Package ‘pycno’
February 20, 2015

Type Package
Title Pycnophylactic Interpolation
Version 1.2
Date 2014-08-15
Author Chris Brunsdon
Maintainer Chris Brunsdon <christopher.brunsdon@nuim.ie>
Depends stats, sp, maptools, rgeos
Description Given a SpatialPolygonsDataFrame and a set of populations for each polygon, compute a population density estimate based on Tobler’s pycnophylactic interpolation algorithm. The result is a SpatialGridDataFrame.
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2014-08-15 16:30:27

R topics documented:

pycno-package .. 1
Estimation of Population from Pycnophylactic Interpolation 2
Pycnophylactic Interpolation .. 4

Index

pycno-package Pycnophylactic Interpolation

Description

Given a SpatialPolygonsDataFrame and a set of populations for each polygon, compute a population density estimate based on Tobler’s pycnophylactic interpolation algorithm. The result is a SpatialGridDataFrame.
Estimation of Population from Pycnophylactic Interpolation

Details

Package: pycno
Type: Package
Version: 1.0
Date: 2011-04-15
License: GPL (>=2)
LazyLoad: yes

For use in conjunction with the sp package, computes pycnophylactic surfaces given a SpatialPolygonsDataFrame and a population for each polygon. A pycnophylactic surface is smooth, but populations allocated to each pixel sum up to the initial polygon counts, when summed over the polygons contained in each pixel.

Author(s)

Chris Brunsdon
Maintainer: Chris Brunsdon <cb179@le.ac.uk>

References

Examples

Read in data for North Carolina as a SpatialPolygonsDataFrame
nc.sids <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[[1]],
 IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))

Compute the pycnophylactic surface for 1974 births as a SpatialGridDataFrame
Note probably shouldn't really base grid cells on Lat/Long coordinates
This example just serves to illustrate the use of the function
births74 <- pycno(nc.sids,nc.sids$BIR74,0.05, converge=1)

Draw it
image(births74)

Overlay North Carolina county boundaries for reference
plot(nc.sids, add=TRUE)

Estimate populations for a set of zones based on pycnophylactic interpolation
Estimation of Population from Pycnophylatic Interpolation

Description

Given a SpatialGridDataFrame of population estimates and a set of polygons, compute a population estimate based on Tobler’s pycnophylactic interpolation algorithm for each zone. The result is a vector.

Usage

estimate.pycno(sgdf, spdf)

Arguments

sgdf A SpatialGridDataFrame containing the output of a pycnophylactic interpolation, such as those produced by pycno.
spdf A SpatialPolygonsDataFrame, giving the polygons for which estimates are wanted.

Details

Takes the estimate of population density for each pixel, checks which polygon each pixel is in, and aggregates them. Accuracy depends on the scale of pixels in the initial interpolation.

Value

A vector in which each pixel set at the estimated population aggregation to each zone in spdf.

Note

Pycnophylatic interpolation has the property that the sum of the estimated values associated with all of the pixels in any polygon equals the supplied population for that polygon. A further property is that all pixel values are greater than or equal to zero. The method is generally used to obtain pixel-based population estimates when total populations for a set of irregular polygons (eg. counties) are known.

Author(s)

Chris Brunsdon

References

See Also

pycno
Examples

Read in data for North Carolina as a SpatialPolygonsDataFrame
nc.sids <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[[1]],
 IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))

Compute the pycnophylactic surface for 1974 births as a SpatialGridDataFrame
Note probably shouldn't really base grid cells on Lat/Long coordinates
This example just serves to illustrate the use of the functions
births74 <- pycno(nc.sids,nc.sids$BIR74,0.05,converge=1)

Create a new 'blocky' set of zones
blocks <- gUnionCascaded(nc.sids,1*(coordinates(nc.sids)[,2] > 36) +
 2*(coordinates(nc.sids)[,1] > -80))

Plot the blocky zones
plot(blocks)

Aggregate data to them
estimates <- estimate.pycno(births74,blocks)

Write the estimates on to the map
text(coordinates(blocks),as.character(estimates))

Pycnophylactic Interpolation

Perform Tobler's pycnophylactic algorithm.

Description

Given a `SpatialPolygonsDataFrame` and a set of populations for each polygon, compute a population density estimate based on Tobler’s pycnophylactic interpolation algorithm. The result is a `SpatialGridDataFrame`.

Usage

pycno(x, pops, celldim, r = 0.2, converge = 3, verbose=TRUE)

Arguments

- `x` A `SpatialPolygonsDataFrame` representing a set of zones for which total populations are known.
- `pops` A list of populations, one for each zone represented in x.
- `celldim` The size of the cell sides for the output SpatialGridDataFrame, or a SpatialGrid or SpatialGridDataFrame with the grid topology of the desired output.
- `r` A relaxation parameter for the iterative step in the pycnophylactic algorithm. Prevents over-compensation in the smoothing step. In practice the default value works well.
- `converge` A convergence parameter, informing the decision on when iterative improvements on the smooth surface have converged sufficiently - see details.
- `verbose` If set to TRUE (the default value) makes the function report the maximum change in any pixel value for each iterative step. If set to FALSE the function is silent.
Pycnophylactic Interpolation

Details

This method uses an iterative approach, and for each iteration notes the maximum change in a pixel. When this value falls below a certain level (actually \(10^{(-\text{converge})}\) times the largest initial pixel value) the iterations stop and the current surface is reported.

Value

A \texttt{SpatialGridDataFrame} with each pixel set at the estimated density computed with the Pycnophylactic algorithm, these values being stored in the data item \texttt{dens}. The extent of this object is set at by the bounding box of the input \texttt{SpatialPolygonsDataFrame}. Pixels outside of all of the polygons are set to NA.

Note

Pycnophylactic interpolation has the property that the sum of the estimated values associated with all of the pixels in any polygon equals the supplied population for that polygon. A further property is that all pixel values are greater than or equal to zero. The method is generally used to obtain pixel-based population estimates when total populations for a set of irregular polygons (eg. counties) are known.

Author(s)

Chris Brunsdon

References

Examples

```r
# Read in data for North Carolina as a SpatialPolygonsDataFrame
nc.sids <- readShapeSpatial(system.file("shapes/sids.shp", package="maptools")[[1]],
  IDvar="FIPSNO", proj4string=CRS("+proj=longlat +ellps=clrk66"))

# Compute the pycnophylactic surface for 1974 births as a SpatialGridDataFrame
# Note probably shouldn't really base grid cells on Lat/Long coordinates
# This example just serves to illustrate the use of the function
# It is suggested to use a higher value for 'converge' - this value justs speeds
# things up for the example.
births74 <- pycno(nc.sids,nc.sids$BIR74,0.05,converge=1)

# Draw it
image(births74)

# Overlay North Carolina county boundaries for reference
plot(nc.sids,add=TRUE)
```
Index

*Topic **package**
 pycno-package, 1

*Topic **smoothing**
 Estimation of Population from
 Pycnophylactic Interpolation, 2
 Pycnophylactic Interpolation, 4

*Topic **spatial**
 Estimation of Population from
 Pycnophylactic Interpolation, 2
 Pycnophylactic Interpolation, 4

estimate.pycno (Estimation of
 Population from Pycnophylactic
 Interpolation), 2

Estimation of Population from
 Pycnophylactic Interpolation, 2

pycno, 3
pycno (Pycnophylactic Interpolation), 4
pycno-package, 1
Pycnophylactic Interpolation, 4

SpatialGridDataFrame, 3–5
SpatialPolygonsDataFrame, 3–5