Package ‘pmc’

May 17, 2018

Version 1.0.3

Title Phylogenetic Monte Carlo

URL https://github.com/cboettig/pmc

BugReports https://github.com/cboettig/pmc/issues

License CC0

LazyData true

VignetteBuilder knitr

Suggests covr, gridExtra, knitr, testthat

Imports dplyr, geiger, ggplot2, parallel, ouch, tidyr

RoxygenNote 6.0.1.9000

NeedsCompilation no

Author Carl Boettiger [aut, cre]

Maintainer Carl Boettiger <cboettig@gmail.com>

Repository CRAN

Date/Publication 2018-05-17 21:23:22 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>anoles</td>
<td>2</td>
</tr>
<tr>
<td>pmc</td>
<td>2</td>
</tr>
<tr>
<td>pmc_fit</td>
<td>3</td>
</tr>
<tr>
<td>simulate.gfit</td>
<td>3</td>
</tr>
<tr>
<td>tree</td>
<td>4</td>
</tr>
<tr>
<td>update.gfit</td>
<td>4</td>
</tr>
</tbody>
</table>

Index 5
The anoles data set

Description
as from ouch with additional regimes added and minor formatting changes

pmc

Description
Performs a phylogenetic monte carlo between modelA and modelB

Usage

pmc(tree, data, modelA, modelB, nboot = 500, optionsA = list(),
optionsB = list(), ..., mc.cores = parallel::detectCores())

Arguments

 tree A phylogenetic tree. Can be phylo (ape) or ouch tree
 data The data matrix
 modelA a model from the list, or a custom model, see details
 modelB any other model from the list, or custom model, see details
 nboot number of bootstrap replicates to use
 optionsA additional arguments to modelA
 optionsB additional arguments to modelB
 ... additional arguments to both fitting methods
 mc.cores number of parallel cores to use

Details
Simulates data under each model and returns the distribution of likelihood ratio, \(L(B)/L(A) \), under for both simulated datasets.

Value
list with the nboot likelihood ratios obtained from fitting both models to data simulated by model A, and the nboot likelihood ratios obtained by fitting both models to simulations from model B, and the likelihood ratio between the original MLE estimated models from the data.
Examples

```r
library("geiger")
geo = get(data(geospiza))
tmp = treedata(geo$phy, geo$dat)
phy = tmp$phy
dat = tmp$data[,1]

pmc(phy, dat, "BM", "lambda", nboot = 20, mc.cores = 1)
```

pmc_fit
Fit any model used in PMC

Description

The fitting function used by pmc to generalize fitting to both geiger and ouch models.

Usage

```r
pmc_fit(tree, data, model, ...)
```

Arguments

- `tree`: a phylogenetic tree. can be ouch or ape format
- `data`: trait data in ape or ouch format
- `model`: the name of the model to fit,
- `...`: whatever additional options would be provided to the model fit

Value

the object returned by the model fitting routine (gfit for geiger, hansen/brown for ouch)

simulate.gfit
simulate gfit

Description

simulate method for gfit objects

Usage

```r
simulate.gfit(object, nsim = 1, seed = NULL, ...)
```
Arguments

- **object**: a gfit object
- **nsim**: number of sims
- **seed**: an optional seed for the simulations (not implemented)
- **...**: additional arguments, not implemented for gfit simulations

Value

- simulated dataset

tree

The phylogeny for the anoles data set

Description

The bimaculus phylogeny, as from the ouch package

update.gfit

update gfit

Description

update method for gfit objects

Usage

`update.gfit(object, ...)`

Arguments

- **object**: a gfit object
- **...**: additional arguments, such as the data to use to update

Value

- updated gfit object
Index

*Topic data
 anoles, 2
 tree, 4

anoles, 2

pmc, 2
pmc-package (pmc), 2
pmc_fit, 3

simulate.gfit, 3

tree, 4

update.gfit, 4