Package ‘partykit’

September 20, 2016

Title A Toolkit for Recursive Partitioning
Date 2016-09-20
Version 1.1-1

Description A toolkit with infrastructure for representing, summarizing, and visualizing tree-structured regression and classification models. This unified infrastructure can be used for reading/coercing tree models from different sources (‘rpart’, ‘RWeka’, ‘PMML’) yielding objects that share functionality for print()/plot()/predict() methods. Furthermore, new and improved implementations of conditional inference trees (ctree()) and model-based recursive partitioning (mob()) from the ‘party’ package are provided based on the new infrastructure.

Depends R (>= 3.1.0), graphics, grid
Imports grDevices, stats, utils, survival, Formula (>= 1.2-1)
Suggests XML, pmml, rJava, rpart, mvtnorm, sandwich, strucchange, vcd, AER, mlbench, TH.data (>= 1.0-3), coin (>= 1.1-0), RWeka (>= 0.4-19), datasets, parallel, psychotools, psychotree

LazyData yes
License GPL-2 | GPL-3
URL http://partykit.R-Forge.R-project.org/partykit

NeedsCompilation yes

Author Torsten Hothorn [aut, cre], Achim Zeileis [aut]
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
Repository CRAN
Date/Publication 2016-09-20 15:39:04

R topics documented:
cforest .. 2
ctree .. 7
ctree_control .. 9
Conditional Random Forests

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

Usage

cforest(formula, data, weights, subset, na.action = na.pass,
control = ctree_control(teststat = "quad",
 testtype = "Univ", mincriterion = 0, ...),
ytrafo = NULL, scores = NULL, ntree = 500L,
perturb = list(replace = FALSE, fraction = 0.632),
mtry = ceiling(sqrt(nvar)), applyfun = NULL, cores = NULL,
trace = FALSE, ...)

S3 method for class 'cforest'
predict(object, newdata = NULL,
 type = c("response", "prob", "weights", "node"),
 OOB = FALSE, FUN = NULL, simplify = TRUE, ...)
Arguments

formula
a symbolic description of the model to be fit.

data
a data frame containing the variables in the model.

subset
an optional vector specifying a subset of observations to be used in the fitting process.

weights
an optional vector of weights to be used in the fitting process. Non-negative integer valued weights are allowed as well as non-negative real weights. Observations are sampled (with or without replacement) according to probabilities $\frac{weights}{\sum(weights)}$. The fraction of observations to be sampled (without replacement) is computed based on the sum of the weights if all weights are integer-valued and based on the number of weights greater zero else. Alternatively, weights can be a double matrix defining case weights for all ncol(weights) trees in the forest directly. This requires more storage but gives the user more control.

na.action
a function which indicates what should happen when the data contain missing value.

control
a list with control parameters, see `ctree_control`. The default values correspond to those of the default values used by `cforest` from the `party` package.

ytrafo
an optional named list of functions to be applied to the response variable(s) before testing their association with the explanatory variables. Note that this transformation is only performed once for the root node and does not take weights into account. Alternatively, ytrafo can be a function of data and weights. In this case, the transformation is computed for every node. This feature is experimental and the user interface likely to change.

scores
an optional named list of scores to be attached to ordered factors.

ntree
Number of trees to grow for the forest.

perturb
a list with arguments `replace` and `fraction` determining which type of resampling with `replace = TRUE` referring to the n-out-of-n bootstrap and `replace = FALSE` to sample splitting. `fraction` is the number of observations to draw without replacement.

mtry
number of input variables randomly sampled as candidates at each node for random forest like algorithms. Bagging, as special case of a random forest without random input variable sampling, can be performed by setting `mtry` either equal to `Inf` or manually equal to the number of input variables.

applyfun
an optional `lapply`-style function with arguments `function(X, FUN, ...)`. It is used for computing the variable selection criterion. The default is to use the basic `lapply` function unless the `cores` argument is specified (see below).

cores
numeric. If set to an integer the applyfun is set to `mclapply` with the desired number of cores.

trace
a logical indicating if a progress bar shall be printed while the forest grows.

object
An object as returned by `cforest`

newdata
An optional data frame containing test data.
type
a character string denoting the type of predicted value returned, ignored when argument FUN is given. For "response", the mean of a numeric response, the predicted class for a categorical response or the median survival time for a censored response is returned. For "prob" the matrix of conditional class probabilities (simplify = TRUE) or a list with the conditional class probabilities for each observation (simplify = FALSE) is returned for a categorical response. For numeric and censored responses, a list with the empirical cumulative distribution functions and empirical survivor functions (Kaplan-Meier estimate) is returned when type = "prob". "weights" returns an integer vector of prediction weights. For type = "where", a list of terminal node ids for each of the trees in the forest ist returned.

OOB
a logical defining out-of-bag predictions (only if newdata = NULL).

FUN
a function to compute summary statistics. Predictions for each node have to be computed based on arguments (y, w) where y is the response and w are case weights.

simplify
a logical indicating whether the resulting list of predictions should be converted to a suitable vector or matrix (if possible).

...additional arguments.

Details
This implementation of the random forest (and bagging) algorithm differs from the reference implementation in randomForest with respect to the base learners used and the aggregation scheme applied.

Conditional inference trees, see ctree, are fitted to each of the ntree perturbed samples of the learning sample. Most of the hyper parameters in ctree_control regulate the construction of the conditional inference trees.

Hyper parameters you might want to change are:
1. The number of randomly preselected variables mtry, which is fixed to the square root of the number of input variables.
2. The number of trees ntree. Use more trees if you have more variables.
3. The depth of the trees, regulated by mincriterion. Usually unstopped and unpruned trees are used in random forests. To grow large trees, set mincriterion to a small value.

The aggregation scheme works by averaging observation weights extracted from each of the ntree trees and NOT by averaging predictions directly as in randomForest. See Hothorn et al. (2004) and Meinshausen (2006) for a description.

Predictions can be computed using predict. For observations with zero weights, predictions are computed from the fitted tree when newdata = NULL.

Ensembles of conditional inference trees have not yet been extensively tested, so this routine is meant for the expert user only and its current state is rather experimental. However, there are some things available in cforest that can’t be done with randomForest, for example fitting forests to censored response variables (see Hothorn et al., 2004, 2006a) or to multivariate and ordered responses. Using the rich partykit infrastructure allows additional functionality in cforest, such as parallel tree growing and probabilistic forecasting (for example via quantile regression forests). Also plotting of single trees from a forest is much easier now.
Unlike cforest, cforest is entirely written in R which makes customisation much easier at the price of longer computing times. However, trees can be grown in parallel with this R only implementation which renders speed less of an issue. Note that the default values are different from those used in package party, most importantly the default for mtry is now data-dependent. predict(), type = "node") replaces the where function and predict(), type = "prob") the treeresponse function.

Moreover, when predictors vary in their scale of measurement of number of categories, variable selection and computation of variable importance is biased in favor of variables with many potential cutpoints in randomforest, while in cforest unbiased trees and an adequate resampling scheme are used by default. See Hothorn et al. (2006b) and Strobl et al. (2007) as well as Strobl et al. (2009).

Value

An object of class cforest.

References

Examples

```R
## basic example: conditional inference forest for cars data
cf <- cforest(dist ~ speed, data = cars)

## prediction of fitted mean and visualization
nd <- data.frame(speed = 4:25)
nd$mean <- predict(cf, newdata = nd, type = "response")
plot(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd)
```
predict quantiles (aka quantile regression forest)

myquantile <- function(y, w) quantile(rep(y, w), probs = c(0.1, 0.5, 0.9))
p <- predict(cf, newdata = nd, type = "response", FUN = myquantile)
colnames(p) <- c("lower", "median", "upper")
nd <- cbind(nd, p)

visualization with conditional (on speed) prediction intervals
plot(dist ~ speed, data = cars, type = "n")
with(nd, polygon(c(speed, rev(speed)), c(lower, rev(upper)),
 col = "lightgray", border = "transparent"))
points(dist ~ speed, data = cars)
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
legend("topleft", c("mean", "median", "10% - 90% quantile"),
 lwd = c(1.5, 1.5, 10), lty = c(1, 2, 1),
 col = c("black", "black", "lightgray"), bty = "n")

we may also use predicted conditional (on speed) densities
mydensity <- function(y, w) approxfun(density(y, weights = w/sum(w))[1:2], rule = 2)
pd <- predict(cf, newdata = nd, type = "response", FUN = mydensity)

visualization in heatmap (instead of scatterplot)
with fitted curves as above
dist <- -10:150
dens <- t(sapply(seq_along(pd), function(i) pd[[i]][dist]))
image(nd$speed, dist, dens, xlab = "speed", col = rev(gray.colors(9)))
lines(mean ~ speed, data = nd, lwd = 1.5)
lines(median ~ speed, data = nd, lty = 2, lwd = 1.5)
lines(lower ~ speed, data = nd, lty = 2)
lines(upper ~ speed, data = nd, lty = 2)

honest (i.e., out-of-bag) cross-classification of
true vs. predicted classes
data("mammoexp", package = "TH.data")
table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp, ntree = 50),
 OOB = TRUE, type = "response"))

fit forest to censored response
if (require("TH.data") && require("survival")) {

data("GBSG2", package = "TH.data")
bst <- cforest(Surv(time, cens) ~ ., data = GBSG2, ntree = 50)

estimate conditional Kaplan-Meier curves
print(predict(bst, newdata = GBSG2[1:2,], OOB = TRUE, type = "prob"))

print(bst$nodes[[1]])
}
ctree

Conditional Inference Trees

Description

Recursive partitioning for continuous, censored, ordered, nominal and multivariate response variables in a conditional inference framework.

Usage

ctree(formula, data, weights, subset, na.action = na.pass,
 control = ctree_control(...), ytrafo = NULL, scores = NULL, ...)

Arguments

- formula: a symbolic description of the model to be fit.
- data: a data frame containing the variables in the model.
- subset: an optional vector specifying a subset of observations to be used in the fitting process.
- weights: an optional vector of weights to be used in the fitting process. Only non-negative integer valued weights are allowed.
- na.action: a function which indicates what should happen when the data contain missing value.
- control: a list with control parameters, see ctree_control.
- ytrafo: an optional named list of functions to be applied to the response variable(s) before testing their association with the explanatory variables. Note that this transformation is only performed once for the root node and does not take weights into account. Alternatively, ytrafo can be a function of data and weights. In this case, the transformation is computed for every node. This feature is experimental and the user interface likely to change.
- scores: an optional named list of scores to be attached to ordered factors.
- ...: arguments passed to ctree_control.

Details

Function partykit::ctree is a reimplementation of (most of) party::ctree employing the new party infrastructure of the partykit infrastructure. Although the new code was already extensively tested, it is not yet as mature as the old code. If you notice differences in the structure/predictions of the resulting trees, please contact the package maintainers. See also vignette("ctree", package = "partykit") for some remarks about the internals of the different implementations.

Conditional inference trees estimate a regression relationship by binary recursive partitioning in a conditional inference framework. Roughly, the algorithm works as follows: 1) Test the global null hypothesis of independence between any of the input variables and the response (which may be multivariate as well). Stop if this hypothesis cannot be rejected. Otherwise select the input variable
with strongest association to the response. This association is measured by a p-value corresponding to a test for the partial null hypothesis of a single input variable and the response. 2) Implement a binary split in the selected input variable. 3) Recursively repeat steps 1) and 2).

The implementation utilizes a unified framework for conditional inference, or permutation tests, developed by Strasser and Weber (1999). The stop criterion in step 1) is either based on multiplicity adjusted p-values (testtype = "Bonferroni" in \texttt{ctree_control}) or on the univariate p-values (testtype = "Univariate"). In both cases, the criterion is maximized, i.e., 1 - p-value is used. A split is implemented when the criterion exceeds the value given by \texttt{mincriterion} as specified in \texttt{ctree_control}. For example, when \texttt{mincriterion} = 0.95, the p-value must be smaller than 0.05ξ in order to split this node. This statistical approach ensures that the right-sized tree is grown without additional (post-)pruning or cross-validation. The level of \texttt{mincriterion} can either be specified to be appropriate for the size of the data set (and 0.95 is typically appropriate for small to moderately-sized data sets) or could potentially be treated like a hyperparameter (see Section 3.4 in Hothorn, Hornik and Zeileis, 2006). The selection of the input variable to split in is based on the univariate p-values avoiding a variable selection bias towards input variables with many possible cutpoints. The test statistics in each of the nodes can be extracted with the \texttt{sctest} method. (Note that the generic is in the \texttt{strucchange} package so this either needs to be loaded or \texttt{sctest_constparty} has to be called directly.) In cases where splitting stops due to the sample size (e.g., \texttt{minsplit} or \texttt{minbucket} etc.), the test results may be empty.

Predictions can be computed using \texttt{predict}, which returns predicted means, predicted classes or median predicted survival times and more information about the conditional distribution of the response, i.e., class probabilities or predicted Kaplan-Meier curves. For observations with zero weights, predictions are computed from the fitted tree when \texttt{newdata = NULL}.

By default, the scores for each ordinal factor \(x\) are \(1: \text{length}(x)\), this may be changed for variables in the formula using \texttt{scores = list(x = c(1, 5, 6))}, for example.

\textbf{Value}

An object of class \texttt{party}.

\textbf{References}

\textbf{Examples}

```r
### regression
airq <- subset(airquality, !is.na(Ozone))
```
ctree_control

Control for Conditional Inference Trees

Description

Various parameters that control aspects of the `ctree` fit.
Usage

ctree_control(teststat = c("quad", "max"),
 testtype = c("Bonferroni", "Univariate", "Teststatistic"),
 mncriterion = 0.95, mnsplit = 20L, mnbucket = 7L,
 minprob = 0.01, stump = FALSE, maxsurrogate = 0L, mtry = Inf,
 maxdepth = Inf, multiway = FALSE, splittry = 2L, majority = FALSE,
 applyfun = NULL, cores = NULL)

Arguments

teststat a character specifying the type of the test statistic to be applied.
testtype a character specifying how to compute the distribution of the test statistic.
mincriterion the value of the test statistic or 1 - p-value that must be exceeded in order to implement a split.
mnsplit the minimum sum of weights in a node in order to be considered for splitting.
mnbucket the minimum sum of weights in a terminal node.
minprob proportion of observations needed to establish a terminal node.
stump a logical determining whether a stump (a tree with three nodes only) is to be computed.
maxsurrogate number of surrogate splits to evaluate. Note the currently only surrogate splits in ordered covariables are implemented.
mtry number of input variables randomly sampled as candidates at each node for random forest like algorithms. The default mtry = Inf means that no random selection takes place.
maxdepth maximum depth of the tree. The default maxdepth = Inf means that no restrictions are applied to tree sizes.
multiway a logical indicating if multiway splits for all factor levels are implemented for unordered factors.
splittry number of variables that are inspected for admissible splits if the best split doesn’t meet the sample size constraints.
majority if FALSE, observations which can’t be classified to a daughter node because of missing information are randomly assigned (following the node distribution). If FALSE, they go with the majority (the default in ctree).
applyfun an optional \texttt{lapply}-style function with arguments \texttt{function(X, FUN, ...)}. It is used for computing the variable selection criterion. The default is to use the basic \texttt{lapply} function unless the cores argument is specified (see below).
cores numeric. If set to an integer the applyfun is set to \texttt{mclapply} with the desired number of cores.

Details

The arguments teststat, testtype and mncriterion determine how the global null hypothesis of independence between all input variables and the response is tested (see ctree). The variable with most extreme p-value or test statistic is selected for splitting. If this isn’t possible due to sample
size constraints explained in the next paragraph, up to splittry other variables are inspected for possible splits.

A split is established when all of the following criteria are met: 1) the sum of the weights in the current node is larger than minsplit, 2) a fraction of the sum of weights of more than minprob will be contained in all daughter nodes, 3) the sum of the weights in all daughter nodes exceeds minbucket, and 4) the depth of the tree is smaller than maxdepth. This avoids pathological splits deep down the tree. When stump = TRUE, a tree with at most two terminal nodes is computed.

The argument mtry > 0 means that a random forest like ‘variable selection’, i.e., a random selection of mtry input variables, is performed in each node.

In each inner node, maxsurrogate surrogate splits are computed (regardless of any missing values in the learning sample). Factors in test samples whose levels were empty in the learning sample are treated as missing when computing predictions (in contrast to ctree. Note also the different behaviour of majority in the two implementations.

Value

A list.

glmtrytree Generalized Linear Model Trees

Description

Model-based recursive partitioning based on generalized linear models.

Usage

```r
glmtrytree(formula, data, subset, na.action, weights, offset, cluster,
            family = gaussian, epsilon = 1e-8, maxit = 25, ...)
```

Arguments

- **formula**: symbolic description of the model (of type y ~ z1 + ... + zl or y ~ x1 + ... + xk | z1 + ... + zl; for details see below).
- **data, subset, na.action**: arguments controlling formula processing via `model.frame`.
- **weights**: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in `mob.control`.
- **offset**: optional numeric vector with an a priori known component to be included in the model y ~ x1 + ... + xk (i.e., only when x variables are specified).
- **cluster**: optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.
- **family**: specification of a family for `glm`.
- **epsilon, maxit**: control parameters passed to `glm.control`.
- **...**: optional control parameters passed to `mob.control`.
Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the `mob` function. `glmtree` internally sets up a model fit function for `mob`, using `glm.fit`. Then `mob` is called using the negative log-likelihood as the objective function.

Compared to calling `mob` by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class `glmtree` inheriting from `modelparty`. The `info` element of the overall `party` and the individual nodes contain various informations about the models.

References

See Also

`mob`, `mob_control`, `lmtree`

Examples

```r
if(require("mlbench")) {

  ## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

  ## recursive partitioning of a logistic regression model
  pid_tree2 <- glmtree(diabetes ~ glucose | pregnant + pressure + triceps + insulin + mass + pedigree + age, 
                        data = PimaIndiansDiabetes, family = binomial)

  ## printing whole tree or individual nodes
  print(pid_tree2)
  print(pid_tree2, node = 1)

  ## visualization
  plot(pid_tree2)
  plot(pid_tree2, tp_args = list(cdpplot = TRUE))
  plot(pid_tree2, terminal_panel = NULL)

  ## estimated parameters
  coef(pid_tree2)
  coef(pid_tree2, node = 5)
  summary(pid_tree2, node = 5)

  ## deviance, log-likelihood and information criteria
  deviance(pid_tree2)
  logLik(pid_tree2)
  AIC(pid_tree2)
}
```
HuntingSpiders

Description

Abundances for 12 species of hunting spiders along with environmental predictors, all rated on a 0–9 scale.

Usage

```r
data("HuntingSpiders")
```

Format

A data frame containing 28 observations on 18 variables (12 species abundances and 6 environmental predictors).

- **arct.lute** numeric. Abundance of species *Arctosa lutetiana* (on a scale 0–9).
- **pard.lugu** numeric. Abundance of species *Pardosa lugubris* (on a scale 0–9).
- **zora.spin** numeric. Abundance of species *Zora spinimana* (on a scale 0–9).
- **pard.nigr** numeric. Abundance of species *Pardosa nigriceps* (on a scale 0–9).
- **pard.pull** numeric. Abundance of species *Pardosa pullata* (on a scale 0–9).
- **aulo.albi** numeric. Abundance of species *Aulonia albimana* (on a scale 0–9).
- **troc.terr** numeric. Abundance of species *Trochosa terricola* (on a scale 0–9).
- **alop.cune** numeric. Abundance of species *Alopecosa cuneata* (on a scale 0–9).
- **pard.mont** numeric. Abundance of species *Pardosa monticolora* (on a scale 0–9).
- **alop.acce** numeric. Abundance of species *Alopecosa accentuata* (on a scale 0–9).
- **alop.fabr** numeric. Abundance of species *Alopecosa fabrilis* (on a scale 0–9).
- **arct.peri** numeric. Abundance of species *Arctosa perita* (on a scale 0–9).
- **water** numeric. Environmental predictor on a scale 0–9.
- **sand** numeric. Environmental predictor on a scale 0–9.
- **moss** numeric. Environmental predictor on a scale 0–9.
- **reft** numeric. Environmental predictor on a scale 0–9.
- **twigs** numeric. Environmental predictor on a scale 0–9.
- **herbs** numeric. Environmental predictor on a scale 0–9.
Details

The data were originally analyzed by Van der Aart and Smeenk-Enserink (1975). De’ath (2002) transformed all variables to the 0–9 scale and employed multivariate regression trees.

Source

Package mvpart (currently archived, see https://CRAN.R-project.org/package=mvpart).

References

Examples

```r
## load data
data(“HuntingSpiders”, package = “partykit”)

## fit multivariate tree for 12-dimensional species abundance
sptree <- ctree(arct.lute + pard.lugu + zora.spin + pard.nigr + pard.pull +
aulo.albi + troc.terr + alop.cune + pard.mont + alop.acce + alop.fabr +
arct.peri ~ herbs + reft + moss + sand + twigs + water, data = HuntingSpiders,
teststat = “max”, msplit = 5)
plot(sptree, terminal_panel = node_barplot)
```

lmtree
Linear Model Trees

Description

Model-based recursive partitioning based on least squares regression.

Usage

lmtree(formula, data, subset, na.action, weights, offset, cluster, ...)

Arguments

- **formula**: symbolic description of the model (of type \(y \sim z_1 + \ldots + z_l \) or \(y \sim x_1 + \ldots + x_k \mid z_1 + \ldots + z_l \); for details see below).
- **data, subset, na.action**: arguments controlling formula processing via `model.frame`.
- **weights**: optional numeric vector of weights. By default these are treated as case weights but the default can be changed in `mob_control`.
offset optional numeric vector with an a priori known component to be included in the model \(y \sim x_1 + \ldots + x_k \) (i.e., only when \(x \) variables are specified).
cluster optional vector (typically numeric or factor) with a cluster ID to be employed for clustered covariances in the parameter stability tests.
...
optional control parameters passed to \texttt{mob_control}.

Details

Convenience interface for fitting MOBs (model-based recursive partitions) via the \texttt{mob} function. \texttt{lmtree} internally sets up a model fit function for \texttt{mob}, using either \texttt{lm_fit} or \texttt{lm_wfit} (depending on whether weights are used or not). Then \texttt{mob} is called using the residual sum of squares as the objective function.

Compared to calling \texttt{mob} by hand, the implementation tries to avoid unnecessary computations while growing the tree. Also, it provides a more elaborate plotting function.

Value

An object of class \texttt{lmtree} inheriting from \texttt{modelparty}. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also

\texttt{mob, mob_control, glmmtree}

Examples

```r
if(require("mlbench")) {

  ## Boston housing data
  data("BostonHousing", package = "mlbench")
  BostonHousing <- transform(BostonHousing,
    chas = factor(chas, levels = 0:1, labels = c("no", "yes")),
    rad = factor(rad, ordered = TRUE))

  ## linear model tree
  bh_tree <- lmtree(medv ~ log(lstat) + I(rm^2) | zn +
    indus + chas + nox + age + dis + rad + tax + crim + b + ptratio,
    data = BostonHousing, minsize = 40)

  ## printing whole tree or individual nodes
  print(bh_tree)
  print(bh_tree, node = 7)

  ## plotting
  plot(bh_tree)
}
```
plot(bh_tree, tp_args = list(which = "log(lstat)"))
plot(bh_tree, terminal_panel = NULL)

estimated parameters
coef(bh_tree)
coef(bh_tree, node = 9)
summary(bh_tree, node = 9)

various ways for computing the mean squared error (on the training data)
mean((BostonHousing$medv - fitted(bh_tree))^2)
mean(residuals(bh_tree)^2)
deviance(bh_tree)/sum(weights(bh_tree))
deviance(bh_tree)/nobs(bh_tree)

log-likelihood and information criteria
logLik(bh_tree)
AIC(bh_tree)
BIC(bh_tree)

(Note that this penalizes estimation of error variances, which
were treated as nuisance parameters in the fitting process.)

different types of predictions
bh <- BostonHousing[c(1, 10, 50),]
predict(bh_tree, newdata = bh, type = "node")
predict(bh_tree, newdata = bh, type = "response")
predict(bh_tree, newdata = bh, type = function(object) summary(object)$r.squared)

}

if(require("AER")) {

Demand for economics journals data
data("Journals", package = "AER")
Journals <- transform(Journals,
 age = 2000 - foundingyear,
 chars = charpp * pages)

linear regression tree (OLS)
j_tree <- lmtree(log(subs) ~ log(price/citations) | price + citations +
 age + chars + society, data = Journals, minsize = 10, verbose = TRUE)

printing and plotting
plot(j_tree)

coefficients and summary
coef(j_tree, node = 1:3)
summary(j_tree, node = 1:3)
}
if(require("AER")) {

 ## Beauty and teaching ratings data
data("TeachingRatings", package = "AER")

 ## linear regression (WLS)
 ## null model
 tr_null <- lm(eval ~ 1, data = TeachingRatings, weights = students,
 subset = credits == "more")
 ## main effects
 tr_lm <- lm(eval ~ beauty + gender + minority + native + tenure + division,
 data = TeachingRatings, weights = students, subset = credits == "more")
 ## tree
 tr_tree <- lmtree(eval ~ beauty | minority + age + gender + division + native + tenure,
 data = TeachingRatings, weights = students, subset = credits == "more",
 caseweights = FALSE)

 ## visualization
 plot(tr_tree)

 ## beauty slope coefficient
 coef(tr_lm)[2]
 coef(tr_tree)[, 2]

 ## R-squared
 1 - deviance(tr_lm)/deviance(tr_null)
 1 - deviance(tr_tree)/deviance(tr_null)
}

mob
Model-based Recursive Partitioning

Description

MOB is an algorithm for model-based recursive partitioning yielding a tree with fitted models associated with each terminal node.

Usage

```r
mob(formula, data, subset, na.action, weights, offset, cluster, 
    fit, control = mob_control(), ...)
```

Arguments

- `formula` symbolic description of the model (of type `y ~ z1 + ... + zl` or `y ~ x1 + ... + xk | z1 + ... + zl`; for details see below).
- `data, subset, na.action` arguments controlling formula processing via `model.frame`.
weights is an optional numeric vector of weights. By default these are treated as case weights but the default can be changed in \texttt{mob.control}.

offset is an optional numeric vector with an a priori known component to be included in the model \(y \sim x_1 + \ldots + x_k\) (i.e., only when \(x\) variables are specified).

cluster is an optional vector (typically numeric or factor) with a cluster ID to be passed on to the \texttt{fit} function and employed for clustered covariances in the parameter stability tests.

\texttt{fit} function. A function for fitting the model within each node. For details see below.

\texttt{control} is a list with control parameters as returned by \texttt{mob.control}.

Additional arguments passed to the \texttt{fit} function.

Details

Model-based partitioning fits a model tree using two groups of variables: (1) The model variables which can be just a (set of) response(s) \(y\) or additionally include regressors \(x_1, \ldots, x_k\). These are used for estimating the model parameters. (2) Partitioning variables \(z_1, \ldots, z_l\), which are used for recursively partitioning the data. The two groups of variables are either specified as \(y \sim z_1 + \ldots + z_l\) (when there are no regressors) or \(y \sim x_1 + \ldots + x_k | z_1 + \ldots + z_l\) (when the model part contains regressors). Both sets of variables may in principle be overlapping.

To fit a tree model the following algorithm is used.

1. fit a model to the \(y\) or \(y\) and \(x\) variables using the observations in the current node
2. Assess the stability of the model parameters with respect to each of the partitioning variables \(z_1, \ldots, z_l\). If there is some overall instability, choose the variable \(z\) associated with the smallest \(p\) value for partitioning, otherwise stop.
3. Search for the locally optimal split in \(z\) by minimizing the objective function of the model. Typically, this will be something like deviance or the negative logLik.
4. Refit the model in both kid subsamples and repeat from step 2.

More details on the conceptual design of the algorithm can be found in Zeileis, Hothorn, Hornik (2008) and some illustrations are provided in vignette("MOB"). For specifying the \texttt{fit} function two approaches are possible:

(1) It can be a function \texttt{fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, \ldots)}. The arguments \(y, x, \text{weights}, \text{offset}\) will be set to the corresponding elements in the current node of the tree. Additionally, starting values will sometimes be supplied via \texttt{start}. Of course, the \texttt{fit} function can choose to ignore any arguments that are not applicable, e.g., if the are no regressors \(x\) in the model or if starting values or not supported. The returned object needs to have a class that has associated \texttt{coef}, \texttt{logLik}, and \texttt{estfun} methods for extracting the estimated parameters, the maximizing log-likelihood, and the empirical estimating function (i.e., score or gradient contributions), respectively.

(2) It can be a function \texttt{fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, \ldots, estfun = FALSE, objfun = FALSE, \ldots)}. The arguments have the same meaning as above but the returned object needs to have a different structure. It needs to be a list with elements \texttt{coefficients} (containing the estimated parameters), \texttt{objfun} (containing the minimized objective function), \texttt{estfun} (the empirical estimating functions),
and object (the fitted model object). The elements estfun, or object should be NULL if the corresponding argument is set to FALSE.

Internally, a function of type (2) is set up by mob() in case a function of type (1) is supplied. However, to save computation time, a function of type (2) may also be specified directly.

For the fitted MOB tree, several standard methods are provided such as print, predict, residuals, logLik, deviance, weights, coef and summary. Some of these rely on reusing the corresponding methods for the individual model objects in the terminal nodes. Functions such as coef, print, summary also take a node argument that can specify the node IDs to be queried. Some examples are given below.

More details can be found in vignette("mob", package = "partykit"). An overview of the connections to other functions in the package is provided by Hothorn and Zeileis (2015).

Value

An object of class modelparty inheriting from party. The info element of the overall party and the individual nodes contain various informations about the models.

References

See Also

mob_control, lmtree, glmtree

Examples

```r
if(require("mlbench")) {

## Pima Indians diabetes data
data("PimaIndiansDiabetes", package = "mlbench")

## a simple basic fitting function (of type 1) for a logistic regression
logit <- function(y, x, start = NULL, weights = NULL, offset = NULL, ...) {
  glm(y ~ 0 + x, family = binomial, start = start, ...)
}

## set up a logistic regression tree
pid_tree <- mob(diabetes ~ glucose | pregnant + pressure + triceps + insulin +
    mass + pedigree + age, data = PimaIndiansDiabetes, fit = logit)
## see lmtree() and glmtree() for interfaces with more efficient fitting functions

## print tree
print(pid_tree)

## print information about (some) nodes
print(pid_tree, node = 3:4)
```
Visualization

```r
plot(pid_tree)
```

Coefficients and summary

```r
coef(pid_tree)
coef(pid_tree, node = 1)
summary(pid_tree, node = 1)
```

Average deviance computed in different ways

```r
mean(residuals(pid_tree)^2)
deviance(pid_tree)/sum(weights(pid_tree))
deviance(pid_tree)/nobs(pid_tree)
```

Log-likelihood and information criteria

```r
logLik(pid_tree)
AIC(pid_tree)
BIC(pid_tree)
```

Predicted nodes

```r
predict(pid_tree, newdata = head(PimaIndiansDiabetes, 6), type = "node")
```

Other types of predictions are possible using lmtree() / glmmtree()

mob_control

Description

Various parameters that control aspects the fitting algorithm for recursively partitioned `mob` models.

Usage

```r
mob_control(alpha = 0.05, bonferroni = TRUE, minsize = NULL, maxdepth = Inf,
mtry = Inf, trim = 0.1, breakties = FALSE, parm = NULL, dfsplit = TRUE, prune = NULL,
restart = TRUE, verbose = FALSE, caseweights = TRUE, ytype = "vector", xtype = "matrix",
terminal = "object", inner = terminal, model = TRUE, numsplit = "left",
catsplit = "binary", vcov = "opg", ordinal = "chisq", nrep = 10000,
minsplit = minsize, minbucket = minsize, applyfun = NULL, cores = NULL)
```

Arguments

- **alpha**: numeric significance level. A node is splitted when the (possibly Bonferroni-corrected) p value for any parameter stability test in that node falls below alpha (and the stopping criteria minsize and maxdepth are not fulfilled).

- **bonferroni**: logical. Should p values be Bonferroni corrected?
minsize, minsplit, minbucket
type integer. The minimum number of observations in a node. If NULL, the default
is to use 10 times the number of parameters to be estimated (divided by the
number of responses per observation if that is greater than 1). minsize is the
recommended name and minsplit/minbucket are only included for backward
compatibility with previous versions of mob and compatibility with ctree, re-
spectively.

maxdepth
type integer. The maximum depth of the tree.
mtry
type integer. The number of partitioning variables randomly sampled as candidates
in each node for forest-style algorithms. If mtry is greater than the number of
partitioning variables, no random selection is performed. (Thus, by default all
available partitioning variables are considered.)

trim
type numeric. This specifies the trimming in the parameter instability test for the
numerical variables. If smaller than 1, it is interpreted as the fraction relative to
the current node size.
breakties
type logical. Should ties in numeric variables be broken randomly for computing the
associated parameter instability test?

parm
type numeric or character. Number or name of model parameters included in the
parameter instability tests (by default all parameters are included).

dfsplit
type logical or numeric. as.integer(dfsplit) is the degrees of freedom per se-
lected split employed when computing information criteria etc.

prune
type character, numeric, or function for specifying post-pruning rule. If prune is
NULL (the default), no post-pruning is performed. For likelihood-based mob()
trees, prune can be set to "AIC" or "BIC" for post-pruning based on the corre-
sponding information criteria. More general rules (also in scenarios that are not
likelihood-based), can be specified by function arguments to prune, for details
see below.

restart
type logical. When determining the optimal split point in a numerical variable: Should
model estimation be restarted with NULL starting values for each split? The de-
fault is TRUE. If FALSE, then the parameter estimates from the previous split point
are used as starting values for the next split point (because in practice the differ-
ence are often not huge). (Note that in that case a for loop is used instead of the
apply fun for fitting models across sample splits.)

verbose
type logical. Should information about the fitting process of mob (such as test statis-
tics, p values, selected splitting variables and split points) be printed to the
screen?

caseweights
type logical. Should weights be interpreted as case weights? If TRUE, the number of
observations is sum(weights), otherwise it is sum(weights > 0).

ytype, xtype
type character. Specification of how mob should preprocess y and x variables. Possi-
ble choice are: "vector" (for y only), i.e., only one variable; "matrix", i.e., the
model matrix of all variables; "data.frame", i.e., a data frame of all variables.

terminal, inner
type character. Specification of which additional information ("estfun", "object",
or both) should be stored in each node. If NULL, no additional information is
stored.
mob_control

model logical. Should the full model frame be stored in the resulting object?

numsplit character indicating how splits for numeric variables should be justified. Because any split point in the interval between the last observation from the left child segment and the first observation from the right child segment leads to the same observed split, two options are available in mob_control: Either, the split is "left"-justified (the default for backward compatibility) or "center"-justified using the midpoint of the possible interval.

catsplit character indicating how (unordered) categorical variables should be splitted. By default the best "binary" split is searched (by minimizing the objective function). Alternatively, if set to "multiway", the node is simply splitted into all levels of the categorical variable.

vcov character indicating which type of covariance matrix estimator should be employed in the parameter instability tests. The default is the outer product of gradients ("opg"). Alternatively, vcov = "info" employs the information matrix and vcov = "sandwich" the sandwich matrix (both of which are only sensible for maximum likelihood estimation).

ordinal character indicating which type of parameter instability test should be employed for ordinal partitioning variables (i.e., ordered factors). This can be "chisq", "max", or "L2". If "chisq" then the variable is treated as unordered and a chi-squared test is performed. If "L2", then a maxLM-type test as for numeric variables is carried out but correcting for ties. This requires simulation of p-values via catl2BB and requires some computation time. For "max" a weighted double maximum test is used that computes p-values via pmvnorm.

nrep numeric. Number of replications in the simulation of p-values for the ordinal "L2" statistic (if used).

applyfun an optional lapply-style function with arguments function(X, FUN, ...). It is used for refitting the model across potential sample splits. The default is to use the basic lapply function unless the cores argument is specified (see below).

cores numeric. If set to an integer the applyfun is set to mclapply with the desired number of cores.

Details

See mob for more details and references.

For post-pruning, prune can be set to a function(objfun, df, nobs) which either returns TRUE to signal that a current node can be pruned or FALSE. All supplied arguments are of length two: objfun is the sum of objective function values in the current node and its child nodes, respectively. df is the degrees of freedom in the current node and its child nodes, respectively. nobs is vector with the number of observations in the current node and the total number of observations in the dataset, respectively.

If the objective function employed in the mob() call is the negative log-likelihood, then a suitable function is set up on the fly by comparing (2 * objfun + penalty * df) in the current and the daughter nodes. The penalty can then be set via a numeric or character value for prune: AIC is used if prune = "AIC" or prune = 2 and BIC if prune = "BIC" or prune = log(n).
model.frame.rpart

Value

A list of class `mob_control` containing the control parameters.

See Also

`mob`

nodeapply

Apply Functions Over Nodes

Description

Returns a list of values obtained by applying a function to `party` or `partynode` objects.

Usage

```r
nodeapply(obj, ids = 1, FUN = NULL, ...)  ## S3 method for class 'partynode'
nodeapply(obj, ids = 1, FUN = NULL, ...)  ## S3 method for class 'party'
nodeapply(obj, ids = 1, FUN = NULL, by_node = TRUE, ...)  
```
Arguments

obj an object of class `partynode` or `party`.
ids integer vector of node identifiers to apply over.
FUN a function to be applied to nodes. By default, the node itself is returned.
by_node a logical indicating if FUN is applied to subsets of `party` objects or `partynode` objects (default).
... additional arguments.

Details

Function FUN is applied to all nodes with node identifiers in ids for a partynode object. The method for party by default calls the nodeapply method on its node slot. If by_node is FALSE, it is applied to a party object with root node ids.

Value

A list of results of length length(ids).

Examples

```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L, info = "terminal A"),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V5 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L, info = "terminal B"),
  # V4 > 4.8, terminal node
  list(id = 6L, info = "terminal C"),
  # V5 > 1.7, terminal node
  list(id = 7L, info = "terminal D")
)

## convert to a recursive structure
node <- as.partynode(nodelist)

## return root node
nodeapply(node)

## return info slots of terminal nodes
nodeapply(node, ids = nodeids(node, terminal = TRUE),
nodeids

Extract Node Identifiers

Description

Extract unique identifiers from inner and terminals nodes of a party object.

Usage

nodeids(obj, ...)

## S3 method for class 'partynode'
nodeids(obj, from = NULL, terminal = FALSE, ...)

## S3 method for class 'party'
nodeids(obj, from = NULL, terminal = FALSE, ...)

Arguments

obj an object of class party or party.
from an integer specifying node to start from.
terminal logical specifying if only node identifiers of terminal nodes are returned.

... additional arguments.

Details

The identifiers of each node are extracted.

Value

A vector of node identifiers.
Examples

```r
a tree as flat list structure
nodelist <- list(
 # root node
 list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
 kids = 2:3),
 # V4 <= 1.9, terminal node
 list(id = 2L),
 # V4 > 1.9
 list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),
 kids = c(4L, 7L)),
 # V1 <= 1.7
 list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
 kids = 5:6),
 # V4 <= 4.8, terminal node
 list(id = 5L),
 # V4 > 4.8, terminal node
 list(id = 6L),
 # V1 > 1.7, terminal node
 list(id = 7L)
)

convert to a recursive structure
node <- as.party(node(nodelist))

set up party object
data("iris")
tree <- party(node, data = iris,
 fitted = data.frame("(fitted)" =
 fitted_node(node, data = iris),
 check.names = FALSE))
tree

ids of all nodes
nodeids(tree)

ids of all terminal nodes
nodeids(tree, terminal = TRUE)

ids of terminal nodes in subtree with root [3]
nodeids(tree, from = 3, terminal = TRUE)
```
Description

Model-based recursive partitioning based on (generalized) linear models with some local (i.e., leaf-specific) and some global (i.e., constant throughout the tree) regression coefficients.

Usage

```r
palmtree(formula, data, weights = NULL, family = NULL,
 lmstart = NULL, abstol = 0.001, maxit = 100,
 dfsplit = TRUE, verbose = FALSE, plot = FALSE, ...)
```

Arguments

- `formula`: formula specifying the response variable and a three-part right-hand-side describing the local (i.e., leaf-specific) regressors, the global regressors (i.e., with constant coefficients throughout the tree), and partitioning variables, respectively. For details see below.
- `data`: data.frame to be used for estimating the model tree.
- `weights`: numeric. An optional numeric vector of weights. (Note that this is passed with standard evaluation, i.e., it is not enough to pass the name of a column in `data`.)
- `family`: either `NULL` so that `lm/lmtree` are used or family specification for `glm/glmtree`. See `glm` documentation for families.
- `lmstart`: numeric. A vector of length `nrow(data)`, to be used as an offset in estimation of the first tree. `NULL` by default, which results in an initialization with the global model.
- `abstol`: numeric. The convergence criterion used for estimation of the model. When the difference in log-likelihoods of the model from two consecutive iterations is smaller than `abstol`, estimation of the model tree has converged.
- `maxit`: numeric. The maximum number of iterations to be performed in estimation of the model tree.
- `dfsplit`: logical or numeric. `as.integer(dfsplit)` is the degrees of freedom per selected split employed when extracting the log-likelihood.
- `verbose`: Should the log-likelihood value of the estimated model be printed for every iteration of the estimation?
- `plot`: Should the tree be plotted at every iteration of the estimation? Note that selecting this option slows down execution of the function.
- `...`: Additional arguments to be passed to `lmtree()` or `glmtree()`. See `mob_control` documentation for details.

Details

Partially additive (generalized) linear model (PALM) trees learn a tree where each terminal node is associated with different regression coefficients while adjusting for additional global regression effects. This allows for detection of subgroup-specific coefficients with respect to selected covariates, while keeping the remaining regression coefficients constant throughout the tree. The estimation algorithm iterates between (1) estimation of the tree given an offset of the global effects, and (2) estimation of the global regression effects given the tree structure.
To specify all variables in the model a formula such as $y \sim x_1 + x_2 \mid x_3 \mid z_1 + z_2 + z_3$ is used, where $y$ is the response, $x_1$ and $x_2$ are the regressors in every node of the tree, $x_3$ has a global regression coefficients, and $z_1$ to $z_3$ are the partitioning variables considered for growing the tree.

The code is still under development and might change in future versions.

Value

The function returns a list with the following objects:

- **formula**: The formula as specified with the `formula` argument.
- **call**: the matched call.
- **tree**: The final lmtree/glmtree.
- **palm**: The final lm(glm) model.
- **data**: The dataset specified with the data argument including added auxiliary variables .ranef and .treeresponse from the last iteration.
- **nobs**: Number of observations.
- **loglik**: The log-likelihood value of the last iteration.
- **df**: Degrees of freedom.
- **dfsplit**: degrees of freedom per selected split as specified with the dfsplit argument.
- **iterations**: The number of iterations used to estimate the palmtree.
- **maxit**: The maximum number of iterations specified with the maxit argument.
- **lmstart**: Offset in estimation of the first tree as specified in the lmstart argument.
- **abstol**: The prespecified value for the change in log-likelihood to evaluate convergence, as specified with the abstol argument.
- **intercept**: Logical specifying if an intercept was computed.
- **family**: The family object used.
- **mob.control**: A list containing control parameters passed to lmtree(), as specified with ....

References


See Also

`lm, glm, lmtree, glmtree`

Examples

```r
one DGP from Sies and Van Mechelen (2015)
dgp <- function(nobs = 1000, nreg = 5, creg = 0.4, ptreat = 0.5, sd = 1,
 coef = c(1, 0.25, 0.25, 0, 0, -0.25), eff = 1)
{
 d <- mvtnorm::rmvnorm(nobs,
 mean = rep(0, nreg),
 #...
sigma = diag(1 - creg, nreg, nreg) + creg

colnames(d) <- paste0("x", 1:nreg)
d <- as.data.frame(d)
d$a <- rbinom(nobs, size = 1, prob = ptreat)
d$err <- rnorm(nobs, mean = 0, sd = sd)

go <- function(d) {
 as.numeric(d$x1 > -0.545) * as.numeric(d$x2 < 0.545)
}
d$y <- coef[1] + drop(as.matrix(d[, paste0("x", 1:5)]) %*% coef[-1]) -
 eff * (d$a - gopt(d))^2 + d$err
d$a <- factor(d$a)
return(d)
}
set.seed(1)
d <- dgp()

estimate PALM tree with correctly specified global (partially
additive) regressors and all variables considered for partitioning
palm <- palmtree(y ~ a | x1 + x2 + x5 | x1 + x2 + x3 + x4 + x5, data = d)
print(palm)
plot(palm)

query coefficients
coef(palm, model = "tree")
coef(palm, model = "palm")
coef(palm, model = "all")

Description

The plot method for party and constparty objects are rather flexible and can be extended by panel functions. Some pre-defined panel-generating functions of class grapcon_generator for the most important cases are documented here.

Usage

- `node_inner(obj, id = TRUE, pval = TRUE, abbreviate = FALSE, fill = "white",
gp = gpar())`

- `node_terminal(obj, digits = 3, abbreviate = FALSE,
 fill = c("lightgray", "white"), id = TRUE,
 just = c("center", "top"), top = 0.85,
 align = c("center", "left", "right"), gp = NULL, FUN = NULL,
 height = NULL, width = NULL)`

- `edge_simple(obj, digits = 3, abbreviate = FALSE, justmin = Inf,`
just = c("alternate", "increasing", "decreasing", "equal"),
fill = "white")

node_boxplot(obj, col = "black", fill = "lightgray", bg = "white", width = 0.5,
yscale = NULL, ylines = 3, cex = 0.5, id = TRUE, mainlab = NULL, gp = gpar())

node_barplot(obj, col = "black", fill = NULL, bg = "white",
beside = NULL, ymax = NULL, ylines = NULL, widths = 1, gap = NULL,
reverse = NULL, rot = 0, just = c("center", "top"), id = TRUE,
mainlab = NULL, gp = gpar())

node_surv(obj, col = "black", bg = "white", ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_ecdf(obj, col = "black", bg = "white", ylines = 2,
id = TRUE, mainlab = NULL, gp = gpar(), ...)

node_bivplot(mobj, which = NULL, id = TRUE, pop = TRUE,
pointcol = "black", pointcex = 0.5,
boxcol = "black", boxwidth = 0.5, boxfill = "lightgray",
bg = "white", fitmean = TRUE, linecol = "red",
cdplot = FALSE, fivenum = TRUE, breaks = NULL,
ylines = NULL, xlab = FALSE, ylab = FALSE, margins = rep(1.5, 4),
mainlab = NULL, ...)

node_mvar(obj, which = NULL, id = TRUE, pop = TRUE, ylines = NULL,
mainlab = NULL, varlab = TRUE, bg = "white", ...)

Arguments

obj an object of class party.
digits integer, used for formatting numbers.
abbreviate logical indicating whether strings should be abbreviated.
col, pointcol, boxcol, linecol a color for points and lines.
fill, boxfill, bg a color to filling rectangles and backgrounds.
id logical. Should node IDs be plotted?
pval logical. Should node p values be plotted (if they are available)?
jjust justification of terminal panel viewport (node_terminal), or labels (edge_simple,
node_barplot).
justmin minimum average edge label length to employ justification via just in edge_panel,
otherwise just = "equal" is used. Thus, by default "equal" justification is always used but other justifications could be employed for finite justmin.
top in case of top justification, the npc coordinate at which the viewport is justified.
align alignment of text within terminal panel viewport.
The plot methods for `party` and `constparty` objects provide an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. The panel functions to be used should depend only on the node being visualized, however, for setting up an appropriate panel function, information from the whole tree is typically required. Hence, `party` adopts the framework of `grapcon_generator` (graphical appearance control) from the `vcd` package (Meyer, Zeileis and Hornik, 2005) and provides several panel-generating functions. For convenience, the panel-generating functions `node_inner` and `edge_simple` return panel functions to draw inner nodes and edges.
left and right edges. For drawing terminal nodes, the functions returned by the other panel functions can be used. The panel generating function `node_terminal` is a terse text-based representation of terminal nodes.

Graphical representations of terminal nodes are available and depend on the kind of model and the measurement scale of the variables modeled.

For univariate regressions (typically fitted by), `node_surv` returns a function that plots Kaplan-Meier curves in each terminal node; `node_barplot`, `node_boxplot`, `node_hist`, `node_ecdf` and `node_density` can be used to plot bar plots, box plots, histograms, empirical cumulative distribution functions and estimated densities into the terminal nodes.

For multivariate regressions (typically fitted by `mob`), `node_bivplot` returns a panel function that creates bivariate plots of the response against all regressors in the model. Depending on the scale of the variables involved, scatter plots, box plots, spinograms (or CD plots) and spine plots are created. For the latter two `spine` and `cd_plot` from the `vcd` package are re-used.

For multivariate responses in `ctree`, the panel function `node_mvar` generates one plot for each response.

References

party

Recursive Partitioning

Description

A class for representing decision trees and corresponding accessor functions.

Usage

```r
code
party(node, data, fitted = NULL, terms = NULL, names = NULL,
      info = NULL)
## S3 method for class 'party'
names(x)
## S3 replacement method for class 'party'
names(x) <- value
data_party(party, id = 1L)
## Default S3 method:
data_party(party, id = 1L)
node_party(party)
is.constparty(party)
is.simpleparty(party)
```
Arguments

node an object of class partynode.
data a (potentially empty) data.frame.
fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).
terms an optional terms object.
names an optional vector of names to be assigned to each node of node.
info additional information.
x an object of class party.
party an object of class party.
value a character vector of up to the same length as x, or NULL.
id a node identifier.

Details

Objects of class party basically consist of a partynode object representing the tree structure in a recursive way and data. The data argument takes a data.frame which, however, might have zero columns. Optionally, a data.frame with at least one variable (fitted) containing the terminal node numbers of data used for fitting the tree may be specified along with a terms object or any additional (currently unstructured) information as info. Argument names defines names for all nodes in node.

Method names can be used to extract or alter names for nodes. Function node_party returns the node element of a party object. Further methods for party objects are documented in party-methods and party-predict. Trees of various flavors can be coerced to party, see party-coercion.

Two classes inherit from class party and impose additional assumptions on the structure of this object: Class constparty requires that the fitted slot contains a partitioning of the learning sample as a factor ("fitted") and the response values of all observations in the learning sample as ("response"). This structure is most flexible and allows for graphical display of the response values in terminal nodes as well as for computing predictions based on arbitrary summary statistics.

Class simpleparty assumes that certain pre-computed information about the distribution of the response variable is contained in the info slot nodes. At the moment, no formal class is used to describe this information.

Value

The constructor returns an object of class party:

node an object of class partynode.
data a (potentially empty) data.frame.
fitted an optional data.frame with nrow(data) rows (only if nrow(data) != 0 and containing at least the fitted terminal node identifiers as element (fitted). In addition, weights may be contained as element (weights) and responses as (response).
terms an optional terms object.
names an optional vector of names to be assigned to each node of node.
info additional information.

names can be used to set and retrieve names of nodes and node_party returns an object of class partynode. data_party returns a data frame with observations contained in node id.

References

Examples

data
artificial WeatherPlay data
data("WeatherPlay", package = "partykit")
str(WeatherPlay)

splits
split in overcast, humidity, and windy
sp_o <- partysplit(1L, index = 1:3)
sp_h <- partysplit(3L, breaks = 75)
sp_w <- partysplit(4L, index = 1:2)

query labels
character_split(sp_o)

nodes
set up partynode structure
pn <- partynode(1L, split = sp_o, kids = list(
 partynode(2L, split = sp_h, kids = list(
 partynode(3L, info = "yes"),
 partynode(4L, info = "no"))),
 partynode(5L, info = "yes"),
 partynode(6L, split = sp_w, kids = list(
 partynode(7L, info = "yes"),
 partynode(8L, info = "no")))))
pn
tree
party: associate recursive partynode structure with data
py <- party(pn, WeatherPlay)
py
plot(py)

variations
tree stump
party-coercion

Description
Functions coercing various objects to objects of class party.

Usage

as.party(obj, ...)
S3 method for class 'rpart'
as.party(obj, data = TRUE, ...)
S3 method for class 'WeKa_tree'
as.party(obj, data = TRUE, ...)
S3 method for class 'XMLNode'
as.party(obj, ...)
pmmlTreeModel(file, ...)
as.constparty(obj, ...)
as.simpleparty(obj, ...)
S3 method for class 'party'
as.simpleparty(obj, ...)
S3 method for class 'simpleparty'
as.simpleparty(obj, ...)

```r
n1 <- partynode(id = 1L, split = sp_o, kids = lapply(2L:4L, partynode))
print(n1, data = WeatherPlay)

## query fitted nodes and kids ids
fitted_node(n1, data = WeatherPlay)
kidids_node(n1, data = WeatherPlay)

## tree with full data sets
t1 <- party(n1, data = WeatherPlay)

## tree with empty data set
party(n1, data = WeatherPlay[0, ])

## constant-fit tree
t2 <- party(n1,
data = WeatherPlay,
fitted = data.frame(
  "(fitted)" = fitted_node(n1, data = WeatherPlay),
  "(response)" = WeatherPlay$play,
  check.names = FALSE),
terms = terms(play ~ ., data = WeatherPlay),
)
t2 <- as.constparty(t2)
t2
plot(t2)
```
party-methods

Methods for Party Objects

Description

Methods for computing on party objects.

Arguments

- **obj**: an object of class `rpart`, `Weka_tree`, `XMLnode` or objects inheriting from `party`.
- **data**: logical. Should the model frame associated with the fitted obj be included in the data of the party?
- **file**: a file name of a XML file containing a PMML description of a tree.
- **...**: additional arguments.

Details

Trees fitted using functions `rpart` or `J48` are coerced to `party` objects. By default, objects of class `constparty` are returned.

When information about the learning sample is available, `party` objects can be coerced to objects of class `constparty` or `simpleparty` (see `party` for details).

Value

All methods return objects of class `party`.

Examples

```r
## fit tree using rpart
library("rpart")
rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)

## coerce to 'constparty'
as.party(rp)
```
Usage

```r
## S3 method for class 'party'
print(x,
      terminal_panel = function(node)
        formatinfo_node(node, default = "*", prefix = " ",
        tp_args = list(),
        inner_panel = function(node) " ", ip_args = list(),
        header_panel = function(party) " ",
        footer_panel = function(party) " ",
        digits = getOption("digits") - 2, ...)
## S3 method for class 'simpleparty'
print(x, digits = getOption("digits") - 4,
      header = NULL, footer = TRUE, ...)
## S3 method for class 'constparty'
print(x, FUN = NULL, digits = getOption("digits") - 4,
      header = NULL, footer = TRUE, ...)
## S3 method for class 'party'
length(x)
## S3 method for class 'party'
x[i, ...]
## S3 method for class 'party'
x[i, ...]
## S3 method for class 'party'
depth(x, root = FALSE, ...)
## S3 method for class 'party'
width(x, ...)
## S3 method for class 'party'
nodeprune(x, ids, ...)
```

Arguments

- **x**: an object of class `party`.
- **i**: an integer specifying the root of the subtree to extract.
- **terminal_panel**: a panel function for printing terminal nodes.
- **tp_args**: a list containing arguments to `terminal_panel`.
- **inner_panel**: a panel function for printing inner nodes.
- **ip_args**: a list containing arguments to `inner_panel`.
- **header_panel**: a panel function for printing the header.
- **footer_panel**: a panel function for printing the footer.
- **digits**: number of digits to be printed.
- **header**: header to be printed.
- **footer**: footer to be printed.
- **FUN**: a function to be applied to nodes.
- **root**: a logical. Should the root count be counted in `depth`?
- **ids**: a vector of node ids (or their names) to be pruned-off.
- **...**: additional arguments.
Details

length gives the number of nodes in the tree (in contrast to the length method for `partynode` objects which returns the number of kid nodes in the root), depth the depth of the tree and width the number of terminal nodes. The subset methods extract subtrees and the `print` method generates a textual representation of the tree. `nodeprune` prunes-off nodes and makes sure that the node ids of the resulting tree are in pre-order starting with root node id 1. For `constparty` objects, the fitted slot is also changed.

Examples

```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 5L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V5 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L),
  # V4 > 4.8, terminal node
  list(id = 6L),
  # V5 > 1.7, terminal node
  list(id = 7L)
)

## convert to a recursive structure
node <- as.partynode(nodelist)

## set up party object
data("iris")
tree <- party(node, data = iris,
              fitted = data.frame("(fitted)" =
                               fitted_node(node, data = iris),
                               check.names = FALSE))
names(tree) <- paste("Node", nodeids(tree), sep = " ")

## number of kids in root node
length(tree)

## depth of tree
depth(tree)

## number of terminal nodes
width(tree)
```
party-plot

Visualization of Trees

Description

plot method for party objects with extended facilities for plugging in panel functions.

Usage

```r
## S3 method for class 'party'
plot(x, main = NULL,
     terminal_panel = node_terminal, tp_args = list(),
     inner_panel = node_inner, ip_args = list(),
     edge_panel = edge_simple, ep_args = list(),
     drop_terminal = FALSE, tnex = 1,
     newpage = TRUE, pop = TRUE, gp = gpar(), ...)

## S3 method for class 'constparty'
plot(x, main = NULL,
     terminal_panel = NULL, tp_args = list(),
     inner_panel = node_inner, ip_args = list(),
     edge_panel = edge_simple, ep_args = list(),
     type = c("extended", "simple"), drop_terminal = NULL,
     tnex = NULL, newpage = TRUE, pop = TRUE, gp = gpar(),
     ...)

## S3 method for class 'simpleparty'
plot(x, digits = getOption("digits") - 4, tp_args = NULL, ...)
```

Arguments

- **x**
 - an object of class party or constparty.

- **main**
 - an optional title for the plot.

- **type**
 - a character specifying the complexity of the plot: extended tries to visualize the distribution of the response variable in each terminal node whereas simple only gives some summary information.

- **terminal_panel**
 - an optional panel function of the form function(node) plotting the terminal nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and tp_args to set up a panel function. By default, an appropriate panel function is chosen depending on the scale of the dependent variable.

- **tp_args**
 - a list of arguments passed to terminal_panel if this is a "grapcon_generator" object.
inner_panel an optional panel function of the form function(node) plotting the inner nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and ip_args to set up a panel function.

ip_args a list of arguments passed to inner_panel if this is a "grapcon_generator" object.

drop_terminal a logical indicating whether all terminal nodes should be plotted at the bottom.

tnex a numeric value giving the terminal node extension in relation to the inner nodes.

Details

This plot method for party objects provides an extensible framework for the visualization of binary regression trees. The user is allowed to specify panel functions for plotting terminal and inner nodes as well as the corresponding edges. Panel functions for plotting inner nodes, edges and terminal nodes are available for the most important cases and can serve as the basis for user-supplied extensions, see node_inner.

More details on the ideas and concepts of panel-generating functions and "grapcon_generator" objects in general can be found in Meyer, Zeileis and Hornik (2005).

References

See Also

node_inner, node_terminal, edge_simple, node_barplot, node_boxplot.
party-predict

Tree Predictions

Description

Compute predictions from party objects.

Usage

```r
## S3 method for class 'party'
predict(object, newdata = NULL, perm = NULL, ...)
predict_party(party, id, newdata = NULL, ...)
## Default S3 method:
predict_party(party, id, newdata = NULL, FUN = NULL, ...)
## S3 method for class 'constparty'
predict_party(party, id, newdata = NULL,
  type = c("response", "prob", "quantile", "density", "node"),
  at = if (type == "quantile") c(0.1, 0.5, 0.9),
  FUN = NULL, simplify = TRUE, ...)
## S3 method for class 'simpleparty'
predict_party(party, id, newdata = NULL,
  type = c("response", "prob", "node"), ...)
```

Arguments

- **object**: objects of class party.
- **newdata**: an optional data frame in which to look for variables with which to predict, if omitted, the fitted values are used.
- **perm**: an optional character vector of variable names. Splits of nodes with a primary split in any of these variables will be permuted (after dealing with surrogates). Note that surrogate split in the perm variables will no be permuted.
- **party**: objects of class party.
- **id**: a vector of terminal node identifiers.
- **type**: a character string denoting the type of predicted value returned, ignored when argument FUN is given. For "response", the mean of a numeric response, the predicted class for a categorical response or the median survival time for a censored response is returned. For "prob" the matrix of conditional class probabilities (simplify = TRUE) or a list with the conditional class probabilities for each observation (simplify = FALSE) is returned for a categorical response. For numeric and censored responses, a list with the empirical cumulative distribution functions and empirical survivor functions (Kaplan-Meier estimate) is returned when type = "prob". "node" returns an integer vector of terminal node identifiers.
FUN a function to extract (default method) or compute (constparty method) summary statistics. For the default method, this is a function of a terminal node only, for the constparty method, predictions for each node have to be computed based on arguments \((y, w)\) where \(y\) is the response and \(w\) are case weights.

at if the return value is a function (as the empirical cumulative distribution function or the empirical quantile function), this function is evaluated at values at and these numeric values are returned. If at is \(\text{NULL}\), the functions themselves are returned in a list.

simplify a logical indicating whether the resulting list of predictions should be converted to a suitable vector or matrix (if possible).

... additional arguments.

Details

The predict method for party objects computes the identifiers of the predicted terminal nodes, either for new data in newdata or for the learning samples (only possible for objects of class constparty). These identifiers are delegated to the corresponding predict_party method which computes (via FUN for class constparty) or extracts (class simpleparty) the actual predictions.

Value

A list of predictions, possibly simplified to a numeric vector, numeric matrix or factor.

Examples

```r
## fit tree using rpart
library("rpart")
rp <- rpart(skips ~ Opening + Solder + Mask + PadType + Panel,
            data = solder, method = 'anova')

## coerce to 'constparty'
pr <- as.party(rp)

## mean predictions
predict(pr, newdata = solder[c(3, 541, 640),])

## ecdf
predict(pr, newdata = solder[c(3, 541, 640),], type = "prob")

## terminal node identifiers
predict(pr, newdata = solder[c(3, 541, 640),], type = "node")

## median predictions
predict(pr, newdata = solder[c(3, 541, 640),],
         FUN = function(y, w = 1) median(y))
```
partynode

Inner and Terminal Nodes

Description

A class for representing inner and terminal nodes in trees and functions for data partitioning.

Usage

partynode(id, split = NULL, kids = NULL, surrogates = NULL,
 info = NULL)

kidids_node(node, data, vmatch = 1:ncol(data),
 obs = NULL, perm = NULL)

fitted_node(node, data, vmatch = 1:ncol(data),
 obs = 1:nrow(data), perm = NULL)

id_node(node)

split_node(node)

surrogates_node(node)

kids_node(node)

info_node(node)

formatinfo_node(node, FUN = NULL, default = "", prefix = NULL, ...)

Arguments

id integer, a unique identifier for a node.
split an object of class partysplit.

kids a list of partynode objects.
surrogates a list of partysplit objects.
info additional information.
node an object of class partynode.
data a list or data.frame.
vmatch a permutation of the variable numbers in data.
obs a logical or integer vector indicating a subset of the observations in data.
perm a vector of integers specifying the variables to be permuted prior before splitting (i.e., for computing permutation variable importances). The default NULL doesn’t alter the data.

FUN function for formatting the info, for default see below.
default a character used if the info in node is NULL.

prefix an optional prefix to be added to the returned character.

... further arguments passed to capture.output.
Details

A node represents both inner and terminal nodes in a tree structure. Each node has a unique identifier `id`. A node consisting only of such an identifier (and possibly additional information in `info`) is a terminal node.

Inner nodes consist of a primary split (an object of class `partysplit`) and at least two kids (daughter nodes). Kid nodes are objects of class `partynode` itself, so the tree structure is defined recursively. In addition, a list of `partysplit` objects offering surrogate splits can be supplied. Like `partysplit` objects, `partynode` objects aren't connected to the actual data.

Function `kidids_node()` determines how the observations in `data[obs,]` are partitioned into the kid nodes and returns the number of the list element in list `kids` each observations belongs to (and not it’s identifier). This is done by evaluating `split` (and possibly all surrogate splits) on `data` using `kidids_split`.

Function `fitted_node()` performs all splits recursively and returns the identifier `id` of the terminal node each observation in `data[obs,]` belongs to. Arguments `vmatch`, `obs` and `perm` are passed to `kidids_split`.

Function `formatinfo_node()` extracts the the `info` from node and formats it to a character vector using the following strategy: If `is.null(info)`, the default is returned. Otherwise, `FUN` is applied for formatting. The default function uses `as.character` for atomic objects and applies `capture.output` to `print(info)` for other objects. Optionally, a `prefix` can be added to the computed character string.

All other functions are accessor functions for extracting information from objects of class `partynode`.

Value

The constructor `partynode()` returns an object of class `partynode`:

- `id` a unique integer identifier for a node.
- `split` an object of class `partysplit`.
- `kids` a list of `partynode` objects.
- `surrogates` a list of `partysplit` objects.
- `info` additional information.

`kidids_split()` returns an integer vector describing the partition of the observations into kid nodes by their position in list `kids`.

`fitted_node()` returns the node identifiers (`id`) of the terminal nodes each observation belongs to.

References

Examples

data("iris", package = "datasets")

a stump defined by a binary split in Sepal.Length
stump <- partynode(id = 1L,
 split = partysplit(which(names(iris) == "Sepal.Length"),
 breaks = 5),
 kids = lapply(2:3, partynode))

textual representation
print(stump, data = iris)

list element number and node id of the two terminal nodes
table(kidids_node(stump, iris),
 fitted_node(stump, data = iris))

assign terminal nodes with probability 0.5
to observations with missing 'Sepal.Length'
iris_NA <- iris
iris_NA[sample(1:nrow(iris), 50), "Sepal.Length"] <- NA

table(fitted_node(stump, data = iris_NA,
 obs = !complete.cases(iris_NA)))

a stump defined by a primary split in 'Sepal.Length'
and a surrogate split in 'Sepal.Width' which
determines terminal nodes for observations with
missing 'Sepal.Length'
stump <- partynode(id = 1L,
 split = partysplit(which(names(iris) == "Sepal.Length"),
 breaks = 5),
 kids = lapply(2:3, partynode),
 surrogates = list(partysplit(
 which(names(iris) == "Sepal.Width"), breaks = 3)))
f <- fitted_node(stump, data = iris_NA,
 obs = !complete.cases(iris_NA))
tapply(iris_NA$Sepal.Width[!complete.cases(iris_NA)], f, range)

Description

Methods for computing on partynode objects.

Usage

is.partynode(x)
as.partynode(x, ...)
S3 method for class 'partynode'
as.partynode(x, from = NULL, recursive = TRUE, ...)
S3 method for class 'list'
as.partynode(x, ...)
S3 method for class 'partynode'
as.list(x, ...)
S3 method for class 'partynode'
length(x)
S3 method for class 'partynode'
x[i, ...]
S3 method for class 'partynode'
x[[i, ...]]
is.terminal(x, ...)
S3 method for class 'partynode'
is.terminal(x, ...)
S3 method for class 'partynode'
depth(x, root = FALSE, ...)
width(x, ...)
S3 method for class 'partynode'
width(x, ...)
S3 method for class 'partynode'
print(x, data = NULL, names = NULL,
inner_panel = function(node) "",
terminal_panel = function(node) " " *,
prefix = "", first = TRUE, digits = getOption("digits") + 2,
...)
S3 method for class 'partynode'
nodeprune(x, ids, ...)

Arguments

x an object of class partynode or list.
from an integer giving the identifier of the root node.
recursive a logical, if FALSE, only the id of the root node is checked against from. If TRUE,
 the ids of all nodes are checked.
i an integer specifying the kid to extract.
root a logical. Should the root count be counted in depth?
data an optional data.frame.
names a vector of names for nodes.
terminal_panel a panel function for printing terminal nodes.
inner_panel a panel function for printing inner nodes.
prefix lines start with this symbol.
first a logical.
digits number of digits to be printed.
ids a vector of node ids to be pruned-off.
... additional arguments.
Details

is.partynode checks if the argument is a valid partynode object. is.terminal is TRUE for terminal nodes and FALSE for inner nodes. The subset methods return the partynode object corresponding to the i-th kid.

The as.partynode and as.list methods can be used to convert flat list structures into recursive partynode objects and vice versa. as.partynode applied to partynode objects renumbers the recursive nodes starting with root node identifier from.

length gives the number of kid nodes of the root node, depth the depth of the tree and width the number of terminal nodes.

Examples

```r
## a tree as flat list structure
nodelist <- list(
  # root node
  list(id = 1L, split = partysplit(varid = 4L, breaks = 1.9),
       kids = 2:3),
  # V4 <= 1.9, terminal node
  list(id = 2L),
  # V4 > 1.9
  list(id = 3L, split = partysplit(varid = 1L, breaks = 1.7),
       kids = c(4L, 7L)),
  # V1 <= 1.7
  list(id = 4L, split = partysplit(varid = 4L, breaks = 4.8),
       kids = 5:6),
  # V4 <= 4.8, terminal node
  list(id = 5L),
  # V4 > 4.8, terminal node
  list(id = 6L),
  # V1 > 1.7, terminal node
  list(id = 7L)
)

## convert to a recursive structure
node <- as.partynode(nodelist)

## print raw recursive structure without data
print(node)

## print tree along with the associated iris data
data("iris", package = "datasets")
print(node, data = iris)

## print subtree
print(node[2], data = iris)

## print subtree, with root node number one
print(as.partynode(node[2], from = 1), data = iris)

## number of kids in root node
length(node)
```
depth of tree
\[\text{depth}(\text{node}) \]

number of terminal nodes
\[\text{width}(\text{node}) \]

convert back to flat structure
\[\text{as.list}(\text{node}) \]

partysplit

Binary and Multiway Splits

Description

A class for representing multiway splits and functions for computing on splits.

Usage

```r
partysplit(varid, breaks = NULL, index = NULL, right = TRUE, prob = NULL, info = NULL)
kidids_split(split, data, vmatch = 1:ncol(data), obs = NULL)
character_split(split, data = NULL,
   digits =getOption("digits") - 2)
varid_split(split)
breaks_split(split)
index_split(split)
right_split(split)
prob_split(split)
info_split(split)
```

Arguments

- **varid**: an integer specifying the variable to split in, i.e., a column number in `data`.
- **breaks**: a numeric vector of split points.
- **index**: an integer vector containing a contiguous sequence from one to the number of kid nodes. May contain NAs.
- **right**: a logical, indicating if the intervals defined by `breaks` should be closed on the right (and open on the left) or vice versa.
- **prob**: a numeric vector representing a probability distribution over kid nodes.
- **info**: additional information.
- **split**: an object of class `partysplit`.
- **data**: a list or `data.frame`.
- **vmatch**: a permutation of the variable numbers in `data`.
- **obs**: a logical or integer vector indicating a subset of the observations in `data`.
- **digits**: minimal number of significant digits.
Details

A split is basically a function that maps data, more specifically a partitioning variable, to a set of integers indicating the kid nodes to send observations to. Objects of class `partysplit` describe such a function and can be set-up via the `partysplit()` constructor. The variables are available in a list or data.frame (here called `data`) and `varid` specifies the partitioning variable, i.e., the variable or list element to split in. The constructor `partysplit()` doesn’t have access to the actual data, i.e., doesn’t estimate splits.

`kidids_split()` actually partitions the data `data[obs, varid_split(split)]` and assigns an integer (giving the kid node number) to each observation. If `vmatch` is given, the variable `vmatch[varid_split(split)]` is used.

`character_split()` returns a character representation of its `split` argument. The remaining functions defined here are accessor functions for `partysplit` objects.

The numeric vector `breaks` defines how the range of the partitioning variable (after coercing to a numeric via `as.numeric`) is divided into intervals (like in `cut`) and may be NULL. These intervals are represented by the numbers one to `length(breaks) + 1`.

`index` assigns these `length(breaks) + 1` intervals to one of at least two kid nodes. Thus, `index` is a vector of integers where each element corresponds to one element in a list `kids` containing `partynode` objects, see `partynode` for details. The vector `index` may contain NAs, in that case, the corresponding values of the splitting variable are treated as missings (for example factor levels that are not present in the learning sample). Either `breaks` or `index` must be given. When `breaks` is NULL, it is assumed that the partitioning variable itself has storage mode `integer` (e.g., is a factor).

`prob` defines a probability distribution over all kid nodes which is used for random splitting when a deterministic split isn’t possible (due to missing values, for example).

`info` takes arbitrary user-specified information.

Value

The constructor `partysplit()` returns an object of class `partysplit`:

- `varid`: an integer specifying the variable to split in, i.e., a column number in `data`,
- `breaks`: a numeric vector of split points,
- `index`: an integer vector containing a contiguous sequence from one to the number of kid nodes,
- `right`: a logical, indicating if the intervals defined by `breaks` should be closed on the right (and open on the left) or vice versa
- `prob`: a numeric vector representing a probability distribution over kid nodes,
- `info`: additional information.

`kidids_split()` returns an integer vector describing the partition of the observations into kid nodes.

`character_split()` gives a character representation of the split and the remaining functions return the corresponding slots of `partysplit` objects.
References

See Also
cut

Examples

data("iris", package = "datasets")

binary split in numeric variable ‘Sepal.Length’
s15 <- partysplit(which(names(iris) == "Sepal.Length"),
 breaks = 5)
character_split(s15, data = iris)
table(kidids_split(s15, data = iris), iris$Sepal.Length <= 5)

multiway split in numeric variable ‘Sepal.Width’,
higher values go to the first kid, smallest values
to the last kid
sw23 <- partysplit(which(names(iris) == "Sepal.Width"),
 breaks = c(3, 3.5), index = 3:1)
character_split(sw23, data = iris)
table(kidids_split(sw23, data = iris),
 cut(iris$Sepal.Width, breaks = c(-Inf, 2, 3, Inf)))

binary split in factor ‘Species’
sp <- partysplit(which(names(iris) == "Species"),
 index = c(1L, 1L, 2L))
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

multiway split in factor ‘Species’
sp <- partysplit(which(names(iris) == "Species"), index = 1:3)
character_split(sp, data = iris)
table(kidids_split(sp, data = iris), iris$Species)

multiway split in numeric variable ‘Sepal.Width’
sp <- partysplit(which(names(iris) == "Sepal.Width"),
 breaks = quantile(iris$Sepal.Width))
character_split(sp, data = iris)

WeatherPlay

Weather Conditions and Playing a Game

Description

Artificial data set concerning the conditions suitable for playing some unspecified game.
Usage

data("WeatherPlay")

Format

A data frame containing 14 observations on 5 variables.

- **outlook** factor.
- **temperature** numeric.
- **humidity** numeric.
- **windy** factor.
- **play** factor.

Source

Table 1.3 in Witten and Frank (2011).

References

See Also

- `party`, `partynode`, `partysplit`

Examples

```r
## load weather data
data("WeatherPlay", package = "partykit")
WeatherPlay

## construct simple tree
pn <- partynode(1L, 
split = partysplit(1L, index = 1:3), 
kids = list( 
  partynode(2L, 
    split = partysplit(3L, breaks = 75), 
    kids = list( 
      partynode(3L, info = "yes"), 
      partynode(4L, info = "no"))), 
  partynode(5L, info = "yes"), 
  partynode(6L, 
    split = partysplit(4L, index = 1:2), 
    kids = list( 
      partynode(7L, info = "yes"), 
      partynode(8L, info = "no")))))

pn

## couple with data
```
py <- party(pn, WeatherPlay)

print/plot/predict
print(py)
plot(py)
predict(py, newdata = WeatherPlay)

customize printing
print(py,
 terminal_panel = function(node) paste(": play=", info_node(node), sep = ""))
Index

*Topic **datasets**
 HuntingSpiders, 13
 WeatherPlay, 50

*Topic **hplot**
 panelfunctions, 29
 party-plot, 39

*Topic **misc**
 ctree_control, 9
 mob_control, 20

*Topic **tree**
 cforest, 2
 ctree, 7
 glmmtree, 11
 lmtree, 14
 mob, 17
 model.frame.rpart, 23
 nodeapply, 23
 nodeids, 25
 palmtree, 26
 party, 32
 party-coercion, 35
 party-methods, 36
 party-predict, 41
 partynode, 43
 partynode-methods, 45
 partysplit, 48
 [.party (party-methods), 36
 [.partynode (partynode-methods), 45
 [[.party (party-methods), 36
 [[.partynode (partynode-methods), 45
 as.constparty (party-coercion), 35
 as.list.partynode (partynode-methods), 45
 as.numeric, 49
 as.party (party-coercion), 35
 as.partynode (partynode-methods), 45
 as.simpleparty (party-coercion), 35
 breaks_split (partysplit), 48
 capture_output, 43, 44
 catL2BB, 22
 cd_plot, 32
 cforest, 2, 3–5
 character_split (partysplit), 48
 coef, 18
 coef.modelparty (mob), 17
 coef.palmtree (palmtree), 26
 ctree, 4, 7, 10, 11, 32
 ctree_control, 3, 4, 7, 8, 9
 cut, 49, 50
 data.frame, 33, 43, 48
 data_party (party), 32
 depth.party (party-methods), 36
 depth.partynode (partynode-methods), 45
 deviance, 18
 deviance.modelparty (mob), 17
 edge_simple, 40
 edge_simple (panelfunctions), 29
 estfun, 18
 factor, 49
 fitted.modelparty (mob), 17
 fitted_node (partynode), 43
 formatinfo_node, 31
 formatinfo_node (partynode), 43
 formula.modelparty (mob), 17
 getCall.modelparty (mob), 17
 getCall.party (party-methods), 36
 glm, 11, 27, 28
 glm.control, 11
 glm.fit, 12
 glmmtree, 11, 15, 19, 28
 grid.text, 31
 HuntingSpiders, 13
 id_node (partynode), 43
 model.frame.rpart, 23
 nodeapply, 23
 nodeids, 25
 palmtree, 26
 party, 32
 party-coercion, 35
 party-methods, 36
 party-predict, 41
 partynode, 43
 partynode-methods, 45
 partysplit, 48
 [.party (party-methods), 36
 [.partynode (partynode-methods), 45
 [[.party (party-methods), 36
 [[.partynode (partynode-methods), 45
 as.constparty (party-coercion), 35
 as.list.partynode (partynode-methods), 45
 as.numeric, 49
 as.party (party-coercion), 35
 as.partynode (partynode-methods), 45
 as.simpleparty (party-coercion), 35
 breaks_split (partysplit), 48
 capture_output, 43, 44
 catL2BB, 22
 cd_plot, 32
 cforest, 2, 3–5
 character_split (partysplit), 48
 coef, 18
 coef.modelparty (mob), 17
 coef.palmtree (palmtree), 26
 ctree, 4, 7, 10, 11, 32
 ctree_control, 3, 4, 7, 8, 9
 cut, 49, 50
 data.frame, 33, 43, 48
 data_party (party), 32
 depth.party (party-methods), 36
 depth.partynode (partynode-methods), 45
 deviance, 18
 deviance.modelparty (mob), 17
 edge_simple, 40
 edge_simple (panelfunctions), 29
 estfun, 18
 factor, 49
 fitted.modelparty (mob), 17
 fitted_node (partynode), 43
 formatinfo_node, 31
 formatinfo_node (partynode), 43
 formula.modelparty (mob), 17
 getCall.modelparty (mob), 17
 getCall.party (party-methods), 36
 glm, 11, 27, 28
 glm.control, 11
 glm.fit, 12
 glmmtree, 11, 15, 19, 28
 grid.text, 31
 HuntingSpiders, 13
 id_node (partynode), 43
 model.frame.rpart, 23
 nodeapply, 23
 nodeids, 25
 palmtree, 26
 party, 32
 party-coercion, 35
 party-methods, 36
 party-predict, 41
 partynode, 43
 partynode-methods, 45
 partysplit, 48
 [.party (party-methods), 36
 [.partynode (partynode-methods), 45
 [[.party (party-methods), 36
 [[.partynode (partynode-methods), 45
 as.constparty (party-coercion), 35
 as.list.partynode (partynode-methods), 45
 as.numeric, 49
 as.party (party-coercion), 35
 as.partynode (partynode-methods), 45
 as.simpleparty (party-coercion), 35
 breaks_split (partysplit), 48
 capture_output, 43, 44
 catL2BB, 22
 cd_plot, 32
 cforest, 2, 3–5
 character_split (partysplit), 48
 coef, 18
 coef.modelparty (mob), 17
 coef.palmtree (palmtree), 26
 ctree, 4, 7, 10, 11, 32
 ctree_control, 3, 4, 7, 8, 9
 cut, 49, 50
 data.frame, 33, 43, 48
 data_party (party), 32
 depth.party (party-methods), 36
 depth.partynode (partynode-methods), 45
 deviance, 18
 deviance.modelparty (mob), 17
 edge_simple, 40
 edge_simple (panelfunctions), 29
 estfun, 18
 factor, 49
 fitted.modelparty (mob), 17
 fitted_node (partynode), 43
 formatinfo_node, 31
 formatinfo_node (partynode), 43
 formula.modelparty (mob), 17
 getCall.modelparty (mob), 17
 getCall.party (party-methods), 36
 glm, 11, 27, 28
 glm.control, 11
 glm.fit, 12
 glmmtree, 11, 15, 19, 28
 grid.text, 31
 HuntingSpiders, 13
 id_node (partynode), 43
right_split (partysplit), 48
rpart, 23, 36

sctest.constparty (ctree), 7
sctest.modelparty (mob), 17
spine, 32
split_node (partynode), 43
summary.modelparty (mob), 17
surrogates_node (partynode), 43
survfit, 31

terms, 33, 34
treeresponse, 5

varid_split (partysplit), 48

WeatherPlay, 50
weights.modelparty (mob), 17
Weka_tree, 36
where, 5
width (partynode-methods), 45
width.party (party-methods), 36