Package ‘plsdof’

January 31, 2019

Type Package

Title Degrees of Freedom and Statistical Inference for Partial Least Squares Regression

Depends MASS

Version 0.2-9

Date 2019-01-31

Author Nicole Kraemer, Mikio L. Braun

Maintainer Frederic Bertrand <frederic.bertrand@math.unistra.fr>

Description The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures. Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.

License GPL (>= 2)

LazyLoad yes

NeedsCompilation no

Encoding UTF-8

Repository CRAN

Date/Publication 2019-01-31 19:00:03 UTC

RoxygenNote 6.1.1

URL https://github.com/fbertran/plsdof

BugReports https://github.com/fbertran/plsdof/issues
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plsdof-package</td>
<td>2</td>
</tr>
<tr>
<td>benchmark.pls</td>
<td>4</td>
</tr>
<tr>
<td>benchmark.regression</td>
<td>6</td>
</tr>
<tr>
<td>coef.plsdof</td>
<td>8</td>
</tr>
<tr>
<td>compute.lower-bound</td>
<td>9</td>
</tr>
<tr>
<td>dA</td>
<td>10</td>
</tr>
<tr>
<td>dnormalize</td>
<td>11</td>
</tr>
<tr>
<td>dvvtz</td>
<td>12</td>
</tr>
<tr>
<td>first.local.minimum</td>
<td>13</td>
</tr>
<tr>
<td>information.criteria</td>
<td>14</td>
</tr>
<tr>
<td>kernel.pls.fit</td>
<td>16</td>
</tr>
<tr>
<td>krylov</td>
<td>17</td>
</tr>
<tr>
<td>linear.pls</td>
<td>18</td>
</tr>
<tr>
<td>normalize</td>
<td>19</td>
</tr>
<tr>
<td>pcr</td>
<td>20</td>
</tr>
<tr>
<td>pcr.cv</td>
<td>21</td>
</tr>
<tr>
<td>pls.cv</td>
<td>23</td>
</tr>
<tr>
<td>pls.dof</td>
<td>25</td>
</tr>
<tr>
<td>pls.ic</td>
<td>26</td>
</tr>
<tr>
<td>pls.model</td>
<td>28</td>
</tr>
<tr>
<td>ridge.cv</td>
<td>30</td>
</tr>
<tr>
<td>tr</td>
<td>32</td>
</tr>
<tr>
<td>vcov.plsdof</td>
<td>32</td>
</tr>
<tr>
<td>vvtz</td>
<td>33</td>
</tr>
</tbody>
</table>

Description

The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression.

Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures.

Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.
Details

Package: plsdof
Type: Package
Version: 0.2-7
Date: 2014-09-04
License: GPL (>=2)
LazyLoad: yes

Author(s)

Nicole Kraemer, Mikio L. Braun
Maintainer: Nicole Kraemer <kraemer_r_packages@yahoo.de>

References

See Also

pls.model, pls.cv, pls.ic

Examples

Boston Housing data
data(Boston)
X<as.matrix(Boston[, -14])
y<as.vector(Boston[,14])

compute PLS coefficients for the first 5 components and plot Degrees of Freedom
my.pls1<-pls.model(X, y, m=5, compute.DoF=TRUE)

plot(0:5, my.pls1$DoF, pch="x", cex=3, xlab="components", ylab="DoF", ylim=c(0,14))

add naive estimate
lines(0:5,1:6, lwd=3)

model selection with the Bayesian Information criterion
myplls2<-pls.ic(X, y, criterion="bic")
model selection based on cross-validation.
returns the estimated covariance matrix of the regression coefficients

mypls3<-pls.cv(X,y,compute.covariance=TRUE)
my.vcov<-vcov(mypls3)
my.sd<-sqrt(diag(my.vcov)) # standard deviation of the regression coefficients

benchmark.pls

Comparison of model selection criteria for Partial Least Squares Regression.

Description

This function computes the test error over several runs for different model selection strategies.

Usage

benchmark.pls(X,y,m,R, ratio, verbose, k, ratio.samples,
use.kernel, criterion, true.coefficients)

Arguments

- **X**: matrix of predictor observations.
- **y**: vector of response observations. The length of y is the same as the number of rows of X.
- **m**: maximal number of Partial Least Squares components. Default is m=ncol(X).
- **R**: number of runs. Default is 20.
- **ratio**: ratio no of training examples/(no of training examples + no of test examples). Default is 0.8
- **verbose**: If TRUE, the functions plots the progress of the function. Default is TRUE.
- **k**: number of cross-validation splits. Default is 10.
- **ratio.samples**: Ratio of (no of training examples + no of test examples)/nrow(X). Default is 1.
- **use.kernel**: Use kernel representation? Default is use.kernel=FALSE.
- **criterion**: Choice of the model selection criterion. One of the three options aic, bic, gmdl. Default is "bic".
- **true.coefficients**: The vector of true regression coefficients (without intercept), if available. Default is NULL.
Details

The function estimates the optimal number of PLS components based on four different criteria: (1) cross-validation, (2) information criteria with the naive Degrees of Freedom DoF(m) = m + 1, (3) information criteria with the Degrees of Freedom computed via a Lanczos representation of PLS and (4) information criteria with the Degrees of Freedom computed via a Krylov representation of PLS. Note that the latter two options only differ with respect to the estimation of the model error.

In addition, the function computes the test error of the "zero model", i.e. mean(y) on the training data is used for prediction.

If true.coefficients are available, the function also computes the model error for the different methods, i.e. the sum of squared differences between the true and the estimated regression coefficients.

Value

- **MSE**: data frame of size R x 5. It contains the test error for the five different methods for each of the R runs.
- **M**: data frame of size R x 5. It contains the optimal number of components for the five different methods for each of the R runs.
- **DoF**: data frame of size R x 5. It contains the Degrees of Freedom (corresponding to M) for the five different methods for each of the R runs.
- **TIME**: data frame of size R x 4. It contains the runtime for all methods (apart from the zero model) for each of the R runs.
- **M.CRASH**: data frame of size R x 2. It contains the number of components for which the Krylov representation and the Lanczos representation return negative Degrees of Freedom, hereby indicating numerical problems.
- **ME**: if true.coefficients are available, this is a data frame of size R x 5. It contains the model error for the five different methods for each of the R runs.
- **SIGMAHAT**: data frame of size R x 5. It contains the estimation of the noise level provided by the five different methods for each of the R runs.

Author(s)

Nicole Kraemer

References

See Also

- pls.ic, pls.cv
Examples

```r
# generate artificial data
n<-50  # number of examples
p<-5  # number of variables
X<-matrix(rnorm(n*p),nrow=n,ncol=p)
true.coef<-runif(p,3)
y<-X
my.benchmark<-benchmark.pls(X,y,R=10,true.coef)
```

benchmark.regression

Comparison of Partial Least Squares Regression, Principal Components Regression and Ridge Regression.

Description

This function computes the test error over several runs for (a) PLS, (b) PCR (c) Ridge Regression and (d) the null model, that is the mean of \(y \). In the first three cases, the optimal model is selected via cross-validation.

Usage

`benchmark.regression(X, y, m, R, ratio, verbose, k, nsamples, use.kernel, supervised)`

Arguments

- `X` matrix of predictor observations.
- `y` vector of response observations. The length of `y` is the same as the number of rows of `X`.
- `m` maximal number of components for PLS. Default is `m=ncol(X)`.
- `R` number of runs. Default is 20.
- `ratio` ratio no of training examples/(no of training examples + no of test examples). Default is 0.8
- `verbose` If TRUE, the functions plots the progress of the function. Default is TRUE.
- `k` number of cross-validation splits. Default is 10.
- `nsamples` number of data points. Default is `nrow(X)`.
- `use.kernel` Use kernel representation for PLS? Default is `use.kernel=FALSE`.
- `supervised` Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function computes the test error, the cross-validation-optimal model parameters, their corresponding Degrees of Freedom, and the sum-of-squared-residuals (SSR) for PLS and PCR.
Value

MSE data frame of size R x 4. It contains the test error for the four different methods for each of the R runs.

M data frame of size R x 4. It contains the optimal model parameters for the four different methods for each of the R runs.

DoF data frame of size R x 4. It contains the Degrees of Freedom (corresponding to M) for the four different methods for each of the R runs.

res.pls matrix of size R x (ncol(X)+1). It contains the SSR for PLS for each of the R runs.

res.pcr matrix of size R x (ncol(X)+1). It contains the SSR for PCR for each of the R runs.

DoF.all matrix of size R x (ncol(X)+1). It contains the Degrees of Freedom for PLS for all components for each of the R runs.

Author(s)

Nicole Kraemer

References

See Also

pls.cv, pcr.cv, benchmark.pls

Examples

Boston Housing data
library(MASS)
data(Boston)
X<-as.matrix(Boston[,1:4]) # select the first 3 columns as predictor variables
y<-as.vector(Boston[,14])

my.benchmark<-benchmark.regression(X,y,ratio=0.5,R=10,k=5)

boxplot of the mean squared error
boxplot(my.benchmark$MSE, outline=FALSE)

boxplot of the degrees of freedom, without the null model
boxplot(my.benchmark$DoF[,,-4])
Description

This function returns the regression coefficients of a plsdofobject.

Usage

```r
## S3 method for class 'plsdofobject'
coef(object,...)
```

Arguments

- `object`: an object of class "plsdofobject" that is returned by the functions `pls.ic` and `pls.cv`.
- `...`: additional parameters

Details

The function returns the regression coefficients (without intercept) for the optimal number of components.

Value

regression coefficients.

Author(s)

Nicole Kraemer

References

See Also

`vcov.plsdofobject`, `pls.model`, `pls.ic`, `pls.cv`
Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

pls.object<-pls.ic(X,y,criterion="bic")
mycoef<-coef(pls.object)

compute.lower.bound Lower bound for the Degrees of Freedom

Description

This function computes the lower bound for the the Degrees of Freedom of PLS with 1 component.

Usage

compute.lower.bound(X)

Arguments

X matrix of predictor observations.

Details

If the decay of the eigenvalues of cor(X) is not too fast, we can lower-bound the Degrees of Freedom of PLS with 1 component. Note that we implicitly assume that we use scaled predictor variables to compute the PLS solution.

Value

bound logical. bound is TRUE if the decay of the eigenvalues is slow enough
lower.bound if bound is TRUE, this is the lower bound, otherwise, it is set to -1

Author(s)

Nicole Kraemer

References

See Also

`plsNmodel`

Examples

```r
# Boston Housing data
library(MASS)
data(Boston)
X<-Boston[,14]
my.lower<-compute.lower.bounds(X)
```

dA

Derivative of normalization function

Description

This function computes the derivative of the function

\[v \mapsto \frac{w}{\|w\|_A} \]

with respect to \(y \).

Usage

\[dA(w, A, dw) \]

Arguments

- \(w \): vector of length \(n \).
- \(A \): square matrix that defines the norm
- \(dw \): derivative of \(w \) with respect to \(y \). As \(y \) is a vector of length \(n \), the derivative is a matrix of size \(nxn \).

Details

The first derivative of the normalization operator is

\[
\frac{\partial}{\partial y} \left(v \mapsto \frac{w}{\|w\|_A} \right) = \frac{1}{\|w\|} \left(I_n - \frac{w^\top A}{w^\top w} \right) \frac{\partial w}{\partial y}
\]

Value

the Jacobian matrix of the normalization function. This is a matrix of size \(nxn \).

Author(s)

Nicole Kraemer
References

See Also

normalize, dnormalize

Examples

```r
w <- rnorm(15)
dw <- diag(15)
A <- diag(1:15)
d.object <- dA(w, A, dw)
```

dnormalize

Derivative of normalization function

Description

This function computes the derivative of the function

\[v \mapsto \frac{v}{\|v\|} \]

with respect to y.

Usage

dnormalize(v, dv)

Arguments

- **v**: vector of length n.
- **dv**: derivative of v with respect to y. As y is a vector of length n, the derivative is a matrix of size nxn.

Details

The first derivative of the normalization operator is

\[
\frac{\partial}{\partial y} \left(v \mapsto \frac{v}{\|v\|} \right) = \frac{1}{\|v\|} \left(I_n - \frac{vv^T}{v^Tv} \right) \frac{\partial v}{\partial y}
\]
Value
the Jacobian matrix of the normalization function. This is a matrix of size nxn.

Author(s)
Nicole Kraemer, Mikio L. Braun

References

See Also
normalize

Examples
v<-rnorm(15)
dv<-diag(15)
d.object<-dnormalize(v,dv)

dvvtz

First derivative of the projection operator

Description
This function computes the first derivative of the projection operator

\[P_v z = V V^T z \]

Usage
dvvtz(v, z, dv, dz)

Arguments
v orthonormal basis of the space on which \(z \) is projected. \(v \) is either a matrix or a vector.

z vector that is projected onto the columns of \(v \)

dv first derivative of the the columns of \(v \) with respect to a vector \(y \). If \(v \) is a matrix, \(dv \) is an array of dimension \(\text{nrow}(v) \times \text{ncol}(v) \times \text{length}(y) \). If \(v \) is a vector, \(dv \) is a matrix of dimension \(\text{nrow}(v) \times \text{length}(y) \).

dz first derivative of \(z \) with respect to a vector \(y \). This is a matrix of dimension \(\text{nrow}(v) \times \text{length}(y) \).
Details

For the computation of the first derivative, we assume that the columns of v are normalized and mutually orthogonal. (Note that the function will not return an error message if these assumptions are not fulfilled. If we denote the columns of v by v_1, \ldots, v_l, the first derivative of the projection operator is

$$\frac{\partial P}{\partial y} = \sum_{j=1}^{l} \left[(v_j z^\top + v_j^\top z I_n) \frac{\partial v_j}{\partial y} + v_j v_j^\top \frac{\partial z}{\partial y} \right]$$

Here, n denotes the length of the vectors v_j.

Value

The first derivative of the projection operator with respect to y. This is a matrix of dimension $\text{row}(v) \times \text{length}(y)$.

Note

This is an internal function.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

$vvtz$

Description

This function computes the index of the first local minimum.

Usage

`first.local.minimum(x)`
Arguments

- `x` vector.

Value

- the index of the first local minimum of `x`.

Author(s)

Nicole Kraemer

References

Examples

```r
v<-rnorm(30)
out<-first.local.minimum(v)
```

information.criteria
Information criteria

Description

This function computes the optimal model parameters using three different model selection criteria (aic, bic, gmdl).

Usage

`information.criteria(RSS, DoF, yhat, sigmahat, n, criterion="bic")`

Arguments

- `RSS` vector of residual sum of squares.
- `DoF` vector of Degrees of Freedom. The length of DoF is the same as the length of RSS.
- `yhat` vector of squared norm of yhat. The length of yhat is the same as the length of RSS. It is only needed for gmdl. Default value is NULL.
- `sigmahat` Estimated model error. The length of sigmahat is the same as the length of RSS.
- `n` number of observations.
- `criterion` one of the options "aic", "bic" and "gmdl".
Details

The Akaike information criterion (aic) is defined as

\[aic = \frac{RSS}{n} + 2 \frac{DoF}{n} \sigma^2. \]

The Bayesian information criterion (bic) is defined as

\[bic = \frac{RSS}{n} + \log(n) \frac{DoF}{n} \sigma^2. \]

The generalized minimum description length (gmdl) is defined as

\[gmdl = n \frac{1}{2} \log(S) + \frac{DoF}{2} \log(F) + \frac{1}{2} \log(n) \]

with

\[S = \hat{\sigma}^2 \]

Note that it is also possible to use the function `information.criteria` for other regression methods than Partial Least Squares.

Value

- `DoF`: degrees of freedom
- `score`: vector of the model selection criterion
- `par`: index of the first local minimum of `score`

Author(s)

Nicole Kraemer, Mikio Braun

References

See Also

`pls.ic`
Examples

This is an internal function called by pls.ic

`kernel.pls.fit` *Kernel Partial Least Squares Fit*

Description

This function computes the Partial Least Squares fit. This algorithm scales mainly in the number of observations.

Usage

```
kernel.pls.fit(X, y, m, compute.jacobian, DoF.max)
```

Arguments

- `X`: matrix of predictor observations.
- `y`: vector of response observations. The length of `y` is the same as the number of rows of `X`.
- `m`: maximal number of Partial Least Squares components. Default is `m = ncol(X)`.
- `compute.jacobian`: Should the first derivative of the regression coefficients be computed as well? Default is `FALSE`.
- `DoF.max`: upper bound on the Degrees of Freedom. Default is `min(ncol(X)+1, nrow(X)-1)`.

Details

We first standardize `X` to zero mean and unit variance.

Value

- `coefficients`: matrix of regression coefficients
- `intercept`: vector of regression intercepts
- `DoF`: Degrees of Freedom
- `sigmahat`: vector of estimated model error
- `Yhat`: matrix of fitted values
- `yhat`: vector of squared length of fitted values
- `RSS`: vector of residual sum of error
- `covariance`: `NULL` object.
- `TT`: matrix of normalized PLS components
krylov

Author(s)
Nicole Kraemer, Mikio L. Braun

References

See Also
linear.pls.fit, pls.cv.pls.model, pls.ic

Examples

```r  
n<-50 # number of observations  
p<-5 # number of variables  
X<-matrix(rnorm(n*p),ncol=p)  
y<-rnorm(n)  
  
pls.object<-kernel.pls.fit(X,y,m=5,compute.jacobian=TRUE)  
```

krylov

Krylov sequence

Description
This function computes the Krylov sequence of a matrix and a vector.

Usage

```r  
krylov(A,b,m)  
```

Arguments

- `A`: square matrix of dimension p x p.
- `b`: vector of length p
- `m`: length of the Krylov sequence

Value
A matrix of size p x m containing the sequence b, Ab, ..., A^(m-1)b.
Author(s)

Nicole Kraemer

Examples

\begin{verbatim}
A<-matrix(rnorm(8*8),ncol=8)
b<-rnorm(8)
K<-krylov(A,b,4)
\end{verbatim}

linear.pls \hspace{1cm} Linear Partial Least Squares Fit

Description

This function computes the Partial Least Squares solution and the first derivative of the regression coefficients. This implementation scales mostly in the number of variables

Usage

\begin{verbatim}
linear.pls.fit(X, y, m, compute.jacobian, DoF.max)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{X} \hspace{1cm} matrix of predictor observations.
 \item \texttt{y} \hspace{1cm} vector of response observations. The length of \texttt{y} is the same as the number of rows of \texttt{X}.
 \item \texttt{m} \hspace{1cm} maximal number of Partial Least Squares components. Default is \texttt{m=ncol(X)}.
 \item \texttt{compute.jacobian} \hspace{1cm} Should the first derivative of the regression coefficients be computed as well? Default is \texttt{FALSE}.
 \item \texttt{DoF.max} \hspace{1cm} upper bound on the Degrees of Freedom. Default is \texttt{min(ncol(X)+1,nrow(X)-1)}.
\end{itemize}

Details

We first standardize \texttt{X} to zero mean and unit variance.

Value

\begin{itemize}
 \item \texttt{coefficients} \hspace{1cm} matrix of regression coefficients
 \item \texttt{intercept} \hspace{1cm} vector of regression intercepts
 \item \texttt{DoF} \hspace{1cm} Degrees of Freedom
 \item \texttt{sigmahat} \hspace{1cm} vector of estimated model error
 \item \texttt{Yhat} \hspace{1cm} matrix of fitted values
 \item \texttt{yhat} \hspace{1cm} vector of squared length of fitted values
\end{itemize}
normalize

<table>
<thead>
<tr>
<th>RSS</th>
<th>vector of residual sum of error</th>
</tr>
</thead>
<tbody>
<tr>
<td>covariance</td>
<td>if compute.jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.</td>
</tr>
<tr>
<td>T</td>
<td>matrix of normalized PLS components</td>
</tr>
</tbody>
</table>

Author(s)
Nicole Kraemer

References

See Also
kernel.pls.fit, pls.cv, pls.model, pls.ic

Examples
```r
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
pls.object<-linear.pls.fit(X,y,m=5,compute.jacobian=TRUE)
```

Description
Normalization of vectors.

Usage
```r
normalize(v, w = NULL)
```

Arguments
- `v` vector
- `w` optional vector
Details

The vector v is normalized to length 1. If w is given, it is normalized by the length of v.

Value

v normalized v

w normalized w

Author(s)

Nicole Kraemer, Mikio L. Braun

Examples

\[
\begin{align*}
v & \leftarrow \text{rnorm}(5) \\
w & \leftarrow \text{rnorm}(10) \\
dummy & \leftarrow \text{normalize}(v, w)
\end{align*}
\]

Description

This function computes the Principal Components Regression (PCR) fit.

Usage

\[
\text{pcr}(X, y, \text{scale}, m, \text{eps}, \text{supervised})
\]

Arguments

x matrix of predictor observations.

y vector of response observations. The length of y is the same as the number of rows of X.

scale Should the predictor variables be scaled to unit variance? Default is TRUE.

m maximal number of principal components. Default is $m = \min(\text{ncol}(X), \text{nrow}(X)-1)$.

eps precision. Eigenvalues of the correlation matrix of X that are smaller than eps are set to 0. The default value is eps = 10^{-6}.

supervised Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function first scales all predictor variables to unit variance, and then computes the PCR fit for all components. If supervised = TRUE, we sort the principal correlation according to the squared correlation to the response.
Value

coefficients matrix of regression coefficients, including the coefficients of the null model, i.e. the constant model mean(y).

intercept vector of intercepts, including the intercept of the null model, i.e. the constant model mean(y).

Author(s)

Nicole Kraemer

See Also

pcr.cv, pls.cv

Examples

```r
n<-50  # number of observations
p<-15  # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

my.pcr<-pcr(X,y,m=10)
```

Description

This function computes the optimal model parameter using cross-validation. Model selection is based on mean squared error and correlation to the response, respectively.

Usage

```r
pcr.cv(X,y,k=10,m,groups=NULL,scale=TRUE,eps=0.000001,
plot.it=FALSE,compute.jackknife,method.cor,supervised)
```

Arguments

- `X` matrix of predictor observations.
- `y` vector of response observations. The length of y is the same as the number of rows of X.
- `k` number of cross-validation splits. Default is 10.
- `m` maximal number of principal components. Default is \(m=\min(ncol(X),nrow(X)-1)\).
groups

an optional vector with the same length as y. It encodes a partitioning of the data into distinct subgroups. If groups is provided, k=10 is ignored and instead, cross-validation is performed based on the partitioning. Default is NULL.

scale

Should the predictor variables be scaled to unit variance? Default is TRUE.

eps

precision. Eigenvalues of the correlation matrix of x that are smaller than eps are set to 0. The default value is eps=10^{-6}.

plot.it

Logical. If TRUE, the function plots the cross-validation-error as a function of the number of components. Default is FALSE.

compute.jackknife

Logical. If TRUE, the regression coefficients on each of the cross-validation splits is stored. Default is TRUE.

method.cor

How should the correlation to the response be computed? Default is "pearson".

supervised

Should the principal components be sorted by decreasing squared correlation to the response? Default is FALSE.

Details

The function computes the principal components on the scaled predictors. Based on the regression coefficients coefficients.jackknife computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

cv.error.matrix

matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.

cv.error

vector of cross-validated errors based on mean squared error

m.opt

optimal number of components based on mean squared error

intercept

intercept of the optimal model, based on mean squared error

coefficients

vector of regression coefficients of the optimal model, based on mean squared error

cor.error.matrix

matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.

cor.error

vector of cross-validated errors based on correlation

m.opt.cor

optimal number of components based on correlation

intercept.cor

intercept of the optimal model, based on correlation

coefficients.cor

vector of regression coefficients of the optimal model, based on correlation

coefficients.jackknife

Array of the regression coefficients on each of the cross-validation splits, if compute.jackknife=TRUE. In this case, the dimension is ncol(x) x (m+1) x k.
Author(s)
Nicole Kraemer, Mikio L. Braun

See Also

`pls.model, pls.ic`

Examples

```r
n<-500  # number of observations
p<-5   # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

# compute PCR
pcr.object<-pcr.cv(X,y, scale=FALSE, m=3)
pcr.object1<-pcr.cv(X,y, groups=sample(c(1,2,3),n,replace=TRUE), m=3)
```

Description

This function computes the optimal model parameter using cross-validation.

Usage

```r
pls.cv(X, y, k, groups, m, use.kernel=FALSE, compute.covariance=FALSE, method.cor)
```

Arguments

- `X` matrix of predictor observations.
- `y` vector of response observations. The length of `y` is the same as the number of rows of `X`.
- `k` number of cross-validation splits. Default is 10.
- `groups` an optional vector with the same length as `y`. It encodes a partitioning of the data into distinct subgroups. If `groups` is provided, `k=10` is ignored and instead, cross-validation is performed based on the partitioning. Default is NULL.
- `m` maximal number of Partial Least Squares components. Default is `m=ncol(X)`.
- `use.kernel` Use kernel representation? Default is `use.kernel=FALSE`.
- `compute.covariance` If TRUE, the function computes the covariance for the cv-optimal regression coefficients.
- `method.cor` How should the correlation to the response be computed? Default is ”pearson”.
Details

The data are centered and scaled to unit variance prior to the PLS algorithm. It is possible to estimate the covariance matrix of the cv-optimal regression coefficients (compute.covariance=TRUE). Currently, this is only implemented if use.kernel=FALSE.

Value

cv.error.matrix
matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
cv.error
vector of cross-validated errors based on mean squared error
m.opt
optimal number of components based on mean squared error
intercept
intercept of the optimal model, based on mean squared error
coefficients
vector of regression coefficients of the optimal model, based on mean squared error
cor.error.matrix
matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
cor.error
vector of cross-validated errors based on correlation
m.opt.cor
optimal number of components based on correlation
intercept.cor
intercept of the optimal model, based on correlation
coefficients.cor
vector of regression coefficients of the optimal model, based on mean squared error
covariance
If TRUE and use.kernel=FALSE, the covariance of the cv-optimal regression coefficients (based on mean squared error) is returned.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

pls.model, pls.ic
Examples

```r
n <- 50  # number of observations
p <- 5  # number of variables
X <- matrix(rnorm(n * p), ncol = p)
y <- rnorm(n)

# compute linear PLS
pls.object <- pls.cv(X, y, m = ncol(X))

# define random partitioning
groups <- sample(c("a", "b", "c"), n, replace = TRUE)
pls.object1 <- pls.cv(X, y, groups = groups)
```

** pls.dof Computation of the Degrees of Freedom

Description

This function computes the Degrees of Freedom using the Krylov representation of PLS.

Usage

```r
pls.dof(pls.object, n, y, K, m, DoF.max)
```

Arguments

- `pls.object`: object returned by `linearpls.fit` or by `kernelpls.fit`
- `n`: number of observations
- `y`: vector of response observations.
- `K`: kernel matrix $X X^t$
- `m`: number of components.
- `DoF.max`: upper bound on the Degrees of Freedom.

Details

This computation of the Degrees of Freedom is based on the equivalence of PLS regression and the projection of the response vector y onto the Krylov space spanned by

$$K y, K^2 y, \ldots, K^m y.$$

Details can be found in Kraemer and Sugiyama (2011).
Value

- coefficients: matrix of regression coefficients
- intercept: vector of regression intercepts
- DoF: Degrees of Freedom
- sigmahat: vector of estimated model error
- yhat: matrix of fitted values
- yhat: vector of squared length of fitted values
- RSS: vector of residual sum of error
- TT: matrix of normalized PLS components

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

- pls.model, pls.ic

Examples

this is an internal function

pls.ic

Model selection for Partial Least Squares based on information criteria

Description

This function computes the optimal model parameters using one of three different model selection criteria (aic, bic, gmdl) and based on two different Degrees of Freedom estimates for PLS.

Usage

pls.ic(X, y, m, criterion="bic", naive, use.kernel, compute.jacobian, verbose)
Arguments

- **X**: matrix of predictor observations.
- **y**: vector of response observations. The length of y is the same as the number of rows of X.
- **m**: maximal number of Partial Least Squares components. Default is \(m=n_{\text{col}}(X) \).
- **criterion**: Choice of the model selection criterion. One of the three options aic, bic, gmdl.
- **naive**: Use the naive estimate for the Degrees of Freedom? Default is FALSE.
- **use.kernel**: Use kernel representation? Default is use.kernel=FALSE.
- **compute.jacobian**: Should the first derivative of the regression coefficients be computed as well? Default is FALSE.
- **verbose**: If TRUE, the function prints a warning if the algorithms produce negative Degrees of Freedom. Default is TRUE.

Details

There are two options to estimate the Degrees of Freedom of PLS: naive=TRUE defines the Degrees of Freedom as the number of components +1, and naive=FALSE uses the generalized notion of Degrees of Freedom. If compute.jacobian=TRUE, the function uses the Lanczos decomposition to derive the Degrees of Freedom, otherwise, it uses the Krylov representation. (See Kraemer and Sugiyama (2011) for details.) The latter two methods only differ with respect to the estimation of the noise level.

Value

The function returns an object of class "plsdof".

- **DoF**: Degrees of Freedom
- **m.opt**: optimal number of components
- **sigmahat**: vector of estimated model errors
- **intercept**: intercept
- **coefficients**: vector of regression coefficients
- **covariance**: if compute.jacobian=TRUE and use.kernel=FALSE, the function returns the covariance matrix of the optimal regression coefficients.
- **m.crash**: the number of components for which the algorithm returns negative Degrees of Freedom

Author(s)

Nicole Kraemer, Mikio L. Braun
References

See Also

pls.model, pls.cv

Examples

```r
n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

# compute linear PLS
pls.object<-pls.ic(X,y,m=ncol(X))
```

Partial Least Squares

Description

This function computes the Partial Least Squares fit.

Usage

```r
pls.model(X,y,m,Xtest=NULL,ytest=NULL,compute.DoF,compute.jacobian,use.kernel,method.cor)
```

Arguments

- `X`: matrix of predictor observations.
- `y`: vector of response observations. The length of `y` is the same as the number of rows of `X`.
- `m`: maximal number of Partial Least Squares components. Default is \(m = \min(\text{ncol}(X), \text{nrow}(X) - 1) \).
Xtest
optional matrix of test observations. Default is Xtest=NULL.

ytest
optional vector of test observations. Default is ytest=NULL.

compute.DoF
Logical variable. If compute.DoF=TRUE, the Degrees of Freedom of Partial Least Squares are computed. Default is compute.DoF=FALSE.

compute.jacobian
Should the first derivative of the regression coefficients be computed as well? Default is FALSE

use.kernel
Should the kernel representation be used to compute the solution. Default is FALSE.

method.cor
How should the correlation to the response be computed? Default is ”pearson”.

Details

This function computes the Partial Least Squares fit and its Degrees of Freedom. Further, it returns the regression coefficients and various quantities that are needed for model selection in combination with information.criteria.

Value

- **coefficients**
matrix of regression coefficients
- **intercept**
vector of intercepts
- **DoF**
vector of Degrees of Freedom
- **RSS**
vector of residual sum of error
- **sigmahat**
vector of estimated model error
- **Yhat**
matrix of fitted values
- **yhat**
vector of squared length of fitted values
- **covariance**
if compute.jacobian is TRUE, the function returns the array of covariance matrices for the PLS regression coefficients.

prediction
If Xtest is provided, the predicted y-values for Xtest. mseif Xtest and ytest are provided, the mean squared error on the test data. corif Xtest and ytest are provided, the correlation to the response on the test data.

Author(s)

Nicole Kraemer, Mikio L. Braun

References

See Also

`pls.ic.pls.cv`

Examples

```r
n <- 50  # number of observations
p <- 15  # number of variables
X <- matrix(rnorm(n*p), ncol=p)
y <- rnorm(n)

n.test <- 200
X.test <- matrix(rnorm(n.test*p), ncol=p)  # test data
y.test <- rnorm(n.test)  # test data

# compute PLS + degrees of freedom + prediction on Xtest
first.object <- pls.model(X, y, compute.DoF = TRUE, Xtest = X.test, ytest = NULL)

# compute PLS + test error
second.object <- pls.model(X, y, m = 10, Xtest = X.test, ytest = y.test)
```

Description

This function computes the optimal ridge regression model based on cross-validation.

Usage

```r
ridge.cv(X, y, lambda, scale = TRUE, k = 10, plot.it = FALSE, 
         groups = NULL, method.cor = "pearson", compute.jackknife)
```

Arguments

- `X` matrix of input observations. The rows of `X` contain the samples, the columns of `X` contain the observed variables.
- `y` vector of responses. The length of `y` must equal the number of rows of `X`.
- `lambda` Vector of penalty terms.
- `scale` Scale the columns of `X`? Default is scale = TRUE.
- `k` Number of splits in k-fold cross-validation. Default value is k = 10.
- `plot.it` Plot the cross-validation error as a function of `lambda`? Default is FALSE.
- `groups` an optional vector with the same length as `y`. It encodes a partitioning of the data into distinct subgroups. If `groups` is provided, k = 10 is ignored and instead, cross-validation is performed based on the partitioning. Default is NULL.
- `method.cor` How should the correlation to the response be computed? Default is "pearson".
- `compute.jackknife` Logical. If TRUE, the regression coefficients on each of the cross-validation splits is stored. Default is TRUE.
Details

Based on the regression coefficients coefficients.jackknife computed on the cross-validation splits, we can estimate their mean and their variance using the jackknife. We remark that under a fixed design and the assumption of normally distributed y-values, we can also derive the true distribution of the regression coefficients.

Value

- **cv.error.matrix**: matrix of cross-validated errors based on mean squared error. A row corresponds to one cross-validation split.
- **cv.error**: vector of cross-validated errors based on mean squared error
- **lambda.opt**: optimal value of lambda, based on mean squared error
- **intercept**: intercept of the optimal model, based on mean squared error
- **coefficients**: vector of regression coefficients of the optimal model, based on mean squared error
- **cor.error.matrix**: matrix of cross-validated errors based on correlation. A row corresponds to one cross-validation split.
- **cor.error**: vector of cross-validated errors based on correlation
- **lambda.opt.cor**: optimal value of lambda, based on correlation
- **intercept.cor**: intercept of the optimal model, based on correlation
- **coefficients.cor**: vector of regression coefficients of the optimal model, based on mean squared error
- **coefficients.jackknife**: Array of the regression coefficients on each of the cross-validation splits. The dimension is ncol(X) x length(lambda) x k.

Author(s)

Nicole Kraemer

See Also

- `pls.cv`, `pcr.cv`, `benchmark.regression`

Examples

```r
n<-100 # number of observations
p<-60 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)
ridge.object<-ridge.cv(X,y)
```
tr Trace of a matrix

Description
This function computes the trace of a matrix.

Usage
\texttt{tr(M)}

Arguments
\texttt{M} square matrix

Value
The trace of the matrix M.

Author(s)
Nicole Kraemer

Examples
\begin{verbatim}
M <- matrix(rnorm(8*8), ncol=8)
tr.M <- tr(M)
\end{verbatim}

vcov.plsdof Variance-covariance matrix

Description
This function returns the variance-covariance matrix of a plsdof-object.

Usage
\begin{verbatim}
S3 method for class 'plsdof'
vcov(object, ...)
\end{verbatim}

Arguments
\begin{verbatim}
object an object of class "plsdof" that is returned by the function linear.pls
...
additional parameters
\end{verbatim}
Details

The function returns the variance-covariance matrix for the optimal number of components. It can be applied to objects returned by pls.ic and pls.cv.

Value

variance-covariance matrix

Author(s)

Nicole Kraemer

References

See Also

coef.plsdof, pls.ic, pls.cv

Examples

n<-50 # number of observations
p<-5 # number of variables
X<-matrix(rnorm(n*p),ncol=p)
y<-rnorm(n)

pls.object<-pls.ic(X,y,m=5,criterion="bic")
my.vcov<-vcov(pls.object)
my.sd<sqrt(diag(my.vcov)) # standard deviation of regression coefficients

vvTZ

Projectin operator

Description

This function computes the projection operator

\[P_v z = V V^T z \]
Usage

vvtz(v, z)

Arguments

v orthonormal basis of the space on which z is projected. v is either a matrix or a vector.

z vector that is projected onto the columns of v

Details

The above formula is only valid if the columns of v are normalized and mutually orthogonal.

Value

d vvtz

Author(s)

Nicole Kraemer

See Also

dvvtz

Examples

generate random orthogonal vectors
X<-matrix(rnorm(10*100), ncol=10) # random data
S<-cor(X) # correlation matrix of data
v<-eigen(S)$vectors[,1:3] # first three eigenvectors of correlation matrix
z<-rnorm(10) # random vector z
projection.z<-vvtz(v,z)
Index

*Topic math
 compute.lower.bound, 9
dA, 10
donormalize, 11
dvvtz, 12
first.local.minimum, 13
krylov, 17
normalize, 19
tr, 32
vvtz, 33

*Topic models
 coef.plsdof, 8
vcov.plsdof, 32

*Topic model
 information.criteria, 14

*Topic multivariate
 benchmark.pls, 4
 benchmark.regression, 6
 kernel.pls.fit, 16
 linear.pls, 18
 pcr, 20
 pcr.cv, 21
 pls.cv, 23
 pls.dof, 25
 pls.ic, 26
 pls.model, 28
 ridge.cv, 30

*Topic package
 plsdof-package, 2

benchmark.pls, 4, 7
benchmark.regression, 6, 31
coef.plsdof, 8, 33
compute.lower.bound, 9
dA, 10
donormalize, 11, 11
dvvtz, 12, 34
first.local.minimum, 13

information.criteria, 14
kernel.pls.fit, 16, 19
krylov, 17
linear.pls, 18
linear.pls.fit, 17
normalize, 11, 12, 19
pcr, 20
pcr.cv, 7, 21, 21, 31
pls.cv, 3, 5, 7, 8, 17, 19, 21, 23, 28, 30, 31, 33
pls.dof, 25
pls.ic, 3, 5, 8, 15, 17, 19, 23, 24, 26, 26, 30, 33
pls.model, 3, 8, 10, 11, 17, 19, 23, 24, 26, 28, 28
plsdof (plsdof-package), 2
plsdof-package, 2
ridge.cv, 30
tr, 32
vcov.plsdof, 8, 32
vvtz, 13, 33