Package ‘prim’

September 8, 2015

Version 1.0.16
Date 2015-09-08
Title Patient Rule Induction Method (PRIM)
Author Tarn Duong <tarn.duong@gmail.com>
Maintainer Tarn Duong <tarn.duong@gmail.com>
Depends R (>= 2.10.0)
Imports grDevices, graphics, misc3d, rgl, stats, tcltk, utils
Suggests MASS
Description Patient Rule Induction Method (PRIM) for bump hunting in high-dimensional data.
License GPL-2 | GPL-3
URL http://www.mvstat.net/tduong
NeedsCompilation no
Repository CRAN
Date/Publication 2015-09-08 13:13:46

R topics documented:

prim-package .. 2
plot.prim .. 2
prim S3 methods ... 4
prim.box .. 5
quasiflow ... 7

Index 8
Patient Rule Induction Method (PRIM)

Description

PRIM for bump-hunting for high-dimensional regression-type data.

Details

The data are \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i\) is d-dimensional and \(Y_i\) is a scalar response. We wish to find the modal (and/or anti-modal) regions in the conditional expectation \(m(x) = E(Y|x)\).

PRIM is a bump-hunting technique introduced by Friedman & Fisher (1999), taken from data mining. PRIM estimates are a sequence of nested hyper-rectangles (boxes).

For an overview of this package, see vignette("prim") for PRIM estimation for 2- and 5-dimensional data.

Author(s)

Tarn Duong <tarn.duong@gmail.com>

References

PRIM plot for multivariate data

Description

PRIM plot for multivariate data.

Usage

```r
# S3 method for class 'prim'
plot(x, splom=TRUE, ...)
```

Arguments

- `x` object of class `prim`
- `splom` flag for plotting 3-d data as scatter plot matrix. Default is TRUE.
- `...` other graphics parameters
Details

The function headers are

```r
## bivariate
plot(x, col, xlim, ylim, xlab, ylab, add=FALSE, add.legend=FALSE,
     cex.legend=1, pos.legend, lwd=1, ...)

## trivariate
plot(x, color, xlim, ylim, zlim, xlab, ylab, zlab, add.axis=TRUE, ...)

## d-variate
plot(x, col, xmin, xmax, xlab, ylab, ...)
```

The arguments are

- `add.legend` flag for adding legend (2-d plot)
- `pos.legend` (x,y) co-ordinates for legend (2-d plot)
- `cex.legend` cex graphics parameter for legend (2-d plot)
- `col` vector of plotting colours, one for each box
- `xlab,ylab,zlab,xlim,ylim,zlim,add,lwd` usual graphics parameters
- `xmin,xmax` vector of minimum and maximum axis plotting values for scatter plot matrix
- `color` vector of colours, one for each box (3-d plot)
- `add.axis` flag for plotting axes (3-d plot)

Default colours are `topo.colors()`, with one colour per box in the PRIM box sequence.

Value

Plot of 2-dim PRIM is a set of nested rectangles. Plot of 3-dim PRIM is a scatter point cloud. Plot of d-dim PRIM is a scatter plot matrix. The scatter plots indicate which points belong to which box.

See Also

`prim.box`, `predict.prim`

Examples

```r
## see ?predict.prim for bivariate example
## trivariate example
data(quasiflow)
qf <- quasiflow[1:1000,1:3]
qf.label <- quasiflow[1:1000,4]
thr <- c(0.25, -0.3)
qf.prim <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0)
plot(qf.prim)
```
Description

S3 methods PRIM for multivariate data.

Usage

```r
## S3 method for class 'prim'
predict(object, newdata, y.fun.flag=FALSE, ...)  
## S3 method for class 'prim'
summary(object, ..., print.box=FALSE)
```

Arguments

- `object`: object of class `prim`
- `newdata`: data matrix
- `y.fun.flag`: flag to return y value of PRIM box rather than box label. Default is FALSE.
- `print.box`: flag to print out limits of all PRIM boxes. Default is FALSE.
- `...`: other parameters

Details

- The `predict` method returns the value of PRIM box number in which `newdata` are located.
- The `summary` method displays a table with three columns: `box-fun` is the y value, `box-mass` is the mass of the box, `threshold.type` is the threshold direction indicator: 1 = ">= threshold", -1 = "<= threshold". Each box corresponds to a row. The second last row marked with an asterisk is the box which collates the remaining data points not belonging to a specific PRIM box. The final row is an overall summary, i.e. `box-fun` is the overall mean of y and `box-mass` is 1.

Examples

```r
data(quasiflow)
qf <- quasiflow[1:1000,1:2]
qf.label <- quasiflow[1:1000,3]+quasiflow[1:1000,4]

qf.prim <- prim.box(x=qf, y=qf.label, threshold=c(0.3, -0.1), threshold.type=0, 
        verbose=TRUE)
## verbose=TRUE prints out extra information about peeling and pasting
summary(qf.prim)
predict(qf.prim, newdata=c(0.6,0.2))

## using median instead of mean for the response y
qf.prim2 <- prim.box(x=qf, y=qf.label, threshold=c(0.5, -0.2),
**Description**

PRIM for multivariate data.

**Usage**

```r
prim.box(x, y, box.init=NULL, peel.alpha=0.05, paste.alpha=0.01, mass.min=0.05, threshold, pasting=TRUE, verbose=FALSE, threshold.type=0, y.fun=mean)

prim.hdr(prim, threshold, threshold.type, y.fun=mean)
prim.combine(prim1, prim2, y.fun=mean)
```

**Arguments**

- `x` matrix of data values
- `y` vector of response values
- `y.fun` function applied to response y. Default is mean.
- `box.init` initial covering box
- `peel.alpha` peeling quantile tuning parameter
- `paste.alpha` pasting quantile tuning parameter
- `mass.min` minimum mass tuning parameter
- `threshold` threshold tuning parameter(s)
- `threshold.type` threshold direction indicator: 1 = "\(>=\) threshold", -1 = "\(<=\) threshold", 0 = "\(>=\) threshold[1] & \(<=\) threshold[2]"
- `pasting` flag for pasting
- `verbose` flag for printing output during execution
- `prim, prim1, prim2` objects of type `prim`
Details

The data are \((X_1, Y_1), \ldots, (X_n, Y_n)\) where \(X_i\) is \(d\)-dimensional and \(Y_i\) is a scalar response. PRIM finds modal (and/or anti-modal) regions in the conditional expectation \(m(x) = E(Y|x)\).

In general, \(Y_i\) can be real-valued. See vignette("prim"). Here, we focus on the special case for binary \(Y_i\). Let \(Y_i = 1\) when \(X_i \sim F^+\); and \(Y_i = -1\) when \(X_i \sim F^-\) where \(F^+\) and \(F^-\) are different distribution functions. In this set-up, PRIM finds the regions where \(F^+\) and \(F^-\) are most different.

The tuning parameters \(\text{peelNalpha}\) and \(\text{pasteNalpha}\) control the 'patience' of PRIM. Smaller values involve more patience. The peeling steps remove data from a box till either the box mean is smaller than \(\text{threshold}\) or the box mass is less than \(\text{mass.min}\). Pasting is optional, and is used to correct any possible over-peeling. The default values for \(\text{peelNalpha}\), \(\text{pasteNalpha}\) and \(\text{mass.min}\) are taken from Friedman \& Fisher (1999).

The type of PRIM estimate is controlled threshold and \(\text{threshold.type}\):

- \(\text{threshold.type}=1\), search for \(\{m(x) \geq \text{threshold}\}\).
- \(\text{threshold.type}=-1\), search for \(\{m(x) \leq \text{threshold}\}\).
- \(\text{threshold.type}=0\), search for both \(\{m(x) \geq \text{threshold[1]}\}\) and \(\{m(x) \leq \text{threshold[2]}\}\).

There are two ways of using PRIM. One is \(\text{prim.box}\) with pre-specified threshold(s). This is appropriate when the threshold(s) are known to produce good estimates.

On the other hand, if the user doesn’t provide threshold values then \(\text{prim.box}\) computes box sequences which cover the data range. These can then be pruned at a later stage. \(\text{primhdr}\) allows the user to specify many different threshold values in an efficient manner, without having to recomputing the entire PRIM box sequence. \(\text{prim.combine}\) can be used to join the regions computed from \(\text{primhdr}\). See the examples below.

Value

- \(\text{prim.box}\) produces a PRIM estimate, an object of type \(\text{prim}\), which is a list with 8 fields:

  - \(x\) list of data matrices
  - \(y\) list of response variable vectors
  - \(y.mean\) list of vectors of box mean for \(y\)
  - \(box\) list of matrices of box limits (first row = minima, second row = maxima)
  - \(mass\) vector of box masses (proportion of points inside a box)
  - \(num.class\) total number of PRIM boxes
  - \(num.hdr.class\) total number of PRIM boxes which form the HDR
  - \(ind\) threshold direction indicator: 1 = ">= threshold", -1 = "<=threshold"

The above lists have \(\text{num.class}\) fields, one for each box.

- \(\text{primhdr}\) takes a \(\text{prim}\) object and prunes it using different threshold values. Returns another \(\text{prim}\) object. This is much faster for experimenting with different threshold values than calling \(\text{prim.box}\) each time.

- \(\text{prim.combine}\) combines two \(\text{prim}\) objects into a single \(\text{prim}\) object. Usually used in conjunction with \(\text{primhdr}\). See examples below.
Examples

data(quasiflow)
qf <- quasiflow[1:1000,1:2]
qf.label <- quasiflow[1:1000,4]

## using only one command
thr <- c(0.25, -0.3)
qf.prim1 <- prim.box(x=qf, y=qf.label, threshold=thr, threshold.type=0)

## alternative - requires more commands but allows more control
## in intermediate stages
qf.primp <- prim.box(x=qf, y=qf.label, threshold.type=1)

## default threshold too low, try higher one
qf.primp.hdr <- prim.hdr(prim=qf.primp, threshold=0.25, threshold.type=1)
qf.primm <- prim.box(x=qf, y=qf.label, threshold=-0.3, threshold.type=-1)
qf.prim2 <- prim.combine(qf.primp.hdr, qf.primm)

plot(qf.prim1)  ## orange x1>x2, blue x2<x1
points(qf[qf.label==1, ], cex=0.5)
points(qf[qf.label==-1, ], cex=0.5, col=2)

Description

This data set is simulated data from two normal mixture distributions, mimicking a flow cytometry data set. It contains 10000 observations from an HIV+ patient and 10000 observations an HIV-patient.

Usage

data(quasiflow)

Format

quasiflow is a matrix with 6 columns and 20000 rows. Each row corresponds to measurements for one cell. The first 5 columns are flow cytometric measurements and the sixth column is a binary indicator, with 1 = HIV+ and -1 = HIV-.

Source

Generated by package author.
Index

*Topic **datasets**
  quasiflow, 7
*Topic **hplot**
  plot.prim, 2
*Topic **multivariate**
  prim S3 methods, 4
  prim.box, 5
*Topic **package**
  prim-package, 2

plot.prim, 2
predict.prim, 3
predict.prim(prim S3 methods), 4
prim(prim-package), 2
prim S3 methods, 4
prim-package, 2
prim.box, 3, 5
prim.combine(prim.box), 5
prim.hdr(prim.box), 5

quasiflow, 7

summary.prim(prim S3 methods), 4