Package ‘plsdof’

August 28, 2018

Type Package
Title Degrees of Freedom and Statistical Inference for Partial Least Squares Regression
Depends MASS
Version 0.2-8
Date 2018-08-27
Author Nicole Kraemer, Mikio L. Braun
Maintainer Frederic Bertrand <frederic.bertrand@math.unistra.fr>
Description The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures. Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-08-28 21:20:02 UTC

R topics documented:

plsdof-package .. 2
benchmark.pls .. 4
benchmark.regression .. 6
coef.plsdof .. 7
compute.lower.bound .. 9
dA ... 10
dnormalize ... 11
The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression.

Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures.

Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

Description

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>plsdof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.2-7</td>
</tr>
<tr>
<td>Date:</td>
<td>2014-09-04</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>=2)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>
Author(s)

Nicole Kraemer, Mikio L. Braun

Maintainer: Nicole Kraemer <kraemer_r_packages@yahoo.de>

References

See Also

 pls.model, pls.cv, pls.ic

Examples

 # Boston Housing data
data(Boston)
X<-as.matrix(Boston[,-14])
y<-as.vector(Boston[,14])

 # compute PLS coefficients for the first 5 components and plot Degrees of Freedom
my.pls1<-pls.model(X,y,m=5,compute.DoF=TRUE)
plot(0:5,my.pls1$DoF,pch="*",cex=3,xlab="components",ylab="DoF",ylim=c(0,14))

 # add naive estimate
lines(0:5,1:6,lwd=3)

 # model selection with the Bayesian Information criterion
my.pls2<-pls.ic(X,y,criterion="bic")

 # model selection based on cross-validation.
 # returns the estimated covariance matrix of the regression coefficients
my.pls3<-pls.cv(X,y,compute.covariance=TRUE)
my.vcov<-vcov(my.pls3)
my.sd<-sqrt(diag(my.vcov)) # standard deviation of the regression coefficients
Description

This function computes the test error over several runs for different model selection strategies.

Usage

```
benchmark.pls(x,y,m,R,ratio,verbose,k,ratio.samples,
               use.kernel,criterion,true.coefficients)
```

Arguments

- `x`: matrix of predictor observations.
- `y`: vector of response observations. The length of `y` is the same as the number of rows of `x`.
- `m`: maximal number of Partial Least Squares components. Default is `m=ncol(x)`.
- `R`: number of runs. Default is 20.
- `ratio`: ratio of training examples/(no of training examples + no of test examples). Default is 0.8.
- `verbose`: If TRUE, the function plots the progress of the function. Default is TRUE.
- `k`: number of cross-validation splits. Default is 10.
- `ratio.samples`: Ratio of (no of training examples + no of test examples)/`nrow(x)`. Default is 1.
- `use.kernel`: Use kernel representation? Default is `use.kernel=FALSE`.
- `criterion`: Choice of the model selection criterion. One of the three options aic, bic, gmdl. Default is "bic".
- `true.coefficients`: The vector of true regression coefficients (without intercept), if available. Default is NULL.

Details

The function estimates the optimal number of PLS components based on four different criteria: (1) cross-validation, (2) information criteria with the naive Degrees of Freedom \(\text{DoF}(m)=m+1 \), (3) information criteri with the Degrees of Freedom computed via a Lanczos representation of PLS and (4) information criteri with the Degrees of Freedom computed via a Krylov representation of PLS. Note that the latter two options only differ with respect to the estimation of the model error.

In addition, the function computes the test error of the "zero model", i.e. `mean(y)` on the training data is used for prediction.

If `true.coefficients` are available, the function also computes the model error for the different methods, i.e. the sum of squared differences between the true and the estimated regression coefficients.
benchmark.pls

Value

MSE data frame of size R x 5. It contains the test error for the five different methods for each of the R runs.

M data frame of size R x 5. It contains the optimal number of components for the five different methods for each of the R runs.

DoF data frame of size R x 5. It contains the Degrees of Freedom (corresponding to M) for the five different methods for each of the R runs.

TIME data frame of size R x 4. It contains the runtime for all methods (apart from the zero model) for each of the R runs.

M.CRASH data frame of size R x 2. It contains the number of components for which the Krylov representation and the Lanczos representation return negative Degrees of Freedom, hereby indicating numerical problems.

ME if true.coeficients are available, this is a data frame of size R x 5. It contains the model error for the five different methods for each of the R runs.

SIGMAHAT data frame of size R x 5. It contains the estimation of the noise level provided by the five different methods for each of the R runs.

Author(s)

Nicole Kraemer

References

See Also

pls.ic, pls.cv

Examples

generate artificial data
n<-50 # number of examples
p<-5 # number of variables
X<-matrix(rnorm(n*p),nrow=n)
true.coeficients<-runif(p,1,3)
y<-X
my.benchmark<-benchmark.pls(X,y=R=10,true.coeficients=true.coeficients)
Comparison of Partial Least Squares Regression, Principal Components Regression and Ridge Regression.

Description

This function computes the test error over several runs for (a) PLS, (b) PCR (c) Ridge Regression and (d) the null model, that is the mean of \(y \). In the first three cases, the optimal model is selected via cross-validation.

Usage

```r
benchmark.regression(X, y, m, R, ratio, verbose, k, nsamples, use.kernel, supervised)
```

Arguments

- \(X \) : matrix of predictor observations.
- \(y \) : vector of response observations. The length of \(y \) is the same as the number of rows of \(X \).
- \(m \) : maximal number of components for PLS. Default is \(m = \text{ncol}(X) \).
- \(R \) : number of runs. Default is 20.
- \(ratio \) : ratio no of training examples/(no of training examples + no of test examples). Default is 0.8
- \(verbose \) : If TRUE, the function plots the progress of the function. Default is TRUE.
- \(k \) : number of cross-validation splits. Default is 10.
- \(nsamples \) : number of data points. Default is \(nrow(X) \).
- \(use.kernel \) : Use kernel representation for PLS? Default is use.kernel=FALSE.
- \(supervised \) : Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function computes the test error, the cross-validation-optimal model parameters, their corresponding Degrees of Freedom, and the sum-of-squared-residuals (SSR) for PLS and PCR.

Value

- \(\text{MSE} \) : data frame of size \(R \times 4 \). It contains the test error for the four different methods for each of the \(R \) runs.
- \(\text{M} \) : data frame of size \(R \times 4 \). It contains the optimal model parameters for the four different methods for each of the \(R \) runs.
- \(\text{DoF} \) : data frame of size \(R \times 4 \). It contains the Degrees of Freedom (corresponding to \(\text{M} \)) for the four different methods for each of the \(R \) runs.
Description

This function returns the regression coefficients of a plsdof-object.

Examples

```r
# Boston Housing data
library(MASS)
data(Boston)
X <- as.matrix(Boston[,1:4])  # select the first 3 columns as predictor variables
y <- as.vector(Boston[,14])

my.benchmark <- benchmark.regression(X, y, ratio=0.5, R=10, k=5)

# boxplot of the mean squared error
boxplot(my.benchmark$MSE, outline=FALSE)

# boxplot of the degrees of freedom, without the null model
boxplot(my.benchmark$DoF[,4])
```
Usage

S3 method for class 'plsdof'
coef(object,...)

Arguments

object an object of class "plsdof" that is returned by the functions pls.ic and pls.cv.
... additional parameters

Details

The function returns the regression coefficients (without intercept) for the optimal number of components.

Value

regression coefficients.

Author(s)

Nicole Kraemer

References

See Also

vcov.plsdof, pls.model, pls.ic, pls.cv

Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

pls.object<-pls.ic(X,y,criterion="bic")
mycoef<-coef(pls.object)
compute.lower.bound
Lower bound for the Degrees of Freedom

Description
This function computes the lower bound for the Degrees of Freedom of PLS with 1 component.

Usage
```r
compute.lower.bound(X)
```

Arguments
- `X` matrix of predictor observations.

Details
If the decay of the eigenvalues of `cor(X)` is not too fast, we can lower-bound the Degrees of Freedom of PLS with 1 component. Note that we implicitly assume that we use scaled predictor variables to compute the PLS solution.

Value
- `bound` logical. `bound` is `TRUE` if the decay of the eigenvalues is slow enough
- `lower.bound` if `bound` is `TRUE`, this is the lower bound, otherwise, it is set to `-1`

Author(s)
Nicole Kraemer

References

See Also
- `pls.model`

Examples
```r
# Boston Housing data
library(MASS)
data(Boston)
X<-Boston[,,-14]
my.lower<-compute.lower.bound(X)
```
Description

This function computes the derivative of the function

\[v \mapsto \frac{w}{\|w\|_A} \]

with respect to \(y \).

Usage

\[dA(w, A, \ dw) \]

Arguments

- \(w \) vector of length \(n \).
- \(A \) square matrix that defines the norm
- \(dw \) derivative of \(w \) with respect to \(y \). As \(y \) is a vector of length \(n \), the derivative is a matrix of size \(nxn \).

Details

The first derivative of the normalization operator is

\[\frac{\partial}{\partial y} \left(w \mapsto \frac{w}{\|w\|_A} \right) = \frac{1}{\|w\|} \left(I_n - \frac{ww^T A}{w^T w} \right) \frac{\partial w}{\partial y} \]

Value

the Jacobian matrix of the normalization function. This is a matrix of size \(nxn \).

Author(s)

Nicole Kraemer

References

See Also

normalize, dnormalize

Examples

```r
w <- rnorm(15)
dw <- diag(15)
A <- diag(1:15)
d.object <- dA(w, A, dw)
```

dnormalize

Derivative of normalization function

Description

This function computes the derivative of the function

\[
v \mapsto \frac{v}{\|v\|}
\]

with respect to \(y\).

Usage

`dnormalize(v, dv)`

Arguments

- **v**: vector of length \(n\).
- **dv**: derivative of \(v\) with respect to \(y\). As \(y\) is a vector of length \(n\), the derivative is a matrix of size \(n \times n\).

Details

The first derivative of the normalization operator is

\[
\frac{\partial}{\partial y} \left(v \mapsto \frac{v}{\|v\|} \right) = \frac{1}{\|v\|} \left(I_n - \frac{vv^T}{v^Tv} \right) \frac{\partial v}{\partial y}
\]

Value

the Jacobian matrix of the normalization function. This is a matrix of size \(n \times n\).

Author(s)

Nicole Kraemer, Mikio L. Braun
References

See Also

normalize

Examples

v<-rnorm(15)
dv<-diag(15)
d.object<-dnormalize(v,dv)

dvvtz

First derivative of the projection operator

Description

This function computes the first derivative of the projection operator

\[P_V z = V V^T z \]

Usage

dvvtz(v, z, dv, dz)

Arguments

v orthonormal basis of the space on which z is projected. v is either a matrix or a vector.

z vector that is projected onto the columns of v

dv first derivative of the the columns of v with respect to a vector y. If v is a matrix, dv is an array of dimension \(\text{ncol}(v) \times \text{nrow}(v) \times \text{length}(y) \). If v is a vector, dv is a matrix of dimension \(\text{nrow}(v) \times \text{length}(y) \).

dz first derivative of z with respect to a vector y. This is a matrix of dimension \(\text{nrow}(v) \times \text{length}(y) \).
Details

For the computation of the first derivative, we assume that the columns of \(v \) are normalized and mutually orthogonal. (Note that the function will not return an error message if these assumptions are not fulfilled. If we denote the columns of \(v \) by \(v_1, \ldots, v_l \), the first derivative of the projection operator is

\[
\frac{\partial P}{\partial y} = \sum_{j=1}^{l} \left((v_jz^\top + v_j^\top zI_n) \frac{\partial v_j}{\partial y} + v_jv_j^\top \frac{\partial z}{\partial y} \right)
\]

Here, \(n \) denotes the length of the vectors \(v_j \).

Value

The first derivative of the projection operator with respect to \(y \). This is a matrix of dimension \(nrow(v) \times length(y) \).

Note

This is an internal function.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

\(vvtz \)
Information criteria

Arguments

- **x**: vector.

Value

the index of the first local minimum of x.

Author(s)

Nicole Kraemer

References

Examples

```r
v <- rnorm(30)
out <- first.local.minimum(v)
```

information.criteria Information criteria

Description

This function computes the optimal model parameters using three different model selection criteria (aic, bic, gmdl).

Usage

```r
information.criteria(RSS, DoF, yhat, sigmahat, n, criterion = "bic")
```

Arguments

- **RSS**: vector of residual sum of squares.
- **DoF**: vector of Degrees of Freedom. The length of DoF is the same as the length of RSS.
- **yhat**: vector of squared norm of yhat. The length of yhat is the same as the length of RSS. It is only needed for gmdl. Default value is NULL.
- **sigmahat**: Estimated model error. The length of sigmahat is the same as the length of RSS.
- **n**: number of observations.
- **criterion**: one of the options "aic", "bic" and "gmdl".
Details

The Akaike information criterion (aic) is defined as

\[aic = \frac{RSS}{n} + 2 \frac{DoF}{n} \sigma^2. \]

The Bayesian information criterion (bic) is defined as

\[bic = \frac{RSS}{n} + \log(n) \frac{DoF}{n} \sigma^2. \]

The generalized minimum description length (gmdl) is defined as

\[gmdl = \frac{n}{2} \log(S) + \frac{DoF}{2} \log(F) + \frac{1}{2} \log(n) \]

with

\[S = \hat{\sigma}^2 \]

Note that it is also possible to use the function `information.criteria` for other regression methods than Partial Least Squares.

Value

- `DoF` degrees of freedom
- `score` vector of the model selection criterion
- `par` index of the first local minimum of `score`

Author(s)

Nicole Kraemer, Mikio Braun

References

See Also

`pls.ic`
Examples

```r
## This is an internal function called by pls.ic
```

kernel.pls.fit

Kernel Partial Least Squares Fit

Description

This function computes the Partial Least Squares fit. This algorithm scales mainly in the number of observations.

Usage

```r
kernel.pls.fit(X, y, m, compute.jacobian, DoF.max)
```

Arguments

- `X`: matrix of predictor observations.
- `y`: vector of response observations. The length of `y` is the same as the number of rows of `X`.
- `m`: maximal number of Partial Least Squares components. Default is `m=ncol(X)`.
- `compute.jacobian`: Should the first derivative of the regression coefficients be computed as well? Default is `FALSE`.
- `DoF.max`: upper bound on the Degrees of Freedom. Default is `min(ncol(X)+1, nrow(X)-1)`.

Details

We first standardize `X` to zero mean and unit variance.

Value

- `coefficients`: matrix of regression coefficients
- `intercept`: vector of regression intercepts
- `DoF`: Degrees of Freedom
- `sigmahat`: vector of estimated model error
- `Yhat`: matrix of fitted values
- `yhat`: vector of squared length of fitted values
- `RSS`: vector of residual sum of error
- `covariance`: NULL object.
- `TT`: matrix of normalized PLS components
Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

linear.pls.fit, pls.cv.pls.model, pls.ic

Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

pls.object<-kernel.pls.fit(X,y,m=5,compute.jacobian=TRUE)

krylov

Krylov sequence

Description

This function computes the Krylov sequence of a matrix and a vector.

Usage

krylov(A,b,m)

Arguments

A | square matrix of dimension p x p.
b | vector of length p
m | length of the Krylov sequence

Value

A matrix of size p x m containing the sequence b,Ab,...., A^(m-1)b.
Author(s)

Nicole Kraemer

Examples

\begin{verbatim}
A<-matrix(rnorm(8*8),ncol=8)
b<-rnorm(8)
K<-krylov(A,b,4)
\end{verbatim}

linear.pls \hspace{1cm} Linear Partial Least Squares Fit

Description

This function computes the Partial Least Squares solution and the first derivative of the regression coefficients. This implementation scales mostly in the number of variables.

Usage

linear.pls.fit(X, y, m, compute.jacobian, DoF.max)

Arguments

- **X**: matrix of predictor observations.
- **y**: vector of response observations. The length of y is the same as the number of rows of X.
- **m**: maximal number of Partial Least Squares components. Default is \(m=\text{ncol}(X)\).
- **compute.jacobian**: Should the first derivative of the regression coefficients be computed as well? Default is FALSE.
- **DoF.max**: upper bound on the Degrees of Freedom. Default is \(\min(\text{ncol}(X)+1, \text{row}(X)-1)\).

Details

We first standardize X to zero mean and unit variance.

Value

- **coefficients**: matrix of regression coefficients
- **intercept**: vector of regression intercepts
- **DoF**: Degrees of Freedom
- **sigmahat**: vector of estimated model error
- **Yhat**: matrix of fitted values
- **yhat**: vector of squared length of fitted values
normalize

Description
Normalization of vectors.

Usage
```
normalize(v, w = NULL)
```

Arguments
- `v` vector
- `w` optional vector
Details

The vector v is normalized to length 1. If w is given, it is normalized by the length of v.

Value

<table>
<thead>
<tr>
<th>v</th>
<th>normalized v</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>normalized w</td>
</tr>
</tbody>
</table>

Author(s)

Nicole Kraemer, Mikio L. Braun

Examples

```r
v <- rnorm(5)
w <- rnorm(10)
dummy <- normalize(v, w)
```

Description

This function computes the Principal Components Regression (PCR) fit.

Usage

```r
pcr(X, y, scale, m, eps, supervised)
```

Arguments

X	matrix of predictor observations.
y	vector of response observations. The length of y is the same as the number of rows of X.
scale	Should the predictor variables be scaled to unit variance? Default is TRUE.
m	maximal number of principal components. Default is $m = \min(\text{ncol}(X), \text{nrow}(X) - 1)$.
eps	precision. Eigenvalues of the correlation matrix of X that are smaller than eps are set to 0. The default value is $\text{eps} = 10^{-6}$.
supervised	Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function first scales all predictor variables to unit variance, and then computes the PCR fit for all components. If $\text{supervised} = \text{TRUE}$, we sort the principal correlation according to the squared correlation to the response.
Value

- **coefficients**: matrix of regression coefficients, including the coefficients of the null model, i.e. the constant model $\text{mean}(y)$.

- **intercept**: vector of intercepts, including the intercept of the null model, i.e. the constant model $\text{mean}(y)$.

Author(s)

Nicole Kraemer

See Also

- `pcr.cv`, `pls.cv`

Examples

```r
n<-50  # number of observations
p<-15  # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

my.pcr<-pcr(X,y,m=10)
```

Description

This function computes the optimal model parameter using cross-validation. Model selection is based on mean squared error and correlation to the response, respectively.

Usage

```r
pcr.cv(X,y,k=10,m,groups=NULL, scale=TRUE,eps=0.000001, plot.it=FALSE,compute.jackknife,method.cor, supervised)
```

Arguments

- **X**: matrix of predictor observations.

- **y**: vector of response observations. The length of y is the same as the number of rows of X.

- **k**: number of cross-validation splits. Default is 10.

- **m**: maximal number of principal components. Default is $m=\min(\text{ncol}(X),\text{nrow}(X)-1)$.
groups an optional vector with the same length as y. It encodes a partitioning of the data into distinct subgroups. If groups is provided, k=10 is ignored and instead, cross-validation is performed based on the partitioning. Default is NULL.

scale Should the predictor variables be scaled to unit variance? Default is TRUE.

eps precision. Eigenvalues of the correlation matrix of x that are smaller than eps are set to 0. The default value is eps=10^{-6}.

plot.it Logical. If TRUE, the function plots the cross-validation-error as a function of the number of components. Default is FALSE.

compute.jackknife Logical. If TRUE, the regression coefficients on each of the cross-validation splits is stored. Default is TRUE.

method.cor How should the correlation to the response be computed? Default is “pearson”.

supervised Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details
The function computes the principal components on the scaled predictors. Based on the regression coefficients coefficients.jackknife computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

- cv.error.matrix matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
- cv.error vector of cross-validated errors based on mean squared error
- m.opt optimal number of components based on mean squared error
- intercept intercept of the optimal model, based on mean squared error
- coefficients vector of regression coefficients of the optimal model, based on mean squared error
- cor.error.matrix matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
- cor.error vector of cross-validated errors based on correlation
- m.opt.cor optimal number of components based on correlation
- intercept.cor intercept of the optimal model, based on correlation
- coefficients.cor vector of regression coefficients of the optimal model, based on correlation
- coefficients.jackknife Array of the regression coefficients on each of the cross-validation splits, if compute.jackknife=TRUE. In this case, the dimension is ncol(x) x (m+1) x k.
Author(s)
Nicole Kraemer, Mikio L. Braun

See Also
plsNmodel, pls.ic

Examples

n<-500 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

compute PCR
pcr.object<-pcr.cv(X,y,scale=FALSE,m=3)
pcr.object1<-pcr.cv(X,y,groups=sample(c(1,2,3),n,replace=TRUE),m=3)

pls.cv Model selection for Partial Least Squares based on cross-validation

Description
This function computes the optimal model parameter using cross-validation.

Usage

pls.cv(X, y, k, groups,m,use.kernel=FALSE,compute.covariance=FALSE,method.cor)

Arguments

X matrix of predictor observations.
y vector of response observations. The length of y is the same as the number of rows of X.
k number of cross-validation splits. Default is 10.
groups an optional vector with the same length as y. It encodes a partitioning of the data into distinct subgroups. If groups is provided, k=10 is ignored and instead, cross-validation is performed based on the partitioning. Default is NULL.
m maximal number of Partial Least Squares components. Default is m=ncol(X).
use.kernel Use kernel representation? Default is use.kernel=FALSE.
compute.covariance If TRUE, the function computes the covariance for the cv-optimal regression coefficients.
method.cor How should the correlation to the response be computed? Default is "pearson".
Details

The data are centered and scaled to unit variance prior to the PLS algorithm. It is possible to estimate the covariance matrix of the cv-optimal regression coefficients (compute.covariance=TRUE). Currently, this is only implemented if use.kernel=FALSE.

Value

- cv.error.matrix: matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
- cv.error: vector of cross-validated errors based on mean squared error
- m.opt: optimal number of components based on mean squared error
- intercept: intercept of the optimal model, based on mean squared error
- coefficients: vector of regression coefficients of the optimal model, based on mean squared error
- cor.error.matrix: matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
- cor.error: vector of cross-validated errors based on correlation
- m.opt.cor: optimal number of components based on correlation
- intercept.cor: intercept of the optimal model, based on correlation
- coefficients.cor: vector of regression coefficients of the optimal model, based on mean squared error
- covariance: If TRUE and use.kernel=FALSE, the covariance of the cv-optimal regression coefficients (based on mean squared error) is returned.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

- pls.model, pls.ic
Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

compute linear PLS
pls.object<-pls.cv(X,y,m=ncol(X))

define random partitioning
groups<-sample(c("a","b","c"),n,replace=TRUE)
pls.object1<-pls.cv(X,y,groups=groups)

pls.dof
Computation of the Degrees of Freedom

Description

This function computes the Degrees of Freedom using the Krylov representation of PLS.

Usage

```
pls.dof(pls.object,n,y,K,m,DoF.max)
```

Arguments

- `pls.object`: object returned by `linear.pls.fit` or by `kernel.pls.fit`
- `n`: number of observations
- `y`: vector of response observations.
- `K`: kernel matrix $X X^t$.
- `m`: number of components.
- `DoF.max`: upper bound on the Degrees of Freedom.

Details

This computation of the Degrees of Freedom is based on the equivalence of PLS regression and the projection of the response vector y onto the Krylov space spanned by

$$K y, K^2 y, ..., K^m y.$$

Details can be found in Kraemer and Sugiyama (2011).
Value

- `coefficients`: matrix of regression coefficients
- `intercept`: vector of regression intercepts
- `DoF`: Degrees of Freedom
- `sigmahat`: vector of estimated model error
- `yhat`: matrix of fitted values
- `y^2`: vector of squared length of fitted values
- `RSS`: vector of residual sum of error
- `TT`: matrix of normalized PLS components

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

- `pls.model`, `pls.ic`

Examples

this is an internal function

Model selection for Partial Least Squares based on information criteria

Description

This function computes the optimal model parameters using one of three different model selection criteria (aic, bic, gmdl) and based on two different Degrees of Freedom estimates for PLS.

Usage

```
pls.ic(X, y, m, criterion="bic", naive, use.kernel, compute.jacobian, verbose)
```
Arguments

\(X \)
matrix of predictor observations.

\(y \)
vector of response observations. The length of \(y \) is the same as the number of rows of \(X \).

\(m \)
maximal number of Partial Least Squares components. Default is \(m = \text{ncol}(X) \).

criterion
Choice of the model selection criterion. One of the three options aic, bic, gmdl.

naive
Use the naive estimate for the Degrees of Freedom? Default is \(\text{FALSE} \).

use.kernel
Use kernel representation? Default is \(\text{use.kernel = FALSE} \).

compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is \(\text{FALSE} \).

verbose
If \(\text{TRUE} \), the function prints a warning if the algorithms produce negative Degrees of Freedom. Default is \(\text{TRUE} \).

Details

There are two options to estimate the Degrees of Freedom of PLS: \(\text{naive = TRUE} \) defines the Degrees of Freedom as the number of components +1, and \(\text{naive = FALSE} \) uses the generalized notion of Degrees of Freedom. If \(\text{compute.jacobian = TRUE} \), the function uses the Lanczos decomposition to derive the Degrees of Freedom, otherwise, it uses the Krylov representation. (See Kraemer and Sugiyama (2011) for details.) The latter two methods only differ with respect to the estimation of the noise level.

Value

The function returns an object of class "plsdo".

DoF
Degrees of Freedom

m.opt
optimal number of components

sigmahat
vector of estimated model errors

intercept
intercept

coefficients
vector of regression coefficients

covariance
if \(\text{compute.jacobian = TRUE} \) and \(\text{use.kernel = FALSE} \), the function returns the covariance matrix of the optimal regression coefficients.

m.crash
the number of components for which the algorithm returns negative Degrees of Freedom

Author(s)

Nicole Kraemer, Mikio L. Braun
References

See Also

pls.model, pls.cv

Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

compute linear PLS
pls.object<-pls.ic(X,y,m=ncol(X))

plsmode
Partial Least Squares

Description

This function computes the Partial Least Squares fit.

Usage

pls.model(X,y,m,Xtest=NULL,ytest=NULL,compute.DoF,compute.jacobian,use.kernel,method.cor)

Arguments

X matrix of predictor observations.
y vector of response observations. The length of y is the same as the number of rows of X.
m maximal number of Partial Least Squares components. Default is m=min(ncol(X),nrow(X)-1).
Xtest optional matrix of test observations. Default is Xtest=NULL.

ytest optional vector of test observations. Default is ytest=NULL.

compute.DoF Logical variable. If compute.DoF=TRUE, the Degrees of Freedom of Partial Least Squares are computed. Default is compute.DoF=FALSE.

compute.jacobian Should the first derivative of the regression coefficients be computed as well? Default is FALSE

use.kernel Should the kernel representation be used to compute the solution. Default is FALSE.

method.cor How should the correlation to the response be computed? Default is "pearson".

Details
This function computes the Partial Least Squares fit and its Degrees of Freedom. Further, it returns the regression coefficients and various quantities that are needed for model selection in combination with information.criteria.

Value

coefficients matrix of regression coefficients

intercept vector of intercepts

DoF vector of Degrees of Freedom

RSS vector of residual sum of error

sigmahat vector of estimated model error

Yhat matrix of fitted values

yhat vector of squared length of fitted values

covariance if compute.jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.

predictionif Xtest is provided, the predicted y-values for Xtest. mseif Xtest and ytest are provided, the mean squared error on the test data. corif Xtest and ytest are provided, the correlation to the response on the test data.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

`pls.ic`, `pls.cv`

Examples

```r
n<-50 # number of observations
p<-15 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

ntest<-200
Xtest<-matrix(rnorm(ntest*p),ncol=p) # test data
ytest<-rnorm(ntest) # test data

# compute PLS + degrees of freedom + prediction on Xtest
first.object<-pls.model(X,y,compute.DoF=TRUE,Xtest=Xtest,ytest=NULL)

# compute PLS + test error
second.object<-pls.model(X,y,m=10,Xtest=Xtest,ytest=ytest)
```

ridge.cv

Ridge Regression.

Description

This function computes the optimal ridge regression model based on cross-validation.

Usage

```r
ridge.cv(X, y, lambda, scale = TRUE, k = 10, plot.it = FALSE,
        groups=NULL,method.cor="pearson",compute.jackknife)
```

Arguments

- **X**: matrix of input observations. The rows of `X` contain the samples, the columns of `X` contain the observed variables.
- **y**: vector of responses. The length of `y` must equal the number of rows of `X`.
- **lambda**: Vector of penalty terms.
- **scale**: Scale the columns of `X`? Default is `scale=TRUE`.
- **k**: Number of splits in k-fold cross-validation. Default value is `k=10`.
- **plot.it**: Plot the cross-validation error as a function of `lambda`? Default is `FALSE`.
- **groups**: an optional vector with the same length as `y`. It encodes a partitioning of the data into distinct subgroups. If `groups` is provided, `k=10` is ignored and instead, cross-validation is performed based on the partitioning. Default is `NULL`.
- **method.cor**: How should the correlation to the response be computed? Default is "pearson".
- **compute.jackknife**: Logical. If `TRUE`, the regression coefficients on each of the cross-validation splits is stored. Default is `TRUE`.
Details

Based on the regression coefficients `coefficients.jackknife` computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

- `cv.error.matrix`: matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
- `cv.error`: vector of cross-validated errors based on mean squared error
- `lambda.opt`: optimal value of \(\lambda\), based on mean squared error
- `intercept`: intercept of the optimal model, based on mean squared error
- `coefficients`: vector of regression coefficients of the optimal model, based on mean squared error
- `cor.error.matrix`: matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
- `cor.error`: vector of cross-validated errors based on correlation
- `lambda.opt.cor`: optimal value of \(\lambda\), based on correlation
- `intercept.cor`: intercept of the optimal model, based on correlation
- `coefficients.cor`: vector of regression coefficients of the optimal model, based on mean squared error
- `coefficients.jackknife`: Array of the regression coefficients on each of the cross-validation splits. The dimension is \(\text{ncol}(X) \times \text{length}(\lambda) \times k\).

Author(s)

Nicole Kraemer

See Also

- `pls.cv`, `pcr.cv`, `benchmark.regression`

Examples

```r
n<-100 # number of observations
p<-60 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
ridge.object<-ridge.cv(X,y)
```
tr \hspace{1cm} \textit{Trace of a matrix}

\textbf{Description}

This function computes the trace of a matrix.

\textbf{Usage}

tr(M)

\textbf{Arguments}

\begin{itemize}
 \item \textbf{M} \hspace{1cm} \text{square matrix}
\end{itemize}

\textbf{Value}

The trace of the matrix M.

\textbf{Author(s)}

Nicole Kraemer

\textbf{Examples}

\begin{verbatim}
M <- matrix(rnorm(8*8), ncol=8)
trM <- tr(M)
\end{verbatim}

\textbf{vcov.plsdof} \hspace{1cm} \textit{Variance-covariance matrix}

\textbf{Description}

This function returns the variance-covariance matrix of a plsdof-object.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'plsdof'
vcov(object, ...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \textbf{object} \hspace{1cm} \text{an object of class "plsdof" that is returned by the function \texttt{linear.pls}}
 \item \textbf{...} \hspace{1cm} \text{additional parameters}
\end{itemize}
Details

The function returns the variance-covariance matrix for the optimal number of components. It can be applied to objects returned by `pls.ic` and `pls.cv`.

Value

variance-covariance matrix

Author(s)

Nicole Kraemer

References

See Also

ccoef.plsdof, pls.ic, pls.cv

Examples

```r
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
Y<-rnorm(n)

pls.object<-pls.ic(X,Y,m=5,criterion="bic")
my.vcov<-vcov(pls.object)
my.sd<-sqrt(diag(my.vcov)) # standard deviation of regression coefficients
```

vvtz

Description

This function computes the projection operator

\[P_V z = V V^T z \]
Usage

\texttt{vvtz(v, z)}

Arguments

\begin{itemize}
 \item \texttt{v} \hspace{1cm} \text{orthonormal basis of the space on which \texttt{z} is projected. \texttt{v} is either a matrix or a vector.}
 \item \texttt{z} \hspace{1cm} \text{vector that is projected onto the columns of \texttt{v}}
\end{itemize}

Details

The above formula is only valid if the columns of \texttt{v} are normalized and mutually orthogonal.

Value

value of the projection operator

Author(s)

Nicole Kraemer

See Also

dvvtz

Examples

\begin{verbatim}
generate random orthogonal vectors
X<-matrix(rnorm(10*100),ncol=10) # random data
S<-cor(X) # correlation matrix of data
v<-eigen(S)$vectors[,1:3] # first three eigenvectors of correlation matrix
z<-rnorm(10) # random vector \texttt{z}
projection.z<-vvtz(v,z)
\end{verbatim}
Index

*Topic math
 compute.lower.bound, 9
dA, 10
dnormalize, 11
dvvtz, 12
first.local.minimum, 13
krylov, 17
normalize, 19
tr, 32
vvtz, 33

*Topic models
 coef.plsdo, 7
 vcov.plsdo, 32

*Topic model
 information.critieria, 14

*Topic multivariate
 benchmark.pls, 4
 benchmark.regression, 6
 kernel.pls.fit, 16
 linear.pls, 18
 pcr, 20
 pcr.cv, 21
 pls.cv, 23
 pls.dof, 25
 pls.ic, 26
 pls.model, 28
 ridge.cv, 30

*Topic package
 plsdof-package, 2

 benchmark.pls, 4, 7
 benchmark.regression, 6, 31
 coef.plsdo, 7, 33
 compute.lower.bound, 9
 dA, 10
dnormalize, 11, 11
dvvtz, 12, 34
first.local.minimum, 13

information.critieria, 14
kernel.pls.fit, 16, 19
krylov, 17
linear.pls, 18
linear.pls.fit, 17
normalize, 11, 12, 19
pcr, 20
pcr.cv, 7, 21, 21, 31
pls.cv, 3, 5, 7, 8, 17, 19, 21, 23, 28, 30, 31, 33
pls.dof, 25
pls.ic, 3, 5, 8, 15, 17, 19, 23, 24, 26, 26, 30, 33
pls.model, 3, 8, 9, 17, 19, 23, 24, 26, 28, 28
plsdof(plsdof-package), 2
plsdof-package, 2
ridge.cv, 30
tr, 32
vcov.plsdo, 8, 32
vvtz, 13, 33