Package ‘psytabs’

April 12, 2016

Type Package
Title Produce Well-Formatted Tables for Psychological Research
Version 1.0
Date 2016-10-04
Author Johannes Beller
Maintainer Johannes Beller <johannesbeller@gmail.com>
Imports psych, plyr, rtf, R2HTML, mokken, lavaan
Suggests quantreg, semTools
Description Produces tables conforming to "psychological style" (i.e. APA style) based on standard R output. The resulting tables can be exported to '.rtf', '.html' or '.doc' format.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-04-12 01:24:46

R topics documented:

psytabs-package .. 2
addPercent ... 2
addPercentToCount ... 3
compareModels .. 3
corTable ... 4
demographicTable ... 5
efaTable .. 6
freq ... 6
frequencyTable ... 7
linearRegressionTable ... 8
makeNumeric ... 8
meanTable ... 9
measurementInvarianceTable 10
mokkenTable ... 11
mydata .. 12
psytabs-package

Produce well-formatted tables for psychological research

Description

Psytabs produces tables conforming to "psychological style" (i.e. APA style) in the .rtf, .html or .doc format.

Details

Package: psytabs
Type: Package
Version: 1.0
Date: 2016-10-04
License: GPL-2

Author(s)

Johannes Beller
Maintainer: Johannes Beller <johannesbeller@gmail.com>

addPercent

Add percent-signs to a table

Description

Internal function. Should not be used.

Usage

addPercent(x)
addPercentToCount

Arguments

x
Table.

Value

A table with added percent-signs.

compareModels

Compare two cfa models fitted by lavaan.

Description

Internal function. Should not be used.

The function is adapted from the lavaan package.

Usage

compareModels(fm0, fm1, scaled = FALSE, fm0.scaling = 1, fm1.scaling = 1)

Arguments

fm0
First model.

fm1
Second model.

scaled
Is chisq scaled, i.e. a Satorra-Bentler-scaled chi-squared statistic?

fm0.scaling
Scaling factor of first model.

fm1.scaling
Scaling factor of second model.
Value

Some model comparison statistics.

Examples

```r
### to be added
1+1
```

corTable

Correlation matrix table.

Description

Produces a correlation matrix table.

Usage

```r
corTable(data, use = "pairwise", method = "pearson", round = 2,
significance = "stars", sd = FALSE, mean.sd.cols = FALSE)
```

Arguments

data data.frame containing the variables for which the correlation matrix should be calculated.

use Which observations should be used? use="pairwise" is the default value and will do pairwise deletion of cases. use="complete" will select only complete cases.

method Which correlation type should be used? method="pearson" is the default value. The alternatives to be passed to cor are "spearman" and "kendall".

round numeric values that denotes to what decimal point should be rounded.

significance character vector that specifies if p-values and/or significance stars should be included in the table. ="NA" displays no significances. ="stars" displays significance stars. ="p-values" displays p-values and =c("stars", "p-values") displays both stars and p-values.

sd logical value that toggles Whether the standard deviation should be displayed in the diagonal of the correlation matrix.

mean.sd.cols logical value that toggles Whether additional mean and standard columns should be included in the table.

Value

A dataframe comprising the correlation matrix table.
Examples

data(mydata)
corTable(mydata[,1:4])
corTable(mydata[,1:4], method = "kendall")
corTable(mydata[,1:4], sd = TRUE)
corTable(mydata[,1:4], use = "complete")
corTable(mydata[,1:4], significance = NA)
corTable(mydata[,1:4], significance = c("stars", "p-values"))
corTable(mydata[,1:4], round = 4)
corTable(mydata[,1:4], mean.sd.cols = TRUE)
(cor.tab <- corTable(mydata[,1:4], significance = "stars", mean.sd.cols = TRUE))
#saveTable(cor.tab, "corTab.rtf")

demographicTable Demographic table.

Description

Produces a table of the distribution of demographic characteristics.

Usage

demographicTable(hor_fact, ver_fact, count = TRUE, percent = TRUE, header = TRUE)

Arguments

hor_fact factor constituting the columns of the table.
ver_fact factor constituting the rows of the table.
count logical value that toggles whether to include the absolute values in the table.
percent logical value that toggles whether to include the values in percent in the table.
header logical value that toggles whether to include a header for the row factor.

Value

A dataframe constituting the demographic table.

Examples

data(mydata)

tab.1 <- demographicTable(mydata$sex, mydata$age_group7)
tab.1
tab.2 <- demographicTable(mydata$sex, mydata$age_group7, count=FALSE)
tab.2
tab.3 <- demographicTable(mydata$sex, mydata$age_group7, percent=FALSE)
tab.3

#saveTable(tab.1, "demographicTable.rtf")
efatable

Exploratory factor analysis table.

Description

Produces a table of the results of exploratory factor analysis.

Usage

```r
efaTable(fa.res, data, mean.sd = TRUE)
```

Arguments

- `fa.res`: results of exploratory factor analysis as returned by the `fa` function of the psych package.
- `data`: data.frame on which the EFA was conducted.
- `mean.sd`: logical value that indicates whether means and standard derivitions should be included in the table.

Value

An EFA table.

Examples

```r
data(mydata)
library(psych)
res <- fa(r = mydata[,c("item1", "item2", "item3", "item4")], nfactors = 2)
tab.1 <- efaTable(res, mydata[,c("item1", "item2", "item3", "item4")])
tab.1
tab.2 <- efaTable(res, mydata[,c("item1", "item2", "item3", "item4")], mean.sd = FALSE)
tab.2

#saveTable(tab.1, "efaTable.rtf")
```

freq

Calculate frequency.

Description

Internal function. Should not be used.

Usage

```r
freq(x)
```
frequencyTable

Arguments

x factor for which the frequency information should be obtained.

Value

A dataframe comprising the frequency information.

Examples

1#1

data(mydata)
(freq.tab <- frequencyTable(data.frame(Sex=mydata$sex, Age=mydata$age_group7)))
#saveTable(freq.tab, "freqTab.rtf")
linearRegressionTable Regression analysis table.

Description
Produces a table of the results of a regression analysis.

Usage
linearRegressionTable(model.fit)

Arguments
model.fit results of a regression analysis as returned by the lm function. Additionally the robust regression functions of the robust package are supported.

Value
A linear regression table.

Examples

data(iris)
fit <- lm(Sepal.Length ~ Petal.Width + Species, data = iris)
(tab <- linearRegressionTable(fit))

#saveTable(tab, "linearRegressionTable.rtf")

makeNumeric Make numeric

Description
Internal function. Should not be used.

Usage
makeNumeric(x)

Arguments
x variable to be made numeric.

Value
A numeric variable.

meanTable

Examples

```r
# Examples
```

Description

Produces a 2- or 1-dimensional table of means (and a measure of variation) regarding a variable and one or two factors.

Usage

```r
meanTable(value, ver.factor, hor.factor = NA, variation = "se")
```

Arguments

- **value**: numeric vector, for which the table should be created.
- **ver.factor**: factor constituting the rows of the table.
- **hor.factor**: factor constituting the columns of the table.
- **variation**: can be either "se" or "sd". variation = "se" computes the standard errors and variation = "sd" the standard deviation.

Value

A mean table.

Examples

```r
data(mydata)
mydata.sumscore <- rowSums(mydata[, c("item1", "item2", "item3", "item4")])
meanTable(mydata.sumscore, mydata$age_group7)
meanTable(mydata.sumscore, mydata$age_group7, mydata$sex)
meanTable(mydata.sumscore, mydata$sex, mydata$age_group7)
(tab <- meanTable(mydata.sumscore, mydata$age_group7, mydata$sex, variation = "sd"))

#saveTable(tab, "meanTable.rtf")
```
Measurement invariance table.

Description

Produces a table summarizing the results of a measurement invariance analysis as conducted by the respective function of the lavaan and semTools package.

Usage

measurementInvarianceTable(measurement.invariance)

Arguments

measurement.invariance

Results returned by the measurementInvariance function of the lavaan or semTools package.

Details

Please note that if the scaled chi-squared statistic is used a special chi-squared difference test is calculated, because the difference between two scaled chi-square statistics does not follow the chi-squared distribution. See also http://www.statmodel.com/chidiff.shtml.

Value

A measurement invariance table.

Examples

#Must have semTools and lavaan installed
library(semTools)
library(lavaan)

#Example taken from the semTools package
HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

mi.result <- measurementInvariance(HW.model,
data=HolzingerSwineford1939, group="school")
tab.1 <- measurementInvarianceTable(mi.result)
tab.1

mi.strict.result <- measurementInvariance(HW.model,
data=HolzingerSwineford1939, strict=TRUE, group="school")
tab.2 <- measurementInvarianceTable(mi.strict.result)
tab.2
Description

Produces a table summarizing the results of mokken analyses.

Usage

```r
mokkenTable(data)
```

Arguments

- **data**: data.frame containing the variables (i.e. items) for which the table should be created.

Value

A mokken table.

Examples

```r
data(mydata)  
mokkenTable(mydata[,1:4])  
#saveTable(mokkenTable(mydata[,1:4]), "mokkentable.rtf")
```
mydata

Simulated data.

Description

A simulated data frame made with help of the psych package.

Usage

data(mydata)

Format

A data frame with 500 observations on the following 7 variables.

item1 a numeric vector
item2 a numeric vector
item3 a numeric vector
item4 a numeric vector
sex a factor with levels Female Male
age_group a factor with levels < 21 21-30 31-40 41-50 51-60
employment a factor with levels Employed Not employed

Examples

data(mydata)
str(mydata)
summary(mydata)

norms

Establish norms.

Description

Internal function. Should not be used.

Usage

norms(sumscores, from, to, statistics = "PR")
Arguments

sumscores The sumscore vector for which norms should be created.
from numeric value. Lowest possible sumscore as a numeric value.
to numeric value. Highest possible sumscore as a numeric value.
statistics character vector that toggles which norm statistics are included in the norm table. Currently Percent ranks "PR", z-Statistic "z", Z-Statistic "Z", IQ-Statistic "IQ", T-Statistic "T" and Stanine "Stanine" are supported.

Value

Norms.

Examples

```r
###
1+1
```

Description

Produces a table of norms.

Usage

```r
normTable(sumscores, from, to, statistics = "PR", group = NA, as.list = FALSE)
```

Arguments

sumscores The sumscore vector for which norms should be created.
from numeric value. Lowest possible sumscore as a numeric value.
to numeric value. Highest possible sumscore as a numeric value.
statistics character vector that toggles which norm statistics are included in the norm table. Currently Percent ranks "PR", z-Statistic "z", Z-Statistic "Z", IQ-Statistic "IQ", T-Statistic "T" and Stanine "Stanine" are supported.
group List of subgroups by which the norms should be created.
as.list logical vector that toggles whether the norm table should rather be returned as a (vertical) list than as a table. This option is useful if you have a lot of subgroups and/or norm statistics and the resulting table would not fit on the page horizontally. Note that currently when you set as.list = TRUE the resulting list cannot be saved by the saveTable function.
Details

The different norm statistics (besides the percent ranks) are created by transforming the z-Statistic. This means that at first the sumscores are z-Transformed and then the other statistics are calculated based on the z-Statistic.

One could also choose to first "normalize" the z-Statistic, i.e. calculate the percent ranks and then assign the z-values to the sumscores according to the percent ranks of the standard normal distribution. This option is—albeit it is sometimes called the scientific standard—debatable because if the population does not follow the normal curve then the normalisation will lead to an artificial spreading or shortening of scores. This leads to the scores having only an ordinal scale quality even when the scores in the population distribution had originally metric scale quality. Thus this option should be used with caution and only on a strong theoretical basis. Therefore this option is currently not implemented.

Value

A dataframe constituting the norm table.

Examples

data(mydata)
mydata.sumscore <- rowSums(mydata[,c("item1", "item2", "item3", "item4")])

tab.1 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("PR"))
tab.1

tab.2 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("PR", "T", "Stanine"))
tab.2

tab.3 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("PR"), group=mydata$sex)
tab.3

tab.4 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("PR", "T"), group=mydata$employment)
tab.4

tab.5 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("T"), group=list(mydata$sex, mydata$employment))
tab.5

list.5 <- normTable(mydata.sumscore, from = 0, to = 12, statistics=c("PR", "T", "Z", "z"), group=list(mydata$sex, mydata$employment), as.list=TRUE)
list.5

#saveTable(tab.2, "normTable.rtf")
Usage
quantregTable(x, digits = 2, significance = "none")

Arguments
x summary for quantile regression results as returned when calling summary on an quantile regression object.
digits number of digits to display.
significance factor that toggles whether beside the standard error significance should be made visible. Can be either "none" nothing additional is displayed, "stars" significance stars are displayed and "bold" significant values are bold when saved by the saveTable function.

Value
A quantreg table.

Examples
#must have quantreg installed
library(quantreg)
data(stackloss)
y <- stack.loss
x <- stack.x
res <- summary(rq(y ~ x, tau=c(0.25, 0.5, 0.75)), se="boot")
quantregTable(res)
quantregTable(res, significance = "stars")
tab <- quantregTable(res, significance = "bold")
Value

A regression table.

Examples

data(iris)
fit <- lm(Sepal.Length ~ Petal.Width + Species, data = iris)
(tab <- regressionTable(fit))

Must have the robust package installed
fit.rob <- lmrob(Sepal.Length ~ Petal.Width + Species, data = iris)
regressionTable(fit.rob)

saveTable(tab, "regressionTable.rtf")

Logistic Regression currently works not correctly.
data(anorexia, package="MASS")
anorexia.logistic <- anorexia[anorexia$Treat != "FT",]
fit <- glm(Treat ~ Postwt, family = binomial(), data = anorexia.logistic)
saveTable(fit)

saveTable

Save a table.

Description

Saves a table either in rtf-format (recommended) or in HTML-format.

Usage

saveTable(x, file, HTML = FALSE, post.editing = TRUE)

Arguments

x
data.frame as generated by the different xTable functions in this package (for example by the mokkenTable function).

file
string: filename the table should be saved as.

HTML
logical value that toggles whether the file format should be HTML.

post.editing
logical value that toggles whether the tables should be post-edited. If true, hard-coded changes to the final table are made. See the details section for further informations.

Details

If post-editing is set to true then the code, which is generated by the RTF package, is changed a posteriori.
standarderror

Value

None

Examples

data(mydata)
test <- demographicTable(mydata$sex, mydata$age_group7, percent=FALSE)
test

#saveTable(test, "test.rtf")

standarderror Standard error.

Description

Computes the standard error of a numeric vector.

Usage

standarderror(x)

Arguments

x a numerical vector.

Value

The standard error.

Examples

data(mydata)
mydata.sumscore <- rowSums(mydata[,c("item1", "item2", "item3", "item4")])
standarderror(mydata.sumscore)
Index

*Topic **datasets**
 mydata, 12
*Topic **package**
 psytabs-package, 2

addPercent, 2
addPercentToCount, 3

compareModels, 3
corTable, 4
demographicTable, 5

efaTable, 6
freq, 6
frequencyTable, 7

linearRegressionTable, 8

makeNumeric, 8
meanTable, 9
measurementInvarianceTable, 10
mokkenTable, 11
mydata, 12

norms, 12
normTable, 13

psytabs (psytabs-package), 2
psytabs-package, 2

quantregTable, 14

regressionTable, 15

saveTable, 16
standarderror, 17