Width"), breaks = 3))
f <- fitted_node(stump, data = iris NA,
  obs = !complete.cases(iris NA))
tapply(iris NA$Sepal.Width]!=complete.cases(iris NA], f, range)
```
inner_panel = function(node) "",
terminal_panel = function(node) " *",
prefix = "", first = TRUE, digits = getOption("digits") - 2,
...)
S3 method for class 'partynode'
nodeprune(x, ids, ...)

Arguments

x an object of class partynode or list.
from an integer giving the identifier of the root node.
recursive a logical, if FALSE, only the id of the root node is checked against from. If TRUE, the ids of all nodes are checked.
i an integer specifying the kid to extract.
root a logical. Should the root count be counted in depth?
data an optional data.frame.
names a vector of names for nodes.
terminal_panel a panel function for printing terminal nodes.
inner_panel a panel function for printing inner nodes.
prefix lines start with this symbol.
first a logical.
digits number of digits to be printed.
ids a vector of node ids to be pruned-off.
... additional arguments.

Details

is.partynode checks if the argument is a valid partynode object. is.terminal is TRUE for terminal nodes and FALSE for inner nodes. The subset methods return the partynode object corresponding to the ith kid.

The as.partynode and as.list methods can be used to convert flat list structures into recursive partynode objects and vice versa. as.partynode applied to partynode objects renames the recursive nodes starting with root node identifier from.

length gives the number of kid nodes of the root node, depth the depth of the tree and width the number of terminal nodes.

Examples

a tree as flat list structure
modelist <- list(
 # root node
 list(id = 1L, split = varsplits(varid = 4L, breaks = 1.9),
 kids = 2:3),
 # V4 <= 1.9, terminal node
 list(id = 2L),
 ...)
partysplit

Binary and Multiway Splits

Description

A class for representing multiway splits and functions for computing on splits.
Usage

partysplit(varid, breaks = NULL, index = NULL, right = TRUE,
prob = NULL, info = NULL)
kidids_split(split, data, vmatch = 1:length(data), obs = NULL)
character_split(split, data = NULL,
 digits = getOption("digits") - 2)
varid_split(split)
breaks_split(split)
index_split(split)
right_split(split)
prob_split(split)
info_split(split)

Arguments

varid an integer specifying the variable to split in, i.e., a column number in data.
breaks a numeric vector of split points.
index an integer vector containing a contiguous sequence from one to the number of kid nodes. May contain NAs.
right a logical, indicating if the intervals defined by breaks should be closed on the right (and open on the left) or vice versa.
prob a numeric vector representing a probability distribution over kid nodes.
info additional information.
split an object of class partysplit.
data a list or data.frame.
vmatch a permutation of the variable numbers in data.
obsv a logical or integer vector indicating a subset of the observations in data.
digits minimal number of significant digits.

Details

A split is basically a function that maps data, more specifically a partitioning variable, to a set of integers indicating the kid nodes to send observations to. Objects of class partysplit describe such a function and can be set-up via the partysplit() constructor. The variables are available in a list or data.frame (here called data) and varid specifies the partitioning variable, i.e., the variable or list element to split in. The constructor partysplit() doesn’t have access to the actual data, i.e., doesn’t estimate splits.

kidids_split(split, data) actually partitions the data data[obs, varid_split(split)] and assigns an integer (giving the kid node number) to each observation. If vmatch is given, the variable vmatch[varid_split(split)] is used.

character_split() returns a character representation of its split argument. The remaining functions defined here are accessor functions for partysplit objects.

The numeric vector breaks defines how the range of the partitioning variable (after coercing to a numeric via as.numeric) is divided into intervals (like in cut) and may be NULL. These intervals are represented by the numbers one to length(breaks) + 1.
index assigns these length(breaks) + 1 intervals to one of at least two kid nodes. Thus, index is a vector of integers where each element corresponds to one element in a list kids containing `partynode` objects, see `partynode` for details. The vector index may contain NAs, in that case, the corresponding values of the splitting variable are treated as missings (for example factor levels that are not present in the learning sample). Either breaks or index must be given. When breaks is NULL, it is assumed that the partitioning variable itself has storage mode integer (e.g., is a factor).

prob defines a probability distribution over all kid nodes which is used for random splitting when a deterministic split isn’t possible (due to missing values, for example).

info takes arbitrary user-specified information.

Value

The constructor `partysplit()` returns an object of class `partysplit`:

- `varid` an integer specifying the variable to split in, i.e., a column number in `data`,
- `breaks` a numeric vector of split points,
- `index` an integer vector containing a contiguous sequence from one to the number of kid nodes,
- `right` a logical, indicating if the intervals defined by `breaks` should be closed on the right (and open on the left) or vice versa
- `prob` a numeric vector representing a probability distribution over kid nodes,
- `info` additional information.

`kidids_split()` returns an integer vector describing the partition of the observations into kid nodes.

`character_split()` gives a character representation of the split and the remaining functions return the corresponding slots of `partysplit` objects.

References

See Also

`cut`

Examples

data("iris", package = "datasets")

binary split in numeric variable `Sepal.Length`
s15 <- partysplit(which(names(iris) == "Sepal.Length"), breaks = 5)
character_split(s15, data = iris)
table(kidids_split(s15, data = iris), iris$Sepal.Length <= 5)

multiway split in numeric variable `Sepal.Width`,
higher values go to the first kid, smallest values
to the last kid
sw23 <- partysplit(which(names(iris) == "Sepal.Width"),
 breaks = c(3, 3.5), index = 3:1)
character_split(sw23, data = iris)
table(kidids_split(sw23, data = iris),
 cut(iris$Sepal.Width, breaks = c(-Inf, 2, 3, Inf))

binary split in factor `Species`
sp <- partysplit(which(names(iris) == "Species"),
 index = c(1L, 1L, 2L))
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

multiway split in factor `Species`
sp <- partysplit(which(names(iris) == "Species"), index = 1:3)
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

multiway split in numeric variable `Sepal.Width`
sp <- partysplit(which(names(iris) == "Sepal.Width"),
 breaks = quantile(iris$Sepal.Width))
character_split(sp, data = iris)

prune.modelparty

Post-Prune modelparty Objects

Description

Post-pruning of `modelparty` objects based on information criteria like AIC, BIC, or related user-defined criteria.

Usage

```r
prune.modelparty(tree, type = "AIC", ...)
```

Arguments

- `tree` object of class `modelparty`.
- `type` pruning type. Can be "AIC", "BIC" or a user-defined function (details below).
- `...` additional arguments.

Details

In `mob`-based model trees, pre-pruning based on p-values is used by default and often no post-pruning is necessary in such trees. However, if pre-pruning is switched off (by using a large `alpha`) or does is not sufficient (e.g., possibly in large samples) the `prune` method can be used for subsequent post-pruning based on information criteria.
The function `prune.modelparty` can be called directly but it is also registered as a method for the generic `prune` function from the `rpart` package. Thus, if `rpart` is attached, `prune(tree, type = "AIC", ")` also works (see examples below).

To customize the post-pruning strategy, `type` can be set to a function(`objfun, df, nobs`) which either returns `TRUE` to signal that a current node can be pruned or `FALSE`. All supplied arguments are of length two: `objfun` is the sum of objective function values in the current node and its child nodes, respectively. `df` is the degrees of freedom in the current node and its child nodes, respectively. `nobs` is vector with the number of observations in the current node and the total number of observations in the dataset, respectively.

For "AIC" and "BIC" type is transformed so that AIC or BIC are computed. However, this assumes that the `objfun` used in tree is actually the negative log-likelihood. The degrees of freedom assumed for a split can be set via the `dfsplit` argument in `mob_control` when computing the tree or manipulated later by changing the value of `tree$info$control$dfsplit`.

Value

An object of class `modelparty` where the associated tree is either the same as the original or smaller.

See Also

`prune, lmtree, glmtree, mob`

Examples

```R
set.seed(29)
n <- 1000
d <- data.frame(
x = runif(n),
z = runif(n),
z_noise = factor(sample(1:3, size = n, replace = TRUE))
)
d$y <- rnorm(n, mean = d$x * c(-1, 1)[(d$z > 0.7) + 1], sd = 3)

## glm versus lm / logLik versus sum of squared residuals
fmla <- y ~ x | z + z_noise
lm_big <- lmtree(formula = fmla, data = d, maxdepth = 3, alpha = 1)
glm_big <- glmtree(formula = fmla, data = d, maxdepth = 3, alpha = 1)
AIC(lm_big)
AIC(glm_big)

## load rpart for prune() generic
## (otherwise: use prune.modelparty directly)
if (require("rpart")) {

## pruning
lm_aic <- prune(lm_big, type = "AIC")
lm_bic <- prune(lm_big, type = "BIC")
width(lm_big)
width(lm_aic)
```
varimp

width(lm_bic)

glm_aic <- prune(glm_big, type = "AIC")
glm_bic <- prune(glm_big, type = "BIC")

width(glm_big)
width(glm_aic)
width(glm_bic)

varimp

Variable Importance

Description

Standard and conditional variable importance for ‘cforest’, following the permutation principle of the ‘mean decrease in accuracy’ importance in ‘randomForest’.

Usage

S3 method for class 'constparty'
varimp(object, nperm = 1L,
 risk = c("loglik", "misclassification"), conditions = NULL,
 mincriterion = 0, ...)

S3 method for class 'cforest'
varimp(object, nperm = 1L,
 OOB = TRUE, risk = c("loglik", "misclassification"),
 conditional = FALSE, threshold = .2, ...)

Arguments

- **object**: an object as returned by `cforest`.
- **mincriterion**: the value of the test statistic or 1 - p-value that must be exceeded in order to include a split in the computation of the importance. The default `mincriterion = 0` guarantees that all splits are included.
- **conditional**: a logical determining whether unconditional or conditional computation of the importance is performed.
- **threshold**: the value of the test statistic or 1 - p-value of the association between the variable of interest and a covariate that must be exceeded inorder to include the covariate in the conditioning scheme for the variable of interest (only relevant if `conditional = TRUE`).
- **nperm**: the number of permutations performed.
- **OOB**: a logical determining whether the importance is computed from the out-of-bag sample or the learning sample (not suggested).
- **risk**: a character determining the risk to be evaluated.
- **conditions**: a list of conditions.
- **...**: additional arguments, not used.
Function `varimp` can be used to compute variable importance measures similar to those computed by `importance`. Besides the standard version, a conditional version is available, that adjusts for correlations between predictor variables.

If `conditional = TRUE`, the importance of each variable is computed by permuting within a grid defined by the covariates that are associated (with a p-value greater than `threshold`) to the variable of interest. The resulting variable importance score is conditional in the sense of beta coefficients in regression models, but represents the effect of a variable in both main effects and interactions. See Strobl et al. (2008) for details.

Note, however, that all random forest results are subject to random variation. Thus, before interpreting the importance ranking, check whether the same ranking is achieved with a different random seed – or otherwise increase the number of trees `ntree` in `ctree_control`.

Note that in the presence of missings in the predictor variables the procedure described in Hapfelmeier et al. (2012) is performed.

A vector of ‘mean decrease in accuracy’ importance scores.


```r
set.seed(290875)
data("readingSkills", package = "party")
readingSkills.cf <- cforest(score ~ ., data = readingSkills,
                           mtry = 2, ntree = 50)

# standard importance
varimp(readingSkills.cf)

# conditional importance, may take a while...
varimp(readingSkills.cf, conditional = TRUE)
```
Description

Artificial data set concerning the conditions suitable for playing some unspecified game.

Usage

data("WeatherPlay")

Format

A data frame containing 14 observations on 5 variables.

- **outlook** factor.
- **temperature** numeric.
- **humidity** numeric.
- **windy** factor.
- **play** factor.

Source

Table 1.3 in Witten and Frank (2011).

References

See Also

`party`, `partynode`, `partysplit`

Examples

```
## load weather data
data("WeatherPlay", package = "partykit")
WeatherPlay

## construct simple tree
pn <- partynode(1L,
    split = partysplit(1L, index = 1:3),
    kids = list(
        partynode(2L,
            split = partysplit(3L, breaks = 75),
            kids = list(
                partynode(3L, info = "yes"),

```
partynode(4L, info = "no")),
partynode(5L, info = "yes"),
partynode(6L,
split = partysplit(4L, index = 1:2),
kids = list(
 partynode(7L, info = "yes"),
 partynode(8L, info = "no")))))

couple with data
py <- party(pn, WeatherPlay)

print/plot/predict
print(py)
plot(py)
predict(py, newdata = WeatherPlay)

customize printing
print(py,
 terminal_panel = function(node) paste(": play="", info_node(node), sep = ""))
Index

*Topic **datasets**
 - HuntingSpiders, 17
 - WeatherPlay, 56

*Topic **hplot**
 - panelfunctions, 31
 - party-plot, 40

*Topic **misc**
 - ctree_control, 10
 - mob_control, 24

*Topic **tree**
 - cforest, 2
 - ctree, 7
 - extree_data, 13
 - extree_fit, 14
 - glm, 15
 - lmtree, 19
 - mob, 22
 - model_frame_rpart, 27
 - nodeapply, 28
 - nodeids, 29
 - party, 34
 - party-coercion, 37
 - party-methods, 38
 - party-predict, 42
 - partynode, 44
 - partynode-methods, 47
 - partysplit, 49
 - varimp, 54
[...]

breaks_split(partysplit), 49

capture.output, 45, 46

catL2BB, 26

cd_plot, 34

cforest, 2, 3, 5, 11, 12

coeff, 23

coeff.modelparty (mob), 22

ctree, 5, 7, 12, 34

ctree_control, 3, 5, 8, 10, 11, 12, 55

cut, 50, 51

data.frame, 34, 35, 45, 50

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

devfun, 23

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

devfun, 23

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

depth.party (party-methods), 38

data_party (party), 34

depth.party (party-methods), 38

depth.partynode (partynode-methods), 47

deviance, 23

deviance.modelparty (mob), 22

development, 23

devparty, 23

devparty (party), 34

devparty (party-methods), 38

devpartynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

deviation.party (party), 34

deviation.party (party-methods), 38

deviation.partynode (partynode-methods), 47

deviation, 23

deviation.modelparty (mob), 22

deviation.partynode (partynode-methods), 47

58
randomForest, 4, 5
refit.modelparty (mob), 22
residuals.modelparty (mob), 22
right_split (partysplit), 49
rpart, 27, 38
sctest.constparty (ctree), 7
sctest.modelparty (mob), 22
spine, 34
split_node (partynode), 44
summary.modelparty (mob), 22
surrogates_node (partynode), 44
survfit, 33
terms, 35
treeresponse, 5
varid_split (partysplit), 49
varimp, 54
WeatherPlay, 56
weights.modelparty (mob), 22
Weka.tree, 38
where, 5
width (partynode-methods), 47
width.party (party-methods), 38