Package ‘pequod’

February 29, 2016

Type Package
Title Moderated Regression Package
Version 0.0-5
Date 2016-2-28
Author Alberto Mirisola & Luciano Seta
Depends ggplot2, car
Imports methods
Maintainer Alberto Mirisola <alberto.mirisola@gmail.com>
Description Moderated regression with mean and residual centering and simple slopes analysis.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2016-02-29 01:28:20

R topics documented:

 lmres ... 2
 PlotSlope .. 4
 simpleSlope ... 7
 summary.lmres .. 9
 summary.simpleSlope ... 10

Index 12
Description

Fit moderated linear regression with both residual centering and mean centering methods.

Usage

lmres(formula, data, residual_centering, centered, ...)

Default S3 method:
lmres(formula, data, residual_centering=FALSE, centered = "none", ...)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.
data a data framecentered variables wich must be centeredresidual_centering "FALSE" generate a moderated using standard lm regression, "TRUE" generate a moderated regression with residuals centering

Details

Moderated regression without residual centering: For any interaction term, the product is computed and entered in the final model. In order to perform a mean centered moderated regression, predictors must be centered. Moderated regression with residual centering: For any interaction term with order n, a regression with low order terms (n-1) is computed, and Interaction residuals are entered in the final model.

Value

lmres returns an object of class "lmres".
An object of class "lmres" is a list containing at least the following components:

regr.order the numeric order of the fitted linear modelformula.StepI the formula of the first order regressionformula.StepII (only where relevant) the formula of the second order regressionformula.Stepfin the formula of the x (max(x)=3) order regressionbeta.StepI a named vector of standardized coefficients for the first order regressionbeta.StepII (only where relevant) a named vector of standardized coefficients for the second order regression
lmres

beta.stepfin a named vector of standardized coefficients for the x (max(x)=3) order regression
StepI a lm object for the first order regression
StepII (only where relevant) a lm object for the second order regression
Stepfin a lm object for the x (max(x)=3) order regression
F_change is a list containing F change statistics

Author(s)

Alberto Mirisola and Luciano Seta

References

See Also

“summary.lmres”

Examples

moderated regression with mean centering
library(car)
data(Ginzberg)
model1<-lmres(adjdep~adjsimp*adjfatal, centered=c("adjsimp", "adjfatal"),
data=Ginzberg)

moderated regression with mean centering
library(car)
data(Ginzberg)
model1<-lmres(adjdep~adjsimp*adjfatal, centered=c("adjsimp", "adjfatal"),
data=Ginzberg)

moderated regression with mean centering
model2<-lmres(adjdep~adjsimp*adjfatal, residual_centering=TRUE,
centered=c("adjsimp", "adjfatal"), data=Ginzberg)

three way interaction with mean centering
library(car)
data(Highway1)
model3<-lmres(rate~len*trks*sigs1, centered=c("len","trks","sigs1"),data=Highway1)

The function is currently defined as
function (formula, data, centered, ...)
UseMethod("lmres")
PlotSlope

Simple slopes plot

Description

Simple slope plot for two and three way interactions.

Usage

PlotSlope(object, namemod = "default", namex = "default",
namey = "default", limitx = "default", limity = "default")

Arguments

object an object of class "simpleSlope".
namemod a character vector of the moderator points. If "default" is used, default setting is printed.
namex name of the predictor. If "default" is used, the predictor name in the dataframe is printed.
namey name of the dependent variable. If "default" is used, the dataframe name is printed.
limitx a numeric vector for setting limits of x axis.
limity a numeric vector for setting limits of y axis.

Details

Plot for Simple slope analysis.

Value

PlotSlope returns an object of class "ggplot".

Author(s)

Alberto Mirisola and Luciano Seta

Examples

Default plot for three way interaction

library(car)
data(Highway1)
model3<-lm(res(rate~len*trks*sigs1, centered=c("len","trks","sigs1"),data=Highway1)
S_slopes<-simpleSlope(model3,pred="len",mod1="trks", mod2="sigs1")
Plot<-PlotSlope(S_slopes)
Personalized plot for three way interaction

```r
library(car)
data(Highway1)
model1<-lm(rate~len+trks+sigs1, centered=c("len","trks","sigs1"),data=Highway1)
S_slopes<-simpleSlope(model1,pred="len",mod1="trks", mod2="sigs1")
Plot<-PlotSlope(S_slopes, namemod=c("Low truck volume (-1 SD), Low number of signals per mile (-1 SD)","Low truck volume (-1 SD), High number of signals per mile (+1 SD)","High truck volume (+1 SD), Low number of signals per mile (-1 SD)","High truck volume (+1 SD)"), namex="length of the Highway1
segment in miles", namey="1973 accident rate \n per million vehicle miles", limitx=c(-9,9), limity=c(-2,9))
```

The function is currently defined as

```r
function(object, namemod = "default", namex = "default", namey = "default", limitx = "default", limity = "default") {
  pmatr <- object$Points
  nomY <- object$nomY
  nomX <- object$nomX
  X_1L <- object$X_1L
  X_1H <- object$X_1H
  if (object$orde == 2) {
    nam <- dimnames(object$simple_slope)[1]
    nam <- nam[[1]]
    r1 <- nam[1]
    r2 <- nam[2]
    xini <- rep(X_1L, 4)
    xend <- rep(X_1H, 4)
    fact <- c(5, 6)
    mat <- cbind(fact, xini, pmatr[, 1], xend, pmatr[, 2])
    mat <- as.data.frame(mat)
    names(mat) <- c("fact", "xini", "yini", "xend", "yend")
    p <- ggplot(mat, aes(x = xini, y = yini))
    p1 <- p + geom_segment(aes(xend = xend, yend = yend))
    p1 <- p1 + scale_x_continuous(nomX) + scale_y_continuous(nomY)
    p1 <- p1 + geom_point(size = 3, aes(shape = factor(fact))) +
    geom_point(aes(x = xend, y = yend, shape = factor(fact)),
    size = 3)
    if (length(namemod) == 1) {
      p1 <- p1 + scale_shape(name = "Moderator", breaks = c(5, 6),
      labels = c(r1, r2))
    }
    if (length(namemod) > 1) {
      if (length(namemod) != 2) {
        stop("length of namemod vector must be = 2")
      }
      if (length(namemod) == 2) {
        p1 <- p1 + geom_point(aes(x = xend, y = yend, shape = factor(fact)),
        size = 3)
        p1 <- p1 + geom_point(aes(x = xend, y = yend, shape = factor(fact)),
        size = 3)
        p1 <- p1 + geom_point(aes(x = xend, y = yend, shape = factor(fact)),
        size = 3)
        if (length(namemod) == 2) {
          p1 <- p1 + geom_point(aes(x = xend, y = yend, shape = factor(fact)),
          size = 3)
        }
        if (length(namemod) > 2) {
          stop("length of namemod vector must be = 2")
        }
      }
    }
  }
```
p1 <- p1 + scale_shape(name = "Moderator", breaks = c(5, 6), labels = namemod)

if (nameX != "default"){
 if (length(limitx) == 2) {
 p1 <- p1 + scale_x_continuous(nameX, limits = limitx)
 } else {
 p1 <- p1 + scale_x_continuous(nameX)
 }
}

if (nameY != "default"){
 if (length(limity) == 2) {
 p1 <- p1 + scale_y_continuous(nameY, limits = limity)
 } else {
 p1 <- p1 + scale_y_continuous(nameY)
 }
}

return(p1)

if (object$orde == 3) {

 nam <- dimnames(object$simple_slope)[1]
 nam <- nam[[1]]
 r1 <- nam[1]
 r2 <- nam[2]
 r3 <- nam[3]
 r4 <- nam[4]

 xini <- rep(X_1L, 4)
 xend <- rep(X_1H, 4)
 fact <- c(5, 6, 7, 8)
 mat <- cbind(fact, xini, pmatr[, 1], xend, pmatr[, 2])
 mat <- as.data.frame(mat)
 names(mat) <- c("fact", "xini", "yini", "xend", "yend")
 p <- ggplot(mat, aes(x = xini, y = yini))
 p1 <- p + geom_segment(aes(xend = xend, yend = yend))
 p1 <- p1 + scale_x_continuous(nomx) + scale_y_continuous(nomy)
 p1 <- p1 + geom_point(size = 3, aes(shape = factor(fact))) + geom_point(aes(x = xend, y = yend, shape = factor(fact)), size = 3)

 if (length(namemod) == 1) {
 p1 <- p1 + scale_shape(name = "Moderators Combination",}
breaks = c(5, 6, 7, 8), labels = c(r1, r2, r3, r4))
}
if (length(namemod) > 1) {
if (length(namemod) != 4) {
 stop("length of namemod vector must be 4")
}
pl <- p1 + scale_shape(name = "Moderators Combination",
 breaks = c(5, 6, 7, 8), labels = namemod)
}
p2 <- pl

if (namex != "default") {
if (length(limitx) == 2) {
p2 <- p2 + scale_x_continuous(namex, limits = limitx)
}
else {
p2 <- p2 + scale_x_continuous(namex)
}

if (namey != "default") {
if (length(limity) == 2) {
p2 <- p2 + scale_y_continuous(namey, limits = limity)
}
else {
p2 <- p2 + scale_y_continuous(namey)
}

return(p2)

}

simpleSlope
Simple slopes analysis for Moderated regression

Description

Usage

simpleSlope(object, pred, mod1, mod2, coded, ...)

Default S3 method:
simpleSlope(object, pred, mod1, mod2="none", coded = "none", ...)
simpleSlope

Arguments

- **object**: an object of class "lmres": a moderated regression function.
- **pred**: name of the predictor variable
- **mod1**: name of the first moderator variable
- **mod2**: name of the second moderator variable. Default "none" is used in order to analyzing two way interaction,
- **coded**: a character vector of coded variables
- ...

Details

Simple slope analysis for moderated regression. If two way interaction is analyzed, the function computes simple slope analysis and region of significance (Bauer & Curran, 2005). If three way interaction is analyzed, the function compute simple slope analysis and difference slope test (Dawson and Richter, 2006).

Value

- **simpleSlope**: returns an object of class "simpleSlope".
- **nomY**: the name of dependent variable
- **orde**: it's 2 for two way interaction, it's 3 for three way interaction
- **points**: Estimated points of dependent variable as a function of levels of moderators and predictor
- **simple_slope**: a matrix summarizing simple slopes results
- **delta_slope**: (only for three way interaction)a matrix summarizing difference slope tests
- **Df**: degree of freedom
- **confYU**: (only for two way interaction)confidence interval of moderator region of significance

Author(s)

Alberto Mirisola and Luciano Seta

References

summary.lmres

See Also

“summary.simpleSlope”

Examples

```r
## simple slope for three way interaction

library(car)
data(Highway1)
model3<-lmres(rate~len*trks*sigs1, centered=c("len","trks","sigs1"), data=Highway1)
S_slopes<-simpleSlope(model3,pred="len",mod1="trks", mod2="sigs1")
```

```r
## The function is currently defined as
function(object, pred, mod1, mod2, coded, ...)
UseMethod("simpleSlope")
```

Description

return simple and nested summaries

Usage

```r
## S3 method for class 'lmres'
summary(object, type = "default", ...)
```

Arguments

- **object**: a lmres object
- **type**: “default” generate a lm output, “nested” generate a hierarchical regression output
- ...

Value

The function summary is used to obtain a simple of nested summary of the results.

Author(s)

Alberto Mirisola and Luciano Seta
Examples

```r
library(car)
data(Ginzberg)
model1<-lm(res(adjdep~adjsimp*adjfatal, centered=c("adjsimp", "adjfatal"),
data=Ginzberg)

summary(model1)
summary(model1, type="nested")

## The function is currently defined as
function (object, type = "default", ...)
```

summary.simpleSlope

summary for simpleSlope object

Description

return summaries for simpleSlope object

Usage

```r
## S3 method for class 'simpleSlope'
summary(object,...)
```

Arguments

- `object,...` a simpleSlope object

Value

The function summary is used to obtain the summary of the simpleSlope results.

Author(s)

Alberto Mirisola and Luciano Seta

Examples

```r
library(car)
data(Highway1)
model3<-lm(res(rate~len*trks*sigs1, centered=c("len","trks","sigs1"),data=Highway1)
S_slopes<-simpleSlope(model3,pred="len",mod1="trks", mod2="sigs1")
summary(S_slopes)

## The function is currently defined as
function (object, ...)

summary.simpleSlope
Index

*Topic \textasciitilde kwd1
  lmres, 2
  PlotSlope, 4
  simpleSlope, 7
  summary.lmres, 9
  summary.simpleSlope, 10
*Topic \textasciitilde kwd2
  lmres, 2
  PlotSlope, 4
  simpleSlope, 7
  summary.lmres, 9
  summary.simpleSlope, 10

lmres, 2
PlotSlope, 4
print.lmres(lmres), 2
print.simpleSlope(simpleSlope), 7
print.summary.lmres(summary.lmres), 9
print.summary.simpleSlope
  (summary.simpleSlope), 10

simpleSlope, 7
summary.lmres, 9
summary.simpleSlope, 10