Package ‘plotGoogleMaps’

February 20, 2015

Type Package
Title Plot Spatial or Spatio-Temporal Data Over Google Maps
Version 2.2
Date 2015-02-13
Author Milan Kilibarda
Maintainer Milan Kilibarda <kili@grf.bg.ac.rs>
Description Provides an interactive plot device for handling the geographic data for web browsers, designed for the automatic creation of web maps as a combination of users’ data and Google Maps layers.
Depends R (>= 2.15.0), sp, spacetime
Imports rgdal, maptools,lattice, raster
License GPL-2
URL http://r-forge.r-project.org/projects/plotgooglemaps/
NeedsCompilation no
Repository CRAN
Date/Publication 2015-02-13 11:03:41

R topics documented:

 bubbleGoogleMaps .. 2
 bubbleSP .. 5
 ellipseGoogleMaps .. 7
 elSPDF ... 10
 iconlabels ... 11
 mcGoogleMaps .. 13
 pieSP ... 16
 plotGoogleMaps ... 18
 PolyCol ... 21
 segmentGoogleMaps ... 23
 stfIGoogleMaps .. 26
 stplotGoogleMaps .. 28
 vectorsSP .. 30
bubbleGoogleMaps

Create a bubble plot of spatial data on Google Maps

Description
Plot htm output with Google Maps API in form of bubble plot of spatial data, with options for bicolour residual plots. Ready to use as local htm file or into your own website.

Usage
```r
bubbleGoogleMaps(SP,
    filename = '',
    zcol = 1,
    max.radius = 100,
    key.entries = quantile(SP$data[, zcol], (1:5)/5),
    do.sqrt = TRUE,
    add = FALSE,
    previousMap = NULL,
    colPalette = NULL,
    strokeColor = '',
    strokeOpacity = 1,
    fillOpacity = 0.7,
    strokeWeight = 1,
    geodesic = TRUE,
    clickable = TRUE,
    zIndex = 'null',
    shape = 'c',
    map.width = "100%",
    map.height = "100%",
    layerName = '',
    control.width = "100%",
    control.height = "100%",
    zoom = 15,
    fitBounds = TRUE,
    mapTypeId = 'HYBRID',
    disableDoubleClickZoom = FALSE,
    draggable = TRUE,
    keyboardShortcuts = TRUE,
    mapTypeControlOptions = 'DEFAULT',
    navigationControl = TRUE,
    navigationControlOptions = 'DEFAULT',
    scaleControlOptions = 'STANDARD',
    noClear = FALSE,
    scrollwheel = TRUE,
    streetViewControl = FALSE,
    legend = TRUE,
)
```
control=TRUE,
InfoWindowControl=list(map=map, event="click",
position="event.latlng", disableAutoPan=FALSE,
maxWidth=330, pixelOffset="null",
zIndex="null"),
map="map",
mapCanvas="map_canvas",
css = ",
openMap=TRUE)

Arguments

SP object of SpatialPointsDataFrame-class with associated coordinate reference systems
filename the name of the output htm or html file. If filename is not defined the function creates temporary file.
zcol variable column name, or column number after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column
max.radius value for largest circle (the plotting symbols) in metre, circumcircle of triangle or quadrangle (square)
key.entries the values that will be plotted in the key; by default the five quantiles min, q.25, median q.75, max
do.sqrt logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable
add logical; if TRUE the result of the function will be a list stored as variable in the R. It is possible to combine more layers in the one plot, previously saved output from plotGoogleMaps should be given in the previousMap attribute.
previousMap previously saved variable from plotGoogleMaps when attribute add is TRUE. It is solution for combining more than one layers in the one plot.
colPalette colours to be used to fill plotting symbols; numeric vector of same size like key.entries
strokeColor the color to draw the border of circle (the plotting symbols)
strokeOpacity the stroke opacity between 0.0 and 1.0
fillOpacity the fill opacity between 0.0 and 1.0
strokeWeight the stroke width in pixels
geodesic render each edge as a geodesic (a segment of a 'great circle')
clickable indicates whether this plotting symbol handles click events
zIndex the zIndex compared to other polygons
shape the shape for plotting symbol; 'c' for circle; 't' for triangle; 'q' for square
map.width the width of the map. Can be in percent or in pixels (px)
map.height the height of the map. Can be in percent or in pixels (px)
layerName the name of the layer. Layer name appears on the check box for switching layer of and on in output htm.

control.width the width of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

control.height the height of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

zoom the initial Map zoom level. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen on one map) to 19 (the highest zoom level, down to individual buildings) are possible within the normal maps view. Argument fitBounds should be FALSE.

fitBounds sets the maps to fit to the boundary box values of sp object

mapTypeId the initial Map mapTypeId. 'HYBRID' - map type displays a transparent layer of major streets on satellite images. 'ROADMAP' - map type displays a normal street map. 'SATELLITE' - map type displays satellite images. 'TERRAIN' - map type displays maps with physical features such as terrain and vegetation.

disableDoubleClickZoom enables or disables zoom and center on double click.

draggable if FALSE, prevents the map from being dragged

keyboardShortcuts if FALSE, prevents the map from being controlled by the keyboard.

mapTypeControlOptions the initial display options for the Map type control. 'DEFAULT' - uses the default map type control. 'DROPDOWN_MENU' - a dropdown menu for the screen realestate conscious. 'HORIZONTAL_BAR' - the standard horizontal radio buttons bar.

navigationControl enabled or disabled state of the navigation control

navigationControlOptions the initial display options for the navigation control. 'ANDROID' - the small zoom control similar to the one used by the native Maps application on Android. 'DEFAULT' - the default navigation control. The control which DEFAULT maps to will vary according to map size and other factors. It may change in future versions of the API. 'SMALL' - the small, zoom only control. 'ZOOM_PAN' - the larger control, with the zoom slider and pan directional pad.

scaleControlOptions the initial display options for the scale control.

noClear if TRUE, do not clear the contents of the Map div.

scrollwheel if FALSE, disables scrollwheel zooming on the map.

streetViewControl the initial enabled or disabled state of the Street View pegman control

legend if FALSE, disables legend.

control if FALSE, disables control.

InfoWindowControl see https://developers.google.com/maps/documentation/javascript/reference#InfoWindowOptions
bubbleSP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>name of map object in JavaScript</td>
</tr>
<tr>
<td>mapCanvas</td>
<td>name of map DIV element</td>
</tr>
<tr>
<td>css</td>
<td>CSS for mapCanvas and eBoxes</td>
</tr>
<tr>
<td>api</td>
<td>see https://developers.google.com/maps/documentation/javascript/tutorial</td>
</tr>
<tr>
<td>openMap</td>
<td>if TRUE map is browsed by default browser</td>
</tr>
</tbody>
</table>

Value

This function returns a list with HTML, JavaScript, Google Maps API key and else what is necessary for the final web map. The second output is htm file ready to use stored in working directory.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs> and Petr Stepanek

See Also

plotGoogleMaps, ellipseGoogleMaps, segmentGoogleMaps

Examples

```r
# Data preparation
data(meuse)
coordinates(meuse) <- x + y
proj4string(meuse) <- CRS('+init=epsg:28992')
m <- bubbleGoogleMaps(meuse, zcol = 'zinc')
m <- bubbleGoogleMaps(meuse, zcol = 'cadmium', layerName = 'Bubble plot - meuse',
  colPalette = terrain.colors(5), strokeColor = '')
```

bubbleSP

Create bubble data in form of SpatialPolygonsDataFrame.

Description

Create bubble data in form of SpatialPolygonsDataFrame based on one attribute.

Usage

```r
bubbleSP(SPDF, 
zcol = 1,
scale_e = 1,
max.radius = 100,
key.entries = quantile(SPDF$data[, zcol], (1:5)/5, na.rm = TRUE),
do.sqrt = TRUE,
radius.vector = NULL)
```
Arguments

- **SPDF** object of `SpatialPointsDataFrame-class` with associated coordinate reference systems
- **zcol** variable column names, or column numbers after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column
- **scale_e** scale factor for radiuses
- **max.radius** value for maximum radius in meter
- **key.entries** the values that will be plotted in the key; by default the five quantiles min, q.25, median q.75, max
- **do.sqrt** logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable
- **radius.vector** vector of predefined radius for each point

Value

The function provide `SpatialPolygonsDataFrame` based on one attribute, ready to use for plot-GoogleMaps or `spplot`.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

- `pieSP`, `elSPDF`, `bubbleGoogleMaps`

Examples

```r
# Data preparation
wind<-data.frame(Station=c('Zlatibor', 'Sjenica', 'Pozega', 'Kraljevo', 'Kopaonik', 'Kursumlija', 'Krusevac'),
    Lat=c(43.729755, 43.267913, 43.84859, 43.726812, 43.2725, 43.137053, 43.574188),
    Temp=c(7, 7, 6, 1, 6, 9),
    Wind_spd=c(3, 6, 1, 7, 1, 2),
    Wind_dir=c(45, 162, 138, 265, 335, 180, 270 ))
coordinates(wind)<- ~Lon+Lat
wind@proj4string=CRS('+proj=longlat +datum=WGS84')

b_temp=bubbleSP(wind,zcol=c('Temp'),max.radius=10000, do.sqrt=FALSE)

pal<-colorRampPalette(c("#FF7F50","#FEC44F","#D95F8E"), space = "Lab")
spplot(b_temp,'Temp', col.regions=pal(5) )
m=plotGoogleMaps(b_temp,zcol='Temp', colPalette=pal(5),strokeWeight=0.5,strokeColor='black')
```
ellipseGoogleMaps

Create plot of ellipses from spatial points data frame on Google Maps, by using three attributes: semi-major axis, semi-minor axis, and orientation in degrees.

Description

Plot htm output with Google Maps API in form of ellipses plot of spatial data. Ready to use as local htm file or into your own website.

Usage

```r
ellipseGoogleMaps(SP,
    filename = '',
    zcol = 1:3,
    add = F,
    previousMap = NULL,
    scale_e = 10,
    colPalette = NULL,
    strokeColor = '#FFAA00',
    strokeOpacity = 1,
    fillOpacity = 0.7,
    strokeWeight = 1,
    geodesic = TRUE,
    clickable = TRUE,
    zIndex = 'null',
    map.width="100%",
    map.height="100%",
    layerName="",
    control.width="100%",
    control.height="100%",
    zoom = 15,
    fitBounds = TRUE,
    mapTypeId = 'HYBRID',
    disableDoubleClickZoom = FALSE,
    draggable = TRUE,
    keyboardShortcuts = TRUE,
    mapTypeControlOptions = 'DEFAULT',
    navigationControl = TRUE,
    navigationControlOptions = 'DEFAULT',
    scaleControlOptions = 'STANDARD',
    noClear = FALSE,
    scrollwheel = TRUE,
    streetViewControl = FALSE,
    legend=TRUE,
)```

# plotKML(b_temp, col='Temp')
**Arguments**

**SP**

object of `SpatialPointsDataFrame-class` with associated coordinate reference systems and minimum three attributes: semi-major axis, semi-minor axis, and orientation in degrees.

**filename**

the name of the output htm or html file. If filename is not defined the function creates temporary file.

**zcol**

variable column names, or column numbers after removing spatial coordinates from `x@data`: 1 refers to the first non-coordinate column. Attribute names or numbers of columns contains semi-major axis, semi-minor axis, and orientation in degrees respectively.

**add**

logical; if TRUE the result of the function will be a list stored as variable in the R. It is possible to combine more layers in the one plot, previously saved output from `plotGoogleMaps` should be given in the `previousMap` attribute.

**previousMap**

previously saved variable from `plotGoogleMaps` when attribute add is TRUE. It is solution for combining more than one layers in the one plot.

**scale_e**

if is 10 then ellipses is drown 10:1

**colPalette**

colours to be used to fill plotting symbols; numeric vector of same size like `key.entries`

**strokeColor**

the color to draw the border of circle (the plotting symbols), NULL for no border

**strokeOpacity**

the stroke opacity between 0.0 and 1.0

**fillOpacity**

the fill opacity between 0.0 and 1.0

**strokeWeight**

the stroke width in pixels

**geodesic**

render each edge as a geodesic (a segment of a 'great circle')

**clickable**

indicates whether this plotting symbol handles click events

**zIndex**

the zIndex compared to other polygons

**map.width**

the width of the map. Can be in percent or in pixels (px)

**map.height**

the height of the map. Can be in percent or in pixels (px)

**layerName**

the name of the layer. Layer name appears on the check box for switching layer of and on in output htm.

**control.width**

the width of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

**control.height**

the height of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).
the initial Map zoom level. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen on one map) to 19 (the highest zoom level, down to individual buildings) are possible within the normal maps view. Argument fitBounds should be FALSE.

sets the maps to fit to the boundary box values of sp object

the initial Map mapTypeId. 'HYBRID’ - map type displays a transparent layer of major streets on satellite images. 'ROADMAP' - map type displays a normal street map. 'SATELLITE' - map type displays satellite images. 'TERRAIN' - map type displays maps with physical features such as terrain and vegetation.

enables or disables zoom and center on double click.

if FALSE, prevents the map from being dragged

if FALSE, prevents the map from being controlled by the keyboard.

the initial display options for the Map type control. ‘DEFAULT’ - uses the default map type control. ‘DROPDOWN_MENU’ - a dropdown menu for the screen real estate conscious. ‘HORIZONTAL_BAR’ - the standard horizontal radio buttons bar.

enabled or disabled state of the navigation control

the initial display options for the navigation control. ‘ANDROID’ - the small zoom control similar to the one used by the native Maps application on Android. ‘DEFAULT’ - the default navigation control. The control which DEFAULT maps to will vary according to map size and other factors. It may change in future versions of the API. ‘SMALL’ - the small, zoom only control. ‘ZOOM_PAN’ - the larger control, with the zoom slider and pan directional pad.

the initial display options for the scale control.

if TRUE, do not clear the contents of the Map div.

if FALSE, disables scrollwheel zooming on the map.

the initial enabled or disabled state of the Street View pegman control

if FALSE, disables legend.

if FALSE, disables control.

see https://developers.google.com/maps/documentation/javascript/reference#InfoWindowOptions

see https://developers.google.com/maps/documentation/javascript/tutorial

if TRUE map is browsed by default browser

This function returns a list with HTML, JavaScript, Google Maps API key and else what is necessary for the final web map. The second output is htm file ready to use stored in working directory.
elSPDF

Create ellipses in form of SpatialPolygonsDataFrame.

Description

Create ellipses in form of SpatialPolygonsDataFrame based on attributes: semi-major axis, semi-minor axis, and orientation in degrees.

Usage

```r
elSPDF(SPDF,
 zcol=1:3,
 scale_e=10)
```

Arguments

- **SPDF**: object of SpatialPointsDataFrame-class with associated coordinate reference systems and minimum three attributes: semi-major axis, semi-minor axis, and orientation in degrees.
- **zcol**: variable column names, or column numbers after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column.
- **scale_e**: scale factor.

Examples

```r
Data preparation
ell <- data.frame(E=c(7456263,7456489,7456305),
 N=c(4954146,4952978,4952695),
 A=c(2.96,4.55,7.10),
 B=c(2.35,2.11,2.29),
 teta=c(28.35242,41.04491,38.47216))

coordinates(ell) <- E+N
proj4string(ell) <- CRS("+proj=tmerc +lat_0=0 +lon_0=21 +k=0.9999
+x_0=7500000 +y_0=0 +ellps=bessel
+towgs84=-574.027,170.175,401.545,4.88786,-0.66524,-13.24673,0.99999311067
+units=m")

m <- ellipseGoogleMaps(ell, apiKey=' ROADMAPP')
```
Value

The function provides a SpatialPolygonsDataFrame of ellipses.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

pieSP, elSPDF, bubbleGoogleMaps

Examples

C data preparation

```r
ell <- data.frame(E=c(7456263,7456489,7456305),N=c(4954146,4952978,4952695),
 A=c(2.96,4.55,7.10),B=c(2.35,2.11,2.29),
 teta=c(28.35242,41.04491,38.47216))
coordinates(ell) <- -E+N
proj4string(ell) <- CRS("+proj=tmerc +lat_0=0 +lon_0=21 +k=0.9999
 +x_0=7500000 +y_0=0 +ellps=bessel
 +towgs84=574.027,170.175,401.545,4.88786,-0.66524,-13.24673,0.99999311067
 +units=m")

ellpses <- elSPDF(ell)
spplot(ellpses,"A")
```

iconlabels

Create icon markers depending on attribute data.

Description

The function provides links to icon markers or icon labels ready to use for plotGoogleMaps.

Usage

```r
iconlabels(attribute,
 colPalette=NULL,
 at=NULL,
 height=10,
 icon=FALSE,
 scale=0.6)
```
iconlabels

Arguments

attribute vector of attribute data
colPalette colours to be used to fill marker symbols or labels
at values at which colours will change
height text height in pixels
icon if false create just labels, contrariwise create markers and labels in markers
scale scale of marker icon

Value

The function provide links to icon markers or icon labels ready to use for plotGoogleMaps.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

plotGoogleMaps, ellipseGoogleMaps, bubbleGoogleMaps

Examples

# Data preparation
data(meuse)
coordinates(meuse) <- x+y
proj4string(meuse) <- CRS('+init=epsg:28992')

c <- plotGoogleMaps(meuse, zcol = 'zinc')

# zinc labels
ic <- iconlabels(meuse$zinc, height = 12)
c <- plotGoogleMaps(meuse, zcol = 'zinc', iconMarker = ic)

# landuse labels and markers
ic <- iconlabels(meuse$landuse, height = 12, colPalette = rainbow(15))
c <- plotGoogleMaps(meuse, zcol = 'landuse', colPalette = rainbow(15), iconMarker = ic)

ic <- iconlabels(meuse$landuse, height = 12, colPalette = '#9ECAE1', icon = TRUE)
c <- plotGoogleMaps(meuse, zcol = 'landuse', colPalette = '#9ECAE1', iconMarker = ic)
mcGoogleMaps

Create a plot of spatial data on Google Maps, creates and manages per-zoom-level clusters for large amounts of markers

Description

Plot htm output with Google Maps API and a plot of spatial points data as a combination of users’ data and Google Maps layers. Ready to use as local htm file or into your own website. This function uses MarkerClusterer for Google Maps v3 - library creates and manages per-zoom-level clusters for large amounts of markers.

Usage

mcGoogleMaps(SP,
filename = '',
zcol = 1,
at=NULL,
add = FALSE,
previousMap = NULL,
colPalette = NULL,
geodesic = TRUE,
clickable = TRUE,
draggableMarker = FALSE,
iconMarker='',
flat = TRUE,
visible = TRUE,
zIndex = 'null',
map.width="100%",
map.height="100%",
layerName='",
control.width="100%",
control.height="100%",
zoom = 15,
fitBounds = TRUE,
mapTypeId = 'HYBRID',
disableDoubleClickZoom = FALSE,
draggable = TRUE,
keyboardShortcuts = TRUE,
mapTypeControlOptions = 'DEFAULT',
navigationControl = TRUE,
navigationControlOptions = 'DEFAULT',
scaleControlOptions = 'STANDARD',
ocClear = FALSE,
scrollwheel = TRUE,
streetViewControl = FALSE,
legend=TRUE,
control=TRUE,
InfoWindowControl=list(map=map, event="click", position="event.latLng",
disableAutoPan=FALSE, maxWidth=330,
pixelOffset="null";
zIndex="null"),
map="map",
mapCanvas="map_canvas",
css = "",
apiMarkerClusterer=''
openMap=TRUE)

Arguments

SP object of Spatial-class with associated coordinate reference systems
filename the name of the output htm or html file. If filename is not defined the function
creates temporary file.
zcol variable column name, or column number after removing spatial coordinates
from x@data: 1 refers to the first non-coordinate column
at values at which colours will change
add logical; if TRUE the result of the function will be a list stored as variable in the
R. It is possible to combine more layers in the one plot, previously saved output
from plotGoogleMaps should be given in the previousMap attribute.
previousMap previously saved variable from plotGoogleMaps or bubbleGoogleMaps when
attribute add is TRUE. It is solution for combining more than one layers in the
one plot.
colPalette colours to be used to fill polygon or colour for the line
geodesic render each edge as a geodesic (a segment of a 'great circle')
clickable indicates whether this marker (point), polygon or line handles click events
draggableMarker if TRUE, the marker can be dragged
iconMarker if " default marker icon, link to the image or local image to be used as marker
image
flat if TRUE, the marker shadow will not be displayed
visible if TRUE, the marker is visible
zIndex the zIndex compared to other polygons
map.width the width of the map. Can be in percent or in pixels (px)
map.height the height of the map. Can be in percent or in pixels (px)
layerName the name of the layer. Layer name appears on the check box for switching layer
of and on in output htm.
control.width the width of the part of htm for controlling layer (legend, opacity,...) Can be in
percent or in pixels (px).
control.height the height of the part of htm for controlling layer (legend, opacity,...) Can be in
percent or in pixels (px).
zoom
the initial Map zoom level. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen on one map) to 19 (the highest zoom level, down to individual buildings) are possible within the normal maps view. Argument fitBounds should be FALSE.

fitBounds
sets the maps to fit to the boundary box values of sp object

mapTypeId
the initial Map mapTypeId. 'HYBRID' - map type displays a transparent layer of major streets on satellite images. 'ROADMAP' - map type displays a normal street map. 'SATellite' - map type displays satellite images. 'TERRAIN' - map type displays maps with physical features such as terrain and vegetation.

disableDoubleClickZoom
enables or disables zoom and center on double click.

draggable
if FALSE, prevents the map from being dragged

keyboardShortcuts
if FALSE, prevents the map from being controlled by the keyboard.

mapTypeControlOptions
the initial display options for the Map type control. 'DEFAULT' - uses the default map type control. 'DROPDOWN_MENU' - a dropdown menu for the screen realestate conscious. 'HORIZONTAL_BAR' - the standard horizontal radio buttons bar.

navigationControl
enabled or disabled state of the navigation control

navigationControlOptions
the initial display options for the navigation control. 'ANDROID' - the small zoom control similar to the one used by the native Maps application on Android. 'DEFAULT' - the default navigation control. The control which DEFAULT maps to will vary according to map size and other factors. It may change in future versions of the API. 'SMALL' - the small, zoom only control. 'ZOOM_PAN' - the larger control, with the zoom slider and pan directional pad.

scaleControlOptions
the initial display options for the scale control.

noClear
if TRUE, do not clear the contents of the Map div.

scrollwheel
if FALSE, disables scrollwheel zooming on the map.

streetViewControl
The initial enabled or disabled state of the Street View pegman control

legend
if FALSE, disables legend.

control
if FALSE, disables control.

InfoWindowControl
see https://developers.google.com/maps/documentation/javascript/reference#InfowindowOptions

map
name of map object in JavaScript

mapCanvas
name of map DIV element

css
CSS for mapCanvas and cBoxes

api
see https://developers.google.com/maps/documentation/javascript/tutorial
apiMarkerClusterer

see http://google-maps-utility-library-v3.googlecode.com/svn/trunk/markerclusterer/docs/reference.html, default is v=1.0.2

openMap

if TRUE map is browsed by default browser

Value

This function returns a list with HTML, JavaScript, Google Maps API key and else what is necessary for the final web map. The second output is html file ready to use.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

plotGoogleMaps, bubbleGoogleMaps, ellipseGoogleMaps, segmentGoogleMaps

Examples

# Data preparation
# Point data
data(meuse)
coordinates(meuse)<=-x+y
proj4string(meuse) <- CRS('+init=epsg:28992')

m<-mcGoogleMaps(meuse, zcol='zinc')
pieSP

Arguments

SPDF object of SpatialPointsDataFrame-class with associated coordinate reference systems
zcol variable column names, or column numbers after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column
scalelist if TRUE circles are different in size, FALSE all circles have same radius
max.radius value for maximum radius in meter
do.sqrt logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable

Value

The function provide SpatialPolygonsDataFrame depending on few attributes, ready to use for plot- GoogleMaps or spplot.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

pieSP, elSPDF, bubbleSP

Examples

# Data preparation
data(meuse)
coordinates(meuse)<-x+y
proj4string(meuse) <- CRS('+init=epsg:28992')
pies<-pieSP(meuse,zcol=c('zinc','lead','copper'), max.radius=120)
pies$pie=rep(c('zinc','lead','copper'),155)
m=plotGoogleMaps(pies, zcol='pie')
pies$pie2=rep(1:3,155)
spplot(pies, 'pie2')
pies2<-pieSP(meuse,zcol=c('zinc','dist.m'), max.radius=70,scalelist=FALSE)
pies2$pie=rep(c('zinc','dist.m'),155)
m=plotGoogleMaps(pies2, zcol='pie')

# plotKML(pies, col='pie')
plotGoogleMaps

Create a plot of spatial data on Google Maps

Description

Plot htm output with Google Maps API and a plot of spatial data as a combination of users' data and Google Maps layers. Ready to use as local htm file or into your own website.

Usage

plotGoogleMaps(SP,
    filename = ' ',
    zcol = 1,
    at = NULL,
    add = FALSE,
    previousMap = NULL,
    colPalette = NULL,
    strokeColor = '',
    strokeOpacity = 1,
    fillOpacity = 0.7,
    strokeWeight = 1,
    geodesic = TRUE,
    clickable = TRUE,
    draggableMarker = FALSE,
    iconMarker = '',
    flat = TRUE,
    visible = TRUE,
    zIndex = 'null',
    map.width = '100% ',
    map.height = '100% ',
    layerName = '',
    control.width = '100% ',
    control.height = '100% ',
    zoom = 15,
    fitBounds = TRUE,
    mapTypeId = 'HYBRID ',
    disableDoubleClickZoom = FALSE,
    draggable = TRUE,
    keyboardShortcuts = TRUE,
    mapTypeControlOptions = 'DEFAULT ',
    navigationControl = TRUE,
    navigationControlOptions = 'DEFAULT ',
    scaleControlOptions = 'STANDARD ',
    noClear = FALSE,
    scrollwheel = TRUE,
    streetViewControl = FALSE,
    legend = TRUE,
control=TRUE,
InfoWindowControl=list(map=map, event="click",position="event.latlng",
disableAutoPan=FALSE, maxWidth=330,
pixelOffset="null", zIndex="null"),
map="map",
mapCanvas="map_canvas",
css = "",
openMap=TRUE)

Arguments

SP object of Spatial-class with associated coordinate reference systems
filename the name of the output htm or html file. If filename is not defined the function creates temporary file.
zcol variable column name, or column number after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column
at values at which colours will change
add logical; if TRUE the result of the function will be a list stored as variable in the R. It is possible to combine more layers in the one plot, previously saved output from plotGoogleMaps should be given in the previousMap attribute.
previousMap previously saved variable from plotGoogleMaps or bubbleGoogleMaps when attribute add is TRUE. It is solution for combining more than one layers in the one plot.
colPalette colours to be used to fill polygon or colour for the line
strokeColor the color to draw the borders of polygon, NULL for no border
strokeOpacity the stroke opacity between 0.0 and 1.0 for the polygon or line
fillOpacity the fill opacity (polygons) between 0.0 and 1.0
strokeWeight the stroke width in pixels for polygon border or line
geodesic render each edge as a geodesic (a segment of a 'great circle')
clickable indicates whether this marker (point), polygon or line handles click events
draggableMarker if TRUE, the marker can be dragged
iconMarker if "default marker icon, link to the image or local image to be used as marker image
flat if TRUE, the marker shadow will not be displayed
visible if TRUE, the marker is visible
zIndex the zIndex compared to other polygons
map.width the width of the map. Can be in percent or in pixels (px)
map.height the height of the map. Can be in percent or in pixels (px)
layerName the name of the layer. Layer name appears on the check box for switching layer of and on in output htm.
control.width  the width of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

control.height  the height of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

zoom  the initial Map zoom level. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen on one map) to 19 (the highest zoom level, down to individual buildings) are possible within the normal maps view. Argument fitBounds should be FALSE.

fitBounds  sets the maps to fit to the boundary box values of sp object

mapTypeId  the initial Map mapTypeId. 'HYBRID' - map type displays a transparent layer of major streets on satellite images. 'ROADMAP' - map type displays a normal street map. 'SATELLITE' - map type displays satellite images. 'TERRAIN' - map type displays maps with physical features such as terrain and vegetation.

disableDoubleClickZoom  enables or disables zoom and center on double click.

draggable  if FALSE, prevents the map from being dragged

keyboardShortcuts  if FALSE, prevents the map from being controlled by the keyboard.

mapTypeControlOptions  the initial display options for the Map type control. 'DEFAULT' - uses the default map type control. 'DROPDOWN_MENU' - a dropdown menu for the screen realestate conscious. 'HORIZONTAL_BAR' - the standard horizontal radio buttons bar.

navigationControl  enabled or disabled state of the navigation control

navigationControlOptions  the initial display options for the navigation control. 'ANDROID' - the small zoom control similar to the one used by the native Maps application on Android. 'DEFAULT' - the default navigation control. The control which DEFAULT maps to will vary according to map size and other factors. It may change in future versions of the API. 'SMALL' - the small, zoom only control. 'ZOOM_PAN' - the larger control, with the zoom slider and pan directional pad.

scaleControlOptions  the initial display options for the scale control.

noClear  if TRUE, do not clear the contents of the Map div.

scrollwheel  if FALSE, disables scrollwheel zooming on the map.

streetViewControl  The initial enabled or disabled state of the Street View pegman control

legend  if FALSE, disables legend.

control  if FALSE, disables control.

InfoWindowControl  see https://developers.google.com/maps/documentation/javascript/reference#InfoWindowOptions

map  name of map object in JavaScript
PolyCol

mapCanvas  name of map DIV element
css       CSS for mapCanvas and cBoxes
api       see https://developers.google.com/maps/documentation/javascript/tutorial
openMap   if TRUE map is browsed by default browser

Value
This function returns a list with HTML, JavaScript, Google Maps API key and else what is necessary for the final web map. The second output is html file ready to use.

Author(s)
Milan Kilibarda <kili@grf.bg.ac.rs>

See Also
bubbleGoogleMaps, ellipseGoogleMaps, segmentGoogleMaps

Examples
# Data preparation
# Point data
data(meuse)
require(maptools)
coordinates(meuse) <<- x+y
proj4string(meuse) <<- CRS('+init=epsg:28992')
# Line data
data(meuse.grid)
coordinates(meuse.grid) <<- c('x','y')
meuse.grid <<- as(meuse.grid,'SpatialPixelsDataFrame')
im <<- as.image.SpatialGridDataFrame(meuse.grid['dist'])
cl <<- ContourLines2SLDF(contourLines(im))
proj4string(cl) <<- CRS('+init=epsg:28992')

# Create web map of Point data
m <<- plotGoogleMaps(meuse)

# Combine point and line data
mapMeusePoints <<- plotGoogleMaps(meuse, add=TRUE, mapTypeId='TERRAIN',filename='myMap2.htm')
mapMeuseCl <<- plotGoogleMaps(cl,previousMap=mapMeusePoints,filename='myMap2.htm')
# see results in your working directory

---

PolyCol  Create list of colors depending on attribute data.

Description
The function provide list of colors, unique colors, levels of attribute, attribute breaks.
Usage

PolyCol(attribute,
            colPalette=NULL,
            at=NULL)

Arguments

attribute  vector of attribute data
colPalette colours to be used to fill features depending on attribute
at        values at which colours will change

Value

The function provide list of colors (cols), unique colors (col.uniq), levels of attribute (att),attribute breaks (brks).

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

plotGoogleMaps, ellipseGoogleMaps, bubbleGoogleMaps

Examples

# Data preparation
data(meuse)
coordinates(meuse)<-x+y
proj4string(meuse) <- CRS('+init=epsg:28992')

m<-plotGoogleMaps(meuse,zcol='zinc')
# see results in your working directory

# similar classic plot
cols=PolyCol(meuse$zinc)$cols
plot(meuse,col=cols)

str(PolyCol(meuse$zinc))

m<-plotGoogleMaps(meuse,zcol='zinc',at=c(0,300,600, max(meuse$zinc)), colPalette=rainbow(3))
# similar classic plot
cols=PolyCol(meuse$zinc,colPalette=rainbow(3), at=c(0,300,600, max(meuse$zinc)) )$cols
plot(meuse,col=cols)

# plotKML(meuse, colour='zinc', colour_scale =cols)
Create a segment circles - pie charts plot of spatial data on Google Maps, by using two or more related attributes.

Description

Plot htm output with Google Maps API in form of pie charts plot form spatial data by using two or more related attributes. Ready to use as local htm file or into your own website.

Usage

segmentGoogleMaps(SP,
    zcol = 1:length(SP@data),
    filename = '',
    max.radius = 100,
    scalelist = TRUE,
    do.sqrt = FALSE,
    add = F,
    previousMap = NULL,
    colPalette = rainbow(ncol(SP@data[, zcol])),
    strokeColor = '',
    strokeOpacity = 1,
    strokeWeight = 1,
    fillOpacity = 0.7,
    geodesic = TRUE,
    clickable = TRUE,
    zIndex = 'null',
    map.width="100%",
    map.height="100%",
    layerName="",
    control.width="100%",
    control.height="100%",
    zoom = 15,
    fitBounds = TRUE,
    mapTypeId = 'HYBRID',
    disableDoubleClickZoom = FALSE,
    draggable = TRUE,
    keyboardShortcuts = TRUE,
    mapTypeControlOptions = 'DEFAULT',
    navigationControl = TRUE,
    navigationControlOptions = 'DEFAULT',
    scaleControlOptions = 'STANDARD',
    noClear = FALSE,
    scrollwheel = TRUE,
    streetViewControl = FALSE,
    legend=TRUE,
    control=TRUE,
)
```r
InfoWindowControl=list(map=map, event="click", position="event.latLng",
 disableAutoPan=FALSE, maxWidth=330, pixelOffset="null",
 zIndex="null") ,
map="map",
mapCanvas="map_canvas",
css = "",
openMap=TRUE)
```

**Arguments**

- **SP**
  - object of `SpatialPointsDataFrame-class` with associated coordinate reference systems

- **filename**
  - the name of the output htm or html file. If filename is not defined the function creates temporary file.

- **zcol**
  - variable column names, or column numbers after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column

- **maxRadius**
  - value for largest circle (the plotting symbols) in metre

- **scaleList**
  - if TRUE circles are different in size, FALSE all circles have same radius

- **do.sqrt**
  - logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable

- **add**
  - logical; if TRUE the result of the function will be a list stored as variable in the R. It is possible to combine more layers in the one plot, previously saved output from plotGoogleMaps should be given in the previousMap attribute.

- **previousMap**
  - previously saved variable from plotGoogleMaps when attribute add is TRUE. It is solution for combining more than one layers in the one plot.

- **colPalette**
  - colours to be used to fill plotting symbols; numeric vector of same size like key.entries

- **strokeColor**
  - the color to draw the border of circle (the plotting symbols), NULL for no border

- **strokeOpacity**
  - the stroke opacity between 0.0 and 1.0

- **strokeWeight**
  - the stroke width in pixels

- **fillOpacity**
  - the fill opacity between 0.0 and 1.0

- **geodesic**
  - render each edge as a geodesic (a segment of a 'great circle')

- **clickable**
  - indicates whether this plotting symbol handles click events

- **zIndex**
  - the zIndex compared to other polygons

- **map.width**
  - the width of the map. Can be in percent or in pixels (px)

- **map.height**
  - the height of the map. Can be in percent or in pixels (px)

- **layerName**
  - the name of the layer. Layer name appears on the check box for switching layer on and on in output htm.

- **control.width**
  - the width of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).
control.height  the height of the part of htm for controlling layer (legend, opacity,...) Can be in percent or in pixels (px).

zoom  the initial Map zoom level. Zoom levels between 0 (the lowest zoom level, in which the entire world can be seen on one map) to 19 (the highest zoom level, down to individual buildings) are possible within the normal maps view. Argument fitBounds should be FALSE.

fitBounds  sets the maps to fit to the boundary box values of sp object

mapTypeId  the initial Map mapTypeId. 'HYBRID' - map type displays a transparent layer of major streets on satellite images. 'ROADMAP' - map type displays a normal street map. 'SATELLITE' - map type displays satellite images. 'TERRAIN' - map type displays maps with physical features such as terrain and vegetation.

disableDoubleClickZoom  enables or disables zoom and center on double click.

draggable  if FALSE, prevents the map from being dragged

keyboardShortcuts  if FALSE, prevents the map from being controlled by the keyboard.

mapTypeControlOptions  the initial display options for the Map type control. 'DEFAULT' - uses the default map type control. 'DROPDOWN_MENU' - a dropdown menu for the screen realestate conscious. 'HORIZONTAL_BAR' - the standard horizontal radio buttons bar.

navigationControl  enabled or disabled state of the navigation control

navigationControlOptions  the initial display options for the navigation control. 'ANDROID' - the small zoom control similar to the one used by the native Maps application on Android. 'DEFAULT' - the default navigation control. The control which DEFAULT maps to will vary according to map size and other factors. It may change in future versions of the API. 'SMALL' - the small, zoom only control. 'ZOOM_PAN' - the larger control, with the zoom slider and pan directional pad.

scaleControlOptions  the initial display options for the scale control.

noClear  if TRUE, do not clear the contents of the Map div.

scrollwheel  if FALSE, disables scrollwheel zooming on the map.

streetViewControl  the initial enabled or disabled state of the Street View pegman control

legend  if FALSE, disables legend.

control  if FALSE, disables control.

InfoWindowControl  see https://developers.google.com/maps/documentation/javascript/reference#InfoWindowOptions

map  name of map object in JavaScript

mapCanvas  name of map DIV element

css  CSS for mapCanvas and eBoxes

api  see https://developers.google.com/maps/documentation/javascript/tutorial

openMap  if TRUE map is browesed by default browser
Value

This function returns a list with HTML, JavaScript, Google Maps API key and else what is necessary for the final web map. The second output is htm file ready to use stored in working directory.

Author(s)

Milan Kilibrada <kili@grf.bg.ac.rs>

See Also

plotGoogleMaps, ellipseGoogleMaps, bubbleGoogleMaps

Examples

# Data preparation
data(meuse) coordinates(meuse) <<- x+y proj4string(meuse) <<- CRS('+init=epsg:28992')
m <- segmentGoogleMaps(meuse,zcol=c('zinc','lead','copper'))

stfdfGoogleMaps

Create a plot of spacetime (STFDF) data on Google Maps

Description

Plot htm output with Google Maps API and a plot of spacetime (STFDF) data as a combination of users' data and Google Maps layers. Ready to use as local htm file or into your own website.

Usage

stfdfGoogleMaps(stfdf,
    zcol=1,
    filename=''
    layerName=''
    plotNames=row.names(stfdf@sp),
    aggregateFUN='mean',
    round.att=1,
    plot.height=300,
    plot.width=300,
    ...
stfdfGoogleMaps

Arguments

stfdf object of spacetime (STFDF-class) with associated coordinate reference systems
zcol variable column name, or column number after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column, it has to be numeric
filename the name of the output htm or html file. If filename is not defined the function creates temporary file.
layerName the name of the layer. Layer name appears on the check box for switching layer of and on in output htm.
plotNames vector of of plot titles in infoWindow plots
aggregateFUN a function to compute the summary statistics of time series
round.att integer indicating the number of decimal places for ploting attribute, if not a number no round
plot.height the height of of plot in infoWindow plot in pixels (px)
plot.width the width of plot in infoWindow plot in pixels (px)
... arguments from plotGoogleMaps

Value

This function returns a html(htm) file ready to use.

Author(s)

Milan Kilibarda <kili@grf.bg.ac.rs>

See Also

stplotGoogleMaps, plotGoogleMaps

Examples

## Data preparation
## STDF data from spacetime vignette spacetime: Spatio-Temporal Data in R
#library("maps")
# states.m = map('state', plot=FALSE, fill=TRUE)
# ID$s <- sapply(strsplit(states.m$names, ":"), function(x) x[1])
# library("maptools")
#states = map2SpatialPolygons(states.m, IDs=ID$s)
#yrs = 1970:1986
#time = as.POSIXct(paste(yrs, "-01-01", sep=""), tz = "GMT")
# library("plm")
#data("Produc")
#Produc.st = STFDF(states[-8], time, Produc[order(Produc[2], Produc[1]),])
#Produc.st@sp@proj4string=CRS('+proj=longlat +datum=WGS84')
# m <- stfdfGoogleMaps(Produc.st, zcol= 'unemp')
Create a plot of spacetime (STDIF,STFDF) data on Google Maps

Description

Plot htm output with Google Maps API and a plot of spacetime (STDIF,STFDF) data as a combination of users’ data and Google Maps layers. Ready to use as local htm file or into your own website.

Usage

```r
stplotGoogleMaps(SPT,
 zcol=1,
 stfilename='spacetime.htm',
 filename='file',
 w="100%",
 h="49.5%",
 openMap=FALSE,
 colPalette=NULL,
 do.bubble=FALSE,
 at=NULL,
 bubble=list(max.radius=10000,
 key.entries = if(do.bubble)
 {quantile(SPT$data[,zcol],(1:5)/5,
 na.rm=T)}else(0),
 do.sqrt = TRUE),
 iconMarker="",
 ...
```

Arguments

- **SPT** object of spacetime (STFDF-class, STIDF-class) with associated coordinate reference systems
- **zcol** variable column name, or column number after removing spatial coordinates from x@data: 1 refers to the first non-coordinate column
- **filename** string use as prefix to partial files, each time instance
- **stfilename** the name of the output htm or html file
- **w** the width of the map for each time instance. Can be in percent or in pixels (px)
- **h** the height of the map for each time instance. Can be in percent or in pixels (px)
- **openMap** if TRUE map is browsed by default browser for each time instance
- **colPalette** colours to be used to fill polygon or colour for the line
- **do.bubble** if TRUE creates bubble plots
- **at** values at which colours will change
**bubble**  
list of parameters to be passed to bubble plot. The max.radius value for maximum radius in meter. The key.entries the values that will be plotted in the key; by default the five quantiles min, q.25, median q.75, max. The do.sqrt logical; if TRUE the plotting symbol area (sqrt(diameter)) is proportional to the value of the z-variable; if FALSE, the symbol size (diameter) is proportional to the z-variable

**iconMarker**  
if it is empty string creates default marker icon, link to the image or local image to be used as marker image

**Value**

This function returns a html(htm) file ready to use.

**Author(s)**

Milan Kilibarda <kili@grf.bg.ac.rs>

**See Also**

plotGoogleMaps, stfdfGoogleMaps

**Examples**

```r
Data preparation
Point data
data from plotKML package and plotKML tutorial
#library(plotKML)
#data(HRtemp08)
HRtemp08$date <- as.POSIXct(HRtemp08$DATE, format="%Y-%m-%dT%H:%M:%SZ")
library(spacetime)
sp <- SpatialPoints(HRtemp08[,c("Lon","Lat")])
proj4string(sp) <- CRS("+proj=longlat +datum=WGS84")
HRtemp08.st <- STIDF(sp, time = HRtemp08$date, data = HRtemp08[,c("NAME","TEMP")])
HRtemp08_jan <- HRtemp08.st[1:500]
#str(HRtemp08_jan)
plot STDIF
stplotGoogleMaps(HRtemp08_jan,zcol='TEMP', mapType=ROADMAP,w='49%',h='49%')
plot STDIF bubble
stplotGoogleMaps(HRtemp08_jan,zcol='TEMP',stfilename='HR_temp.html',
mapType=ROADMAP,w='49%',h='49%', strokeOpacity = 0,
do.bubble=T, bubble= list(max.radius=15000,
key.entries =quantile(HRtemp08_jan@data[,"TEMP"],(1:5)/5, na.rm=T),
do.sqrt = F))
#
#**
STDFD data from spacetime vignette spacetime: Spatio-Temporal Data in R
#library("maps")
states.m = map('state', plot=FALSE, fill=TRUE)
IDs <- sapply(strsplit(states.m$names, ":"), function(x) x[1])
library("maptools")
```
Create radius vector data in form of SpatialLinesDataFrame.

Description

Create radius vector data in form of SpatialLinesDataFrame based on radius and azimuth.

Usage

```r
vectorsSP(SP, zcol=1:2, maxlength=30000, arrAng=30)
```

Arguments

- **SP** object of `SpatialPointsDataFrame-class` with associated coordinate reference systems and minimum two attributes: radius in meter and azimuth in degrees.
- **zcol** variable column names, or column numbers after removing spatial coordinates from `x@data`: 1 refers to the first non-coordinate column. Attribute names or numbers of columns contains radius in meter and azimuth in degrees.
- **maxlength** value for maximum vector in meter
- **arrSize** size of arrow relative to vector size
- **arrAng** angle of arrow in degrees, 0 no arrow

Value

The function provide SpatialLinesDataFrame based on radius and azimuth, ready to use for plotGoogleMaps or spplot.
vectorsSP

Author(s)
Milan Kilibarda <kili@grf.bg.ac.rs>

See Also
pieSP, elSPDF, bubbleSP

Examples

# Data preparation
wind=data.frame( Station=c('Zlatibor', 'Sjenica', 'Pozega', 'Kraljevo', 'Kopaonik', 'Kursumlija', 'Krusevac'),
                   Lat=c(43.729755, 43.267913, 43.84859, 43.726812, 43.272543, 43.137053, 43.574188),
                   Temp=c(7, 7.5, 6.1, 6.9),
                   Wind_spd=c(3, 6.1, 1, 7, 1, 2),
                   Wind_dir=c(45, 162, 138, 265, 335, 180, 270)
)
coordinates(wind)<- c Lon+Lat
wind@proj4string=CRS('+proj=longlat +datum=WGS84')

wind_vect=vectorsSP(wind, zcol=c('Wind_spd', 'Wind_dir'))

pal=colorRampPalette(c("#CB181D", "#A50F15", "#67000D"), space = "Lab")
spplot(wind_vect, 'Wind_spd', col.regions=pal(5))

m=plotGoogleMaps(wind_vect, zcol='Wind_spd',
                 colPalette=pal(5), mapTypeId='ROADMAP', strokeWeight=3)

# plotKML(wind_vect)
Index

bubbleGoogleMaps, 2, 6, 10–12, 16, 21, 22, 26
bubbleSP, 5, 17, 31

ellipseGoogleMaps, 5, 7, 12, 16, 21, 22, 26
e1SPDF, 6, 10, 11, 17, 31

iconlabels, 11

mcGoogleMaps, 13

pieSP, 6, 11, 16, 17, 31
plotGoogleMaps, 5, 10, 12, 16, 18, 22, 26, 27, 29
PolyCol, 21

segmentGoogleMaps, 5, 10, 16, 21, 23
Spatial-class, 14, 19
SpatialPointsDataFrame-class, 3, 6, 8, 10, 17, 24, 30

stfdfGoogleMaps, 26, 29
stplotGoogleMaps, 27, 28

vectorsSP, 30