Package ‘productplots’

August 29, 2016

Title Product Plots for R

Description Framework for visualising tables of counts, proportions and probabilities. The framework is called product plots, alluding to the computation of area as a product of height and width, and the statistical concept of generating a joint distribution from the product of conditional and marginal distributions. The framework, with extensions, is sufficient to encompass over 20 visualisations previously described in fields of statistical graphics and 'infovis', including bar charts, mosaic plots, 'treemaps', equal area plots and fluctuation diagrams.

Version 0.1.1

Imports plyr, ggplot2

Suggests reshape2, testthat, covr

License GPL-2

LazyData true

RoxygenNote 5.0.1

URL https://github.com/hadley/productplots

BugReports https://github.com/hadley/productplots/issues

NeedsCompilation no

Author Hadley Wickham [aut, cre],
 Heike Hofmann [aut]

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2016-07-02 07:38:04

R topics documented:

 ddecker ... 2
 find_col_level ... 2
 find_row_level ... 3
Template for a double decker plot. A double decker plot is composed of a sequence of spines in the same direction, with the final spine in the opposite direction.

```r
ddecker(direction = "h")
```

Arguments

- `direction` direction of first split

Find the first level which has columns.

```r
find_col_level(df)
```

Description

Returns NA if no columns at any level.
find_row_level

Arguments

- **df**
 data frame of rectangle positions

Description

Find the first level which has rows.

Usage

```r
find_row_level(df)
```

Arguments

- **df**
 data frame of rectangle positions

fluct

Fluctation partitioning.

Description

Fluctation partitioning.

Usage

```r
fluct(data, bounds, offset = 0.05, max = NULL)
```

Arguments

- **data**
 bounds data frame
- **bounds**
 bounds of space to partition
- **offset**
 space between spines
- **max**
 maximum value
flucts

Template for a fluctuation diagram.

Description
Template for a fluctuation diagram.

Usage
flucts(direction = "h")

Arguments
direction direction of first split

happy

Data related to happiness from the general social survey.

Description
The data is a small sample of variables related to happiness from the general social survey (GSS). The GSS is a yearly cross-sectional survey of Americans, run from 1976. We combine data for 25 years to yield 51,020 observations, and of the over 5,000 variables, we select nine related to happiness:

Usage
data(happy)

Format
A data frame with 51020 rows and 10 variables

Details
- age. age in years: 18–89.
- degree. highest education: It high school, high school, junior college, bachelor, graduate.
- finrela. relative financial status: far above, above average, average, below average, far below.
- happy. happiness: very happy, pretty happy, not too happy.
- health. health: excellent, good, fair, poor.
- marital. marital status: married, never married, divorced, widowed, separated.
- sex. sex: female, male.
- wtsall. probability weight. 0.43–6
\textit{hbar} \hspace{2cm} \textit{Horizontal bar partition: width constant, height varies.}

\section*{Description}
Horizontal bar partition: width constant, height varies.

\section*{Usage}
\texttt{hbar(data, bounds, offset = 0.02, max = NULL)}

\section*{Arguments}
\begin{itemize}
 \item \texttt{data} \hspace{1cm} \textit{bounds data frame}
 \item \texttt{bounds} \hspace{1cm} \textit{bounds of space to partition}
 \item \texttt{offset} \hspace{1cm} \textit{space between spines}
 \item \texttt{max} \hspace{1cm} \textit{maximum value}
\end{itemize}

\textit{hspine} \hspace{2cm} \textit{Horizontal spine partition: height constant, width varies.}

\section*{Description}
Horizontal spine partition: height constant, width varies.

\section*{Usage}
\texttt{hspine(data, bounds, offset = 0.01, max = NULL)}

\section*{Arguments}
\begin{itemize}
 \item \texttt{data} \hspace{1cm} \textit{bounds data frame}
 \item \texttt{bounds} \hspace{1cm} \textit{bounds of space to partition}
 \item \texttt{offset} \hspace{1cm} \textit{space between spines}
 \item \texttt{max} \hspace{1cm} \textit{maximum value}
\end{itemize}
mosaic

Template for a mosaic plot. A mosaic plot is composed of spines in alternating directions.

Description
Template for a mosaic plot. A mosaic plot is composed of spines in alternating directions.

Usage
mosaic(direction = "v")

Arguments
- direction: direction of first split

nested

Template for a nested barchart. A nested bar is just a sequence of bars in the same direction.

Description
Template for a nested barchart. A nested bar is just a sequence of bars in the same direction.

Usage
nested(direction = "h")

Arguments
- direction: direction of first split

prodplot

Create a product plot

Description
Create a product plot

Usage
prodplot(data, formula, divider = mosaic(), cascade = 0, scale_max = TRUE, na.rm = FALSE, levels = -1L, ...)
Arguments

data input data frame
formula formula specifying display of plot
divider divider function
cascade cascading amount, per nested layer
scale_max Logical vector of length 1. If TRUE maximum values within each nested layer will be scaled to take up all available space. If FALSE, areas will be comparable between nested layers.
na.rm Logical vector of length 1 - should missing levels be silently removed?
levels an integer vector specifying which levels to draw.
... other arguments passed on to draw

Examples

```r
if (require("ggplot2")) {
  prodplot(happy ~ happy, "hbar")
  prodplot(happy ~ happy, "hspine")

  prodplot(happy ~ sex + happy, c("vspine", "hbar"))
  prodplot(happy ~ sex + happy, stacked())

  prodplot(happy ~ happy + sex | health, mosaic("h")) + aes(fill=happy)
  # The levels argument can be used to extract a given level of the plot
  prodplot(happy ~ sex + happy, stacked(), level = 1)
  prodplot(happy ~ sex + happy, stacked(), level = 2)
}
```

scale_x_product
Generate an x-scale for ggplot2 graphics.

Description

Generate an x-scale for ggplot2 graphics.

Usage

```r
scale_x_product(df)
```

Arguments

df list of data frame produced by `prodcalc`, formula and divider
scale_y_product

Generate a y-scale for ggplot2 graphics.

Description

Generate a y-scale for ggplot2 graphics.

Usage

`scale_y_product(df)`

Arguments

- `df`: list of data frame produced by `prodcalc`, formula and divider

spine

Spine partition: divide longest dimension.

Description

Spine partition: divide longest dimension.

Usage

`spine(data, bounds, offset = 0.01, max = NULL)`

Arguments

- `data`: bounds data frame
- `bounds`: bounds of space to partition
- `offset`: space between spines
- `max`: maximum value
stacked

Template for a stacked bar chart. A stacked bar chart starts with a bar and then continues with spines in the opposite direction.

Description

Template for a stacked bar chart. A stacked bar chart starts with a bar and then continues with spines in the opposite direction.

Usage

stacked(direction = "h")

Arguments

direction direction of first split

tile

Tree map partitioning.

Description

Adapted from SquarifiedLayout in http://www.cs.umd.edu/hcil/treemap-history/Treemaps-Java-Algorithms.zip

Usage

tile(data, bounds, max = 1)

Arguments

data bounds data frame
bounds bounds of space to partition
max maximum value
vbar

Vertical bar partition: height constant, width varies.

Description
Vertical bar partition: height constant, width varies.

Usage

```r
text = "vbar(data, bounds, offset = 0.02, max = NULL)"
```

Arguments

- **data**
 - bounds data frame
- **bounds**
 - bounds of space to partition
- **offset**
 - space between spines
- **max**
 - maximum value

vspine

Vertical spine partition: width constant, height varies.

Description
Vertical spine partition: width constant, height varies.

Usage

```r
text = "vspine(data, bounds, offset = 0.01, max = NULL)"
```

Arguments

- **data**
 - bounds data frame
- **bounds**
 - bounds of space to partition
- **offset**
 - space between spines
- **max**
 - maximum value
Index

*Topic **datasets**
 happy, 4

ddecker, 2
find_col_level, 2
find_row_level, 3
fluct, 3
flucts, 4
happy, 4
hbar, 5
hspine, 5
mosaic, 6
nested, 6
prodcalc, 7, 8
prodplot, 6
scale_x_product, 7
scale_y_product, 8
spine, 8
stacked, 9
tile, 9
vbar, 10
vspine, 10