Package ‘prcbench’

April 20, 2017

Type Package
Title Testing Workbench for Precision-Recall Curves
Version 0.7.3
Date 2017-04-20
Description A testing workbench for evaluating precision-recall curves under various conditions.

URL http://takayasaito.github.io/prcbench/,
https://github.com/takayasaito/prcbench

BugReports https://github.com/takayasaito/prcbench/issues

Depends R (>= 3.2.3)
License GPL-3

LazyData TRUE

Imports ROCR (>= 1.0-7), PRROC (>= 1.1), precrec (>= 0.1), rJava (>= 0.9-7), R6 (>= 2.1.1), assertthat (>= 0.1), grid, gridExtra (>= 2.0.0), graphics, ggplot2 (>= 2.1.0), methods, memoise (>= 1.0.0)

RoxygenNote 6.0.1

Suggests microbenchmark (>= 1.4-2.1), PerfMeas (>= 1.2.1), testthat (>= 0.11.0), knitr (>= 1.11), rmarkdown (>= 0.8.1)

VignetteBuilder knitr

NeedsCompilation no

Author Takaya Saito [aut, cre],
Marc Rehmsmeier [aut]

Maintainer Takaya Saito <takaya.saito@outlook.com>

Repository CRAN

Date/Publication 2017-04-20 08:39:10 UTC
R topics documented:

- autoplot.evalcurve ... 2
- C1DATA .. 3
- C2DATA .. 4
- C3DATA .. 4
- C4DATA .. 4
- create_example_func ... 5
- create_testset .. 5
- create_toolset .. 7
- create_usrdata .. 8
- create_usrtool .. 9
- prcbench ... 10
- run_benchmark .. 11
- run_evalcurve .. 12
- TestDataB .. 12
- TestDataC .. 13
- ToolAUCCalculator .. 15
- ToolIFBase .. 16
- ToolPerfMeas .. 17
- Toolprecrec .. 18
- ToolPRROC ... 19
- ToolROCR .. 20

Index 22

autoplot.evalcurve
Plot the result of Precision-Recall curve evaluation

Description

The `plot_eval_results` function validates Precision-Recall curves and creates a plot.

Usage

```r
## S3 method for class 'evalcurve'
autoplot(object, base_plot = TRUE, ret_grob = FALSE,
         ncol = NULL, nrow = NULL, use_category = FALSE, ...)
```

Arguments

- `object`
 An S3 object that contains evaluation results of Precision-Recall curves.

- `base_plot`
 A Boolean value to specify whether the base points are plotted.

- `ret_grob`
 A Boolean value to specify whether the function returns a grob object.

- `ncol`
 An integer used for the column size of multiple panes.

- `nrow`
 An integer used for the row size of multiple panes.
use_category A Boolean value to specify whether the categorical summary instead of the total summary.

Not used by this function.

Value

A data frame with validation results.

Examples

library(ggplot2)

Plot evaluation results on test datasets r1, r2, and r3
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset(set_names = "crv5")
eres1 <- run_evalcurve(testset, toolset)
autoplot(eres1)

C1DATA

Description

A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage

data(C1DATA)

Format

A list with 5 items.

scores input scores
labels input labels
bp_x pre-calculated recall values for curve evaluation
bp_y pre-calculated precision values for curve evaluation
tp_x x position for displaying the test result in a plot
tp_y y position for displaying the test result in a plot
C2DATA

C2: Pre-calculated Precision-Recall curve

Description
A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage
data(C2DATA)

Format
See C1DATA.

C3DATA

C3: Pre-calculated Precision-Recall curve

Description
A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage
data(C3DATA)

Format
See C1DATA.

C4DATA

C4: Pre-calculated Precision-Recall curve

Description
A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage
data(C4DATA)

Format
See C1DATA.
create_example_func

Create an example for the func argument of the create_usrtool function

Description

The create_example_func function creates an example for the create_usrtool function.

Usage

create_example_func()

Value

A function as an example for create_usrtool

See Also

create_usrtool requires the same format. create_testset for testset.

Examples

```r
## Create a function
func <- create_example_func()
func
```

create_testset

Create a list of test datasets

Description

The create_testset function creates test datasets either for benchmarking or curve evaluation.

Usage

create_testset(test_type, set_names = NULL)

Arguments

test_type
A single string to specify the type of dataset generated by this function.

"bench"
Create test datasets for benchmarking

"curve"
Create test datasets for curve evaluation

set_names
A character vector to specify the names of test datasets.
1. For benchmarking (test_type = "bench")
 This function uses a naming convention for randomly generated data for
 benchmarking. The format is a prefix ('i' or 'b') followed by the number
 of dataset. The prefix 'i' indicates a balanced dataset, whereas 'b' indicates
 an imbalanced dataset. The number can be used with a suffix 'k' or 'm',
 indicating respectively 1000 or 1 million.
 Below are some examples.
 "b100" A balanced data set with 50 positives and 50 negatives.
 "b10k" A balanced data set with 5000 positives and 5000 negatives.
 "b1m" A balanced data set with 500,000 positives and 500,000 negatives.
 "i100" An imbalanced data set with 25 positives and 75 negatives.
 The function returns a list of TestDataBase objects.
2. For curve evaluation (test_type = "curve")
 The following three predefined datasets can be specified for curve evalua-
 tion.

<table>
<thead>
<tr>
<th>set name</th>
<th>object data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1 or C1</td>
<td>TestDataC C1DATA</td>
</tr>
<tr>
<td>c2 or C2</td>
<td>TestDataC C2DATA</td>
</tr>
<tr>
<td>c3 or C3</td>
<td>TestDataC C3DATA</td>
</tr>
<tr>
<td>c4 or C4</td>
<td>TestDataC C4DATA</td>
</tr>
</tbody>
</table>

 The function returns a list of TestDataC objects.

Value

A list of R6 test dataset objects.

See Also

run_benchmark and run_evalcurve require the list of the datasets generated by this function.
TestDataBase for benchmarking test data. TestDataC, C1DATA, C2DATA, C3DATA, and C4DATA for
curve evaluation test data. create_usrdata for creating a user-defined test set.

Examples

```r
## Create a balanced data set with 50 positives and 50 negatives
tset1 <- create_testset("bench", "b100")
tset1

## Create an imbalanced data set with 25 positives and 75 negatives
tset2 <- create_testset("bench", "i100")
tset2

## Create P1 dataset
tset3 <- create_testset("curve", "c1")
tset3

## Create P1 dataset
```
create_toolset

create_toolset <- create_testset("curve", c("c1", "c2"))
tset4

create_toolset Create a set of tools

Description

The create_toolset function takes names of predefined tools and generates a list of wrapper functions for Precision-Recall curve calculations.

Usage

create_toolset(tool_names = NULL, set_names = NULL, calc_auc = TRUE, store_res = TRUE)

Arguments

tool_names A character vector to specify the names of performance evaluation tools. The names for the following five tools can be currently used.
 • ROCR
 • AUCCalculator
 • PerfMeas
 • PRROC
 • precrec

set_names A character vector to specify a predefined set name. Following six sets are currently available.
 "def5" A set of 5 tools with calc_auc = TRUE and store_res = TRUE
 "auc5" A set of 5 tools with calc_auc = TRUE and store_res = FALSE
 "crv5" A set of 5 tools with calc_auc = FALSE and store_res = TRUE
 "def4" A set of 4 tools with calc_auc = TRUE and store_res = TRUE
 "auc4" A set of 4 tools with calc_auc = TRUE and store_res = FALSE
 "crv4" A set of 4 tools with calc_auc = FALSE and store_res = TRUE

calc_auc A Boolean value to specify whether the AUC score should be calculated.

store_res A Boolean value to specify whether the calculated curve is retrieved and stored

Value

A list of R6 tool objects.

See Also

run_benchmark and run_evalcurve require the list of the tools generated by this function ToolROCR, ToolAUCCalculator, ToolPerfMeas, ToolPRROC, and Toolprecrec as R6 tool classes.
create_usrdata

Create a user-defined test dataset

Description

The create_usrdata function creates various types of test datasets.

Usage

create_usrdata(test_type, scores = NULL, labels = NULL, tsname = NULL,
 base_x = NULL, base_y = NULL, text_x = NULL, text_y = NULL,
 text_x2 = text_x, text_y2 = text_y)

Arguments

test_type A single string to specify the type of dataset generated by this function.
"bench" Create a test dataset for benchmarking
"curve" Create a test dataset for curve evaluation

scores A numeric vector to set scores.

labels A numeric vector to set labels.

tcname A single string to specify the name of the dataset.

base_x A numeric vector to set pre-calculated recall values for curve evaluation.

base_y A numeric vector to set pre-calculated precision values for curve evaluation.

text_x A single numeric value to set the x position for displaying the test result in a plot

text_y A single numeric value to set the y position for displaying the test result in a plot

text_x2 A single numeric value to set the x position for displaying the test result (group into categories) in a plot

text_y2 A single numeric value to set the y position for displaying the test result (group into categories) in a plot

Value

A list of R6 test dataset objects.
create_usrtool

See Also

create_testset for creating a predefined test set. TestDataB for benchmarking test data. TestDataC for curve evaluation test data.

Examples

```r
## Create a test dataset for benchmarking
testset2 <- create_usrdata("bench", scores = c(0.1, 0.2), labels = c(1, 0),
                           tsname = "ml")
testset2

## Create a test dataset for curve evaluation
testset <- create_usrdata("curve", scores = c(0.1, 0.2), labels = c(1, 0),
                          base_x = c(0, 1.0), base_y = c(0, 0.5))
testset
```

create_usrtool Create a set of tools

Description

The create_toolset function takes names of predefined tools and generates a list of wrapper functions for Precision-Recall curve calculations.

Usage

```r
create_usrtool(tool_name, func, calc_auc = TRUE, store_res = TRUE, x = NA,
               y = NA)
```

Arguments

- **tool_name**: A single string to specify the name of a user-defined tool.
- **func**: A function to calculate a Precision-Recall curve and the AUC. It should take an element of the test dataset generated by create_testset as an argument. It also should return a list with three elements - 'x', 'y', and 'auc' that represent calculated recall and precision values plus the AUC score. See create_example_func for an example.
- **calc_auc**: A Boolean value to specify whether the AUC score should be calculated.
- **store_res**: A Boolean value to specify whether the calculated curve is retrieved and stored.
- **x**: Set pre-calculated recall values.
- **y**: Set pre-calculated precision values.

Value

A list of R6 tool objects.
See Also

create_toolset to create a predefined tool set. create_testset for testset. create_example_func to create an example function.

Examples

```r
## Create a new tool interface called "xyz"
efunc <- create_example_func()
toolset1 <- create_usrtool("xyz", efunc)
toolset1

## Example function with a correct argument
testset <- create_usrdatal("bench", scores = c(0.1, 0.2), labels = c(1, 0))
retf <- efunc(testset[[1]])
retf
```

Description

The prcbench package provides four categories of important functions: tool interface, test data interface, benchmarking, and curve evaluation.

Tool interface

The create_toolset function creates a common interface for five different tools that calculate Precision-Recall curves. These tools are ROCR, AUCCalculator, PerfMeas, PRROC, and precrec.

The create_usrtool function helps users to make the same interface of the predefined ones for their own tools.

Test data interface

The create_testset function creates two different types of test data sets. The first type is for benchmarking, and the second type is for curve evaluation.

The create_usrdatal function helps users to make their own test data sets.

Benchmarking

The run_benchmark function takes a tool set and a test data set and run microbenchmark for them.

Curve evaluation

The run_evalcurve function takes a tool set and a test data set and evaluates the accuracy of Precision-Recall curves for them.
run_benchmark

Run microbenchmark with specified tools and test sets

Description

The run_benchmark function runs microbenchmark for specified tools and test datasets

Usage

run_benchmark(testset, toolset, times = 5, unit = "ms",
use_sys_time = FALSE)

Arguments

- **testset**: A character vector to specify a test set generated by create_testset.
- **toolset**: A character vector to specify a tool set generated by create_toolset.
- **times**: The number of iteration used in microbenchmark.
- **unit**: A single string to specify the unit used in summary.microbenchmark.
- **use_sys_time**: A Boolean value to specify system.time is used instead of summary.microbenchmark.

Value

A data frame of microbenchmark results with additional columns.

See Also

create_testset to generate a test dataset. create_toolset to generate a tool set. microbenchmark for benchmarking details.

Examples

```r
## Not run:
## Benchmarking for b10 and i10 test sets and crv5, auc5, and def5 tool sets
testset <- create_testset("bench", c("b10", "i10"))
toolset <- create_toolset(set_names = "def5")
res1 <- run_benchmark(testset, toolset)
res1
```

End(Not run)
run_evalcurve | Evaluate Precision-Recall curves with specified tools and test sets

Description

The run_evalcurve function runs several tests to evaluate the accuracy of Precision-Recall curves.

Usage

run_evalcurve(testset, toolset, auto_combo = TRUE)

Arguments

testset A character vector to specify a test set generated by create_testset.
toolset A character vector to specify a tool set generated by create_toolset.
auto_combo A Boolean value to specify whether a combination of test and tool sets is automatically created.

Value

A data frame with validation results.

See Also

create_testset to generate a test dataset. create_toolset to generate a tool set.

Examples

```r
# Evaluate curves for c1, c2, c3 test sets and crv5 tool set
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset(set_names = "crv5")
res1 <- run_evalcurve(testset, toolset)
res1
```

TestDataB | R6 class of test dataset for performance evaluation tools

Description

TestDataB is a class that contains scores and label for performance evaluation tools. It provides necessary methods for benchmarking.

Usage

TestDataB
TestDataC

Format

An R6 class object.

Methods

- `get_tsnname()`: Get the dataset name.
- `get_scores()`: Get a vector of scores.
- `get_labels()`: Get a vector of labels.
- `get_fg()`: Get a vector of positive scores.
- `get_bg()`: Get a vector of negative scores.
- `get_fname()`: Get a file name that contains scores and labels.
- `del_file()`: Delete the file with scores and labels.

See Also

`create_testset` for creating a list of test datasets. `TestDataC` is derived from this class for curve evaluation.

Examples

```r
## Initialize with scores, labels, and a dataset name
testset <- TestDataB$new(c(0.1, 0.2, 0.3), c(0, 1, 1), "m1")
testset
```

TestDataC

R6 class of test dataset for Precision-Recall curve evaluation

Description

`TestDataC` is a class that contains scores and label for performance evaluation tools. It provides necessary methods for curve evaluation.

Usage

`TestDataC`

Format

An R6 class object.
Methods

- `set_basepoints_x(x)`: Set pre-calculated recall values for curve evaluation
- `set_basepoints_y(y)`: Set pre-calculated precision values for curve evaluation
- `get_basepoints_x()`: Get pre-calculated recall values for curve evaluation
- `get_basepoints_y()`: Get pre-calculated precision values for curve evaluation
- `set_textpos_x(x)`: Set the x position for displaying the test result in a plot
- `set_textpos_y(y)`: Set the y position for displaying the test result in a plot
- `get_textpos_x()`: Get the x position for displaying the test result in a plot
- `get_textpos_y()`: Get the y position for displaying the test result in a plot

Following seven methods are inherited from `TestDataB`. See `TestDataB` for the method descriptions.

- `get_datname()
- `get_scores()
- `get_labels()
- `get_fg()
- `get_bg()
- `get_fname()
- `del_file()

See Also

`create_testset` for creating a list of test datasets. It is derived from `TestDataB`.

Examples

```r
## Initialize with scores, labels, and a dataset name
testset <- TestDataC$new(c(0.1, 0.2), c(1, 0), "c4")
testset

## Set base points
testset$set_basepoints_x(c(0.13, 0.2))
testset$set_basepoints_y(c(0.5, 0.6))
testset
```
ToolAUCCalculator

R6 class of the AUCCalculator tool

Description

ToolAUCCalculator is a wrapper class for the AUCCalculator tool, which is a Java library that provides calculations of ROC and Precision-Recall curves.

Usage

ToolAUCCalculator

Format

An R6 class object.

Inheritance

ToolIFBase

Methods

set_jarpath(jarpath) It sets an AUCCalculator jar file.

jarpath File path of the AUCCalculator jar file, e.g. "/path1/path2/auc2.jar".

Following nine methods are inherited from ToolIFBase. See ToolIFBase for the method descriptions.

• call((testset, calc_auc, store_res)
• get_toolname()
• set_toolname(toolname)
• get_setname()
• set_setname(setname)
• get_result()
• get_x()
• get_y()
• get_auc()

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.
Examples

```r
## Initialization
toolaucalc <- ToolAUCCalculator$new()

## Show object info
toolaucalc

## create_toolset should be used for benchmarking and curve evaluation
toolaucalc2 <- create_toolset("AUCCalculator")
```

ToolIFBase
Base class of performance evaluation tools

Description

ToolIFBase is an abstract class to provide a uniform interface for performance evaluation tools.

Usage

ToolIFBase

Format

An R6 class object

Methods

- `call(testset, calc_auc, store_res)`: It calls an actual tool to calculate Precision-Recall curves.
 - `testset`: R6 object generated by the `create_testset` function.
 - `calc_auc`: A Boolean value to specify whether the AUC score should be calculated.
 - `store_res`: A Boolean value to specify whether the calculated curve is retrieved and stored.
- `get_toolname()`: Get the name of the tool.
- `set_toolname(toolname)`: Set the name of the tool.
- `get_setname()`: Get the name of the tool set.
- `set_setname(setname)`: Set the name of the tool set.
- `get_result()`: Get a list with curve values and the AUC score.
- `get_x()`: Get calculated recall values.
- `get_y()`: Get calculated precision values.
- `get_auc()`: Get the AUC score.

See Also

`ToolROCR`, `ToolAUCCalculator`, `ToolPerfMeas`, `ToolPRROC`, and `ToolPrecrec` are derived from this class. `create_toolset` for creating a list of tools.
ToolPerfMeas

Reference

1. ToolPerfMeas is a wrapper class for the PerfMeas tool, which is an R library that provides several performance measures.

Usage

ToolPerfMeas

Format

An R6 class object.

Inheritance

ToolIFBase

Methods

Following nine methods are inherited from ToolIFBase. See ToolIFBase for the method descriptions.

- call(testsetL, calc_aucL, store_resI)
- get_toolname()
- set_toolname(toolname)
- get_setname()
- set_setname(setname)
- get_result()
- get_x()
- get_y()
- get_auc()

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.
Examples

```r
## Initialization
toolperf <- ToolPerfMeas$new()

## Show object info
toolperf

## create_toolset should be used for benchmarking and curve evaluation
toolperf2 <- create_toolset("PerfMeas")
```

Toolprecrec

R6 class of the precrec tool

Description

Toolprecrec is a wrapper class for the precrec tool, which is an R library that provides calculations of ROC and Precision-Recall curves.

Usage

Toolprecrec

Format

An R6 class object.

Inheritance

ToolIFBase

Methods

Following nine methods are inherited from ToolIFBase. See ToolIFBase for the method descriptions.

- call(testset, calc_auc, store_res)
- get_toolname()
- set_toolname(toolname)
- get_setname()
- set_setname(setname)
- get_result()
- get_x()
- get_y()
- get_auc()
ToolPRROCR 19

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.

Examples

```r
## Initialization
toolprecrc <- Toolprecrc$new()

## Show object info
toolprecrc

## create_toolset should be used for benchmarking and curve evaluation
toolprecrc2 <- create_toolset("precrc")
```

ToolPRROCR
R6 class of the PRROC tool

Description

ToolPRROCR is a wrapper class for the PRROC tool, which is an R library that provides calculations of ROC and Precision-Recall curves.

Usage

ToolPRROCR

Format

An R6 class object.

Inheritance

ToolIFBase

Methods

- `set_curve(val)` A Boolean value to specify whether a Precision-Recall curve is calculated.
- `set_minStepSize(val)` A numeric value to specify the minimum step size between two intermediate points.

Following nine methods are inherited from ToolIFBase. See ToolIFBase for the method descriptions.

- `call(testset, calc_auc, store_res)`
- `get_toolname()`
- `set_toolname(toolname)`
- `get_setname()`
ToolROCR

- set_setname(setname)
- get_result()
- get_x()
- get_y()
- get_auc()

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.

Examples

```r
## Initialization
toolprroc <- ToolPRROC$new()

## Show object info
toolprroc

## create_toolset should be used for benchmarking and curve evaluation
toolprroc2 <- create_toolset("PRROC")
```

ToolROCR

R6 class of the ROCR tool

Description

ToolROCR is a wrapper class for the ROCR tool, which is an R library that provides calculations of various performance evaluation measures.

Usage

ToolROCR

Format

An R6 class object.

Inheritance

ToolIFBase
Methods

Following nine methods are inherited from `ToolIFBase`. See `ToolIFBase` for the method descriptions.

- `call(testset, calc_auc, store_res)`
- `get_toolname()`
- `set_toolname(toolname)`
- `get_setname()`
- `set_setname(setname)`
- `get_result()`
- `get_x()`
- `get_y()`
- `get_auc()`

See Also

This class is derived from `ToolIFBase`. `create_toolset` for creating a list of tools.

Examples

```r
## Initialization
toolrocr <- ToolROCR$new()

## Show object info
toolrocr

## create_toolset should be used for benchmarking and curve evaluation
toolrocr2 <- create_toolset("ROCR")
```
Index

*Topic datasets
 C1DATA, 3
 C2DATA, 4
 C3DATA, 4
 C4DATA, 4
 TestDataB, 12
 TestDataC, 13
 ToolAUCCalculator, 15
 ToolIFBase, 16
 ToolPerfMeas, 17
 ToolPrecRec, 18
 ToolPRROC, 19
 ToolROCR, 20

autoplot.evalcurve, 2

C1DATA, 3, 4, 6
C2DATA, 4, 6
C3DATA, 4, 6
C4DATA, 4, 6
create_example_func, 5, 9, 10
create_testset, 5, 5, 9–14
create_toolset, 7, 10–12, 15–17, 19–21
create_usrset, 6, 8, 10
create_usrtool, 5, 9, 10

microbenchmark, 10, 11
prcbench, 10
prcbench-package (prcbench), 10

run_benchmark, 6, 7, 10, 11
run_evalcurve, 6, 7, 10, 12

summary.microbenchmark, 11
system.time, 11

TestDataB, 6, 9, 12, 14
TestDataC, 6, 9, 13, 13
ToolAUCCalculator, 7, 15, 16
ToolIFBase, 13, 16, 17–21