Package ‘pgnorm’

November 24, 2015

Type Package
Title The p-Generalized Normal Distribution
Version 2.0
Date 2015-11-23
Author Steve Kalke
Maintainer Steve Kalke <steve.kalke@googlemail.com>
Description Evaluation of the pdf and the cdf of the univariate, noncentral, p-generalized normal distribution. Sampling from the univariate, noncentral, p-generalized normal distribution using either the p-generalized polar method, the p-generalized rejecting polar method, the Monty Python method, the Ziggurat method or the method of Nardon and Pianca. The package also includes routines for the simulation of the bivariate, p-generalized uniform distribution and the simulation of the corresponding angular distribution.
License GPL (>= 2)
LazyData true
NeedsCompilation no
Repository CRAN
Date/Publication 2015-11-24 15:08:34

R topics documented:

pgnorm-package ... 2
datasetpgnmp1 ... 3
datasetpgnmp2 ... 3
datasetpgnzig ... 4
dpgnorm ... 4
ppgnorm .. 5
rpgangular ... 6
rpgnorm .. 7
rpgnorm_montypython 8
Description

The pgnorm-package includes routines to evaluate (cdf,pdf) and simulate the univariate p-generalized normal distribution with form parameter p, expectation mean and standard deviation σ. The pdf of this distribution is given by

\[f(x, p, \text{mean}, \sigma) = \left(\frac{\sigma}{\sigma_p}\right)^p \exp\left(-\frac{p}{\sigma_p} \left|\frac{x - \text{mean}}{\sigma}\right|^p\right), \]

where $C_p = p^{1-1/p}/2/\Gamma(1/p)$ and $\sigma_p^2 = p^{2/p} \Gamma(3/p)/\Gamma(1/p)$, which becomes

\[f(x, p, \text{mean}, \sigma) = C_p \exp\left(-\frac{|x|^p}{\sigma_p}\right), \]

if $\sigma = \sigma_p$ and $\text{mean} = 0$. The random number generation can be realized with one of five different simulation methods including the p-generalized polar method, the p-generalized rejecting polar method, the Monty Python method, the Ziggurat method and the method of Nardon and Pianca. Additionally to the simulation of the p-generalized normal distribution, the related p-generalized uniform distribution on the p-generalized unit circle and the corresponding angular distribution can be simulated by using the functions "rpgunif" and "rpgangular", respectively.

Details

Package: pgnorm
Type: Package
Version: 2.0
Date: 2015-11-23
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Steve Kalke <steve.kalke@googlemail.com>
References

Examples

```r
y <- rpgnorm(10, 3)
```

datasetpgnmp1

Dataset 1 of the Monty Python method

Description

The dataset contains tail algorithm constants for sampling from the tail of the p-generalized normal distribution in context of a simulation of the p-generalized normal distribution with the Monty Python method.

Usage

```r
data(datasetpgnmp1)
```

Examples

```r
data(datasetpgnmp1)
```

datasetpgnmp2

Dataset 2 of the Monty Python method

Description

The dataset contains optimal rectangle widths in context of a simulation of the p-generalized normal distribution with the Monty Python method.

Usage

```r
data(datasetpgnmp2)
```

Examples

```r
data(datasetpgnmp2)
```
datasetpgnzig

Dataset of the Ziggurat method

Description

The dataset contains tail algorithm constants for sampling from the tail of the p-generalized normal distribution in context of a simulation of the p-generalized normal distribution with the Ziggurat method.

Usage

```r
data(datasetpgnzig)
```

Examples

```r
data(datasetpgnzig)
```

dpgnorm

A function to evaluate the p-generalized normal density

Description

The function evaluates the density $f(x, p, mean, sigma)$ of the univariate p-generalized normal distribution according to

$$f(x, p, mean, \sigma) = (\frac{\sigma_p}{\sigma}) C_p \exp \left(- \left(\frac{\sigma_p}{\sigma} \right)^p \frac{|x - mean|^p}{p} \right),$$

where $C_p = p^{1-1/p}/2/\Gamma(1/p)$ and $\sigma_p^2 = p^{2/p} \Gamma(3/p)/\Gamma(1/p)$.

Usage

```r
dpgnorm(y, p, mean, sigma)
```

Arguments

- **y**
 - The real argument of the function.
- **p**
 - A positive number expressing the form parameter of the distribution. The default is 2.
- **mean**
 - A real number expressing the expectation of the distribution. The default is 0.
- **sigma**
 - A positive number expressing the standard deviation of the distribution. The default is σ_p.

Value

A real number.
ppgnorm

Author(s)
Steve Kalke

References

Examples

```R
y<-dpgnorm(0.3,1,2)
```

Description

The function evaluates the cdf of the univariate p-generalized normal distribution according to the density

\[f(x, p, \text{mean}, \sigma) = (\sigma_p / \sigma) C_p \exp \left(- \left(\frac{\sigma_p}{\sigma} \right)^p \frac{|x - \text{mean}|^p}{p} \right), \]

where \(C_p = p^{1 - 1/p} / 2 / \Gamma(1/p) \) and \(\sigma_p^2 = p^{2/p} \Gamma(3/p) / \Gamma(1/p) \).

Usage

```R
ppgnorm(y, p, mean, sigma)
```

Arguments

- `y` A real number, the argument of the function.
- `p` A positive number expressing the form parameter of the distribution. The default is 2.
- `mean` A real number expressing the expectation of the distribution. The default is 0.
- `sigma` A positive number expressing the standard deviation of the distribution. The default is \(\sigma_p \).

Value

A real number.

Author(s)
Steve Kalke
References

Examples

```r
y <- rpgangular(10000, 3)
```

rpgangular

A random number generator for the angular distribution

Description

The function simulates the univariate angular distribution corresponding to the \(p \)-generalized uniform distribution on the \(p \)-generalized unit circle.

Usage

```r
rpgangular(n, p)
```

Arguments

- **n**: The natural number of random variables to be simulated.
- **p**: A positive number expressing the form parameter of the distribution. The default is 2.

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

```r
y <- rpgangular(10000, 3)
```
Description

The function simulates the univariate \(p \)-generalized normal distribution by using one of the following methods: the \(p \)-generalized polar method (pgenpolar), the \(p \)-generalized rejecting polar method (pgenpolarrej), the Monty Python method (montypython), the Ziggurat method (ziggurat) and the method of Nardon and Pianca (nardonpianca).

Usage

\[
\text{rpgnorm}(n, p, \text{mean}, \text{sigma}, \text{method})
\]

Arguments

- **n**: The natural number of random variables to be simulated.
- **p**: A positive number expressing the form parameter of the distribution. The default is 2. In case of the Monty Python method and the Ziggurat method, \(p \) can be chosen from \((1, \infty) \cup \{0.25, 0.45, 0.5, 0.6, 0.75\}\).
- **mean**: A real number expressing the expectation of the distribution. The default is 0.
- **sigma**: A positive number expressing the standard deviation of the distribution. The default is \(\sigma_p = p^{1/p} \sqrt{\Gamma(3/p)/\Gamma(1/p)} \), the natural standard deviation of the \(p \)-generalized normal distribution.
- **method**: A string expressing the method to be used for the simulation ("pgenpolar", "pgenpolarrej", "montypython", "ziggurat" or "nardonpianca"). The default is "nardonpianca".

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

\[
y \leftarrow \text{rpgnorm}(10000, 3, \text{method}="\text{pgenpolar}\"
\]
rpgnorm_montypython A random number generator for the p-generalized normal distribution

Description

The function simulates the univariate, central, p-generalized normal distribution by using the Monty Python method.

Usage

rpgnorm_montypython(n,p)

Arguments

n The natural number of random variables to be simulated.

p A positive number expressing the form parameter of the distribution. The default is 2. In case of the Monty Python method, p can be chosen from $(1, \infty) \cup \{0.25, 0.45, 0.5, 0.6, 0.75\}$.

Value

An n-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

y<-rpgnorm_montypython(10000,3)
rpgnorm_nardonpianca

Description

The function simulates the univariate, central, \(p \)-generalized normal distribution by using the method of Nardon and Pianca.

Usage

\[
\text{rpgnorm_nardonpianca}(n, p)
\]

Arguments

- \(n \) The natural number of random variables to be simulated.
- \(p \) A positive number expressing the form parameter of the distribution. The default is 2.

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

\[
y \leftarrow \text{rpgnorm_nardonpianca}(10000, 3)
\]

rpgnorm_pgenpolar

Description

The function simulates the univariate, central, \(p \)-generalized normal distribution by using the \(p \)-generalized polar method.

Usage

\[
\text{rpgnorm_pgenpolar}(n, p)
\]
Arguments

\(n \)
The natural number of random variables to be simulated.

\(p \)
A positive number expressing the form parameter of the distribution. The default is 2.

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

\[y \leftarrow \text{rpgnorm_pgenpolar}(10000,3) \]

rpgnorm_pgenpolarrej A random number generator for the \(p \)-generalized normal distribution

Description

The function simulates the univariate, central, \(p \)-generalized normal distribution by using the \(p \)-generalized rejecting polar method.

Usage

rpgnorm_pgenpolarrej(n,p)

Arguments

\(n \)
The natural number of random variables to be simulated.

\(p \)
A positive number expressing the form parameter of the distribution. The default is 2.

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke
rpgnorm_ziggurat

References

Examples

\[
y \leftarrow \text{rpgnorm_pgenpolarrej}(10000, 3)
\]

Description

The function simulates the univariate, central, \(p \)-generalized normal distribution by using the Ziggurat method.

Usage

\[
rpgnorm_ziggurat(n, p, x)
\]

Arguments

- \(n \): The natural number of random variables to be simulated.
- \(p \): A positive number expressing the form parameter of the distribution. The default is 2. In case of the Ziggurat method, \(p \) can be chosen from \((1, \infty) \cup \{0.25, 0.45, 0.5, 0.6, 0.75\}\).
- \(x \): (optional) A real vector containing the \(2^8 - 1 \) rightmost endpoints of the \(2^8 \) ziggurat-rectangles.

Value

An \(n \)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

\[
y \leftarrow \text{rpgnorm_ziggurat}(10000, 3)
\]
rpgunif

A random number generator for the \(p \)-generalized uniform distribution

Description
The function simulates the bivariate, \(p \)-generalized uniform distribution on the \(p \)-generalized unit circle.

Usage
rpgunif(n,p)

Arguments
\(n \) The natural number of random vectors to be simulated.
\(p \) A positive number expressing the form parameter of the distribution. The default is 2.

Value
A real \(n \times 2 \) matrix.

Author(s)
Steve Kalke

References

Examples
\(y \leftarrow \text{rpgunif}(10000, 3) \)

zigsetup

A function for setting up the Ziggurat.

Description
The function approximates the rightmost x-coordinates of the first \(n-1 \) rectangles defining the Ziggurat in case of the central, \(p \)-generalized normal distribution.

Usage
zigsetup(p, n, tol)
Arguments

- **p**
 A positive number expressing the form parameter of the distribution. The default is 2. In case of the Ziggurat method, p can be chosen from \((1, \infty) \cup \{0.25, 0.45, 0.5, 0.6, 0.75\} \).

- **n**
 The number of rectangles that build up the Ziggurat. The default is \(2^8\).

- **tol**
 A positive number expressing the approximation accuracy of the function. The default is \(10^{-9}\).

Value

An \((n - 1)\)-dimensional, real vector.

Author(s)

Steve Kalke

References

Examples

```r
y<-zigsetup(3,20,10^(-6))
```
Index

*Topic **datasets**
 - datasetpgnmp1, 3
 - datasetpgnmp2, 3
 - datasetpgnzig, 4

*Topic **distribution**
 - dpgnorm, 4
 - ppgnorm, 5
 - rpgangular, 6
 - rpgnorm, 7
 - rpgnorm_montypython, 8
 - rpgnorm_nardonpianca, 9
 - rpgnorm_pgenpolar, 9
 - rpgnorm_pgenpolarrej, 10
 - rpgnorm_ziggurat, 11
 - rpgunif, 12
 - zigsetup, 12

*Topic **package**
 - pgnorm-package, 2

 - datasetpgnmp1, 3
 - datasetpgnmp2, 3
 - datasetpgnzig, 4
 - dpgnorm, 4
 - pgnorm (pgnorm-package), 2
 - pgnorm-package, 2
 - ppgnorm, 5
 - rpgangular, 6
 - rpgnorm, 7
 - rpgnorm_montypython, 8
 - rpgnorm_nardonpianca, 9
 - rpgnorm_pgenpolar, 9
 - rpgnorm_pgenpolarrej, 10
 - rpgnorm_ziggurat, 11
 - rpgunif, 12
 - zigsetup, 12