Package ‘qLearn’

February 20, 2015

Type Package
Title Estimation and inference for Q-learning
Version 1.0
Date 2012-03-01
Author Jingyi Xin, Bibhas Chakraborty, and Eric B. Laber
Maintainer Bibhas Chakraborty <bc2425@columbia.edu>
Description Functions to implement Q-learning for estimating optimal
dynamic treatment regimes from two stage sequentially
randomized trials, and to perform inference via m-out-of-n
bootstrap for parameters indexing the optimal regime.
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2012-03-09 10:12:37
NeedsCompilation no

R topics documented:

chooseMDoubleBootstrap .. 1
getModel .. 3
qLearn .. 5

Index

chooseMDoubleBootstrap

Choose the bootstrap sample size for stage 1 inference
chooseMDoubleBootstrap

Description

Choose the resample size for stage 1 bootstrap using double bootstrap. The form of \(m \) is:
\[
m = \frac{1 + X_i (1 - \hat{p}_{\text{Hat}})}{1 + X_i},
\]
where the tuning parameter \(X_i \) is chosen via double bootstrap and \(\hat{p}_{\text{Hat}} \) is the estimated non-regularity level computed by \texttt{getModel}. Example could be found under \texttt{qLearn}.

Usage

\[
\text{chooseMDoubleBootstrap(s2Formula, s1Formula, completeData, s2Treat, interact, s2Indicator, alpha=0.05, boot1Num=500, boot2Num=500, ...)}
\]

Arguments

- \texttt{s2Formula} stage 2 regression formula
- \texttt{s1Formula} Stage 1 regression formula
- \texttt{completeData} data frame containing all the variables
- \texttt{s2Treat} character string: name of the stage 2 treatment variable
- \texttt{interact} character vector: names of variables that interact with \texttt{s2Treat}
- \texttt{s2Indicator} character string: names of the stage 2 treatment indicator variable
- \texttt{alpha} level of significance
- \texttt{boot1Num} numbers of bootstrap sampling for first order bootstrap
- \texttt{boot2Num} numbers of bootstrap sampling for second order bootstrap
- \ldots other arguments of the \texttt{lm} function

Value

\(m \) resample size for stage 1 bootstrap

Author(s)

Jingyi Xin <jx2167@columbia.edu>, Bibhas Chakraborty <bc2425@columbia.edu>, and Eric B. Laber <eabler@ncsu.edu>

References

See Also

\texttt{qLearn}
getModel

Examples

```r
set.seed(100)
# Simple Simulation on 1000 subjects
sim<-matrix(0,nrow=1000,ncol=7)
colnames(sim)<-c("H1", "A1", "Y1", "H2", "A2", "Y2", "IS2")
sim<-as.data.frame(sim)

# Randomly generate stage 1 covariates and stage 1 and R treatments
sim[,c("H1", "A1", "A2")]<-2*rbinom(1000*3,1,0.5)-1

# Generate stage 2 covariates based on H1 and T1
expit<-exp(0.5*sim$H1+0.5*sim$A1)/(1+exp(0.5*sim$H1+0.5*sim$A1))
sim$H2<-2*rbinom(1000,1,expit)-1

# Assume stage 1 outcome y1 is 0
# Generate stage 2 outcome y2
sim$Y2<-0.5*sim$A2+0.5*sim$A2*sim$A1-0.5*sim$A1+rnorm(1000)

# Randomly assign 500 subjects to S2
sim[sample(1000,500),"IS2"]<-1
sim[sim$IS2==0,c("A2","Y2")]<-NA

# Define models for both stages
s2Formula<-Y2~H1*A1+A2+A2:H2
s1Formula<-Y1~H1*A1

# Use boot1Num=boot2Num=20 in the example to save computational time
# In real case should use greater number
m<-chooseMDoubleBootstrap(s2Formula,s1Formula,sim,s2Treat="A2",
interact=c("A1","H2"),s2Indicator="IS2",boot1Num=20,boot2Num=20)
```

getModel

Compute the regression coefficients for both stages

Description

getModel computes the regression coefficients for both stages. For stage 1 regression, pseudo-outcomes are constructed based on stage 2 coefficients. Additionally it outputs the standard outputs of the lm function; however, the inference for stage 1 parameters based on these outputs is invalid due to non-regularity. Example could be found under qLearn.

Usage

getModel(s2Formula, s1Formula, completeData, s2Treat, interact, s2Indicator, ...)
Arguments

s2Formula stage 2 regression formula
s1Formula Stage 1 regression formula
completeData data frame containing all the variables
s2Treat character string: name of the stage 2 treatment variable
interact character vector: names of variables that interact with s2_treat
s2Indicator character string: names of the stage 2 treatment indicator variable
... other arguments of the lm function

Value

A list containing:

s2Model stage 2 regression model
s1Model stage 1 regression model
pHat estimated non-regularity level

Author(s)

Jingyi Xin <jx2167@columbia.edu>, Bibhas Chakraborty <bc2425@columbia.edu>, and Eric B. Laber <eblaber@ncsu.edu>

References

See Also

qLearn

Examples

set.seed(100)
 # Simple Simulation on 1000 subjects
 sim <- matrix(0, nrow = 1000, ncol = 7)
 colnames(sim) <- c("H1", "A1", "Y1", "H2", "A2", "Y2", "IS2")
 sim <- as.data.frame(sim)

 # Randomly generate stage 1 covariates and stage 1 and 2 treatments
 sim[, c("H1", "A1", "A2")]<-2*rbinom(1000*3,1,0.5)-1

 # Generate stage 2 covariates based on H1 and T1
 expit <- exp(0.5*sim$H1+0.5*sim$A1)/(1+exp(0.5*sim$H1+0.5*sim$A1))
 sim$H2<-2*rbinom(1000,1, expit)-1

 # Assume stage 1 outcome Y1 is 0
 # Generate stage 2 outcome Y2
Suppose the goal is to find the point estimates and CIs for stage 1 and stage 2 contrasts $C_1^T \theta_1$ and $C_2^T \theta_2$. Given C_1, C_2, regular n-out-of-n bootstrap will be used in stage 2 and different bootstrap scheme can be used in stage 1 analysis by assigning different value to `s1method`. "Fixed Xi" will fix the Xi value as `fixedxi` and calculate the corresponding m; "Double Bootstrap" will calculate m using double bootstrap method; and the default "Regular" will skip choosing m and go with a regular bootstrap. Also m can be specified in `s1m` if not using "Fixed Xi" or "Double Bootstrap".

Usage

```r
qLearn(s2Formula, s1Formula, completeData, s2Treat, interact, s2Indicator, s2Contrast, s1Contrast, alpha = 0.05, bootNum = 1000, s1Method = "Regular", fixedXi, doubleBoot1Num = 500, doubleBoot2Num = 500, s1M,...)
```

Arguments

- `s2Formula`: stage 2 regression formula
- `s1Formula`: Stage 1 regression formula
- `completeData`: data frame containing all the variables
- `s2Treat`: character string: name of the stage 2 treatment variable
- `interact`: character vector: names of variables that interact with `s2Treat`
- `s2Indicator`: character string: names of the stage 2 treatment indicator variable
- `s2Contrast`: contrast for the stage 2 coefficients
- `s1Contrast`: contrast for the stage 1 coefficients
- `alpha`: level of significance
bootNum numbers of bootstrap sampling in constructing CIs
s1Method character string: method to choose stage 1 bootstrap sample size, m; "Double Bootstrap" will calculate m using double bootstrap method; "Fixed Xi" will fix the Xi value and calculate the corresponding m; "Regular" will use a regular n-out-of-n bootstrap for stage 1.
fixedXi fixed xi value if s1Method="Fixed Xi"
doubleBoot1Num numbers of bootstrap sampling for first order bootstrap if s1Method="Double Bootstrap"
doubleBoot2Num numbers of bootstrap sampling for second order bootstrap if s1Method="Double Bootstrap"
s1M specify m if necessary
... other arguments of the lm function

Value
A list containing:
s1Coefficients stage 1 regression coefficients
s2Coefficients stage 2 regression coefficients
s1Inference stage 1 coefficients confidence interval based on stage1 contrast
s2Inference stage 2 coefficients confidence interval based on stage2 contrast
s1Size stage 1 bootstrap sample size

Author(s)
Jingyi Xin <jx2167@columbia.edu>, Bibhas Chakraborty <bc2425@columbia.edu>, and Eric B. Laber <eblaber@ncsu.edu>

References

See Also
getModel chooseMDoubleBootstrap

Examples
set.seed(100)
Simple Simulation on 1000 subjects
sim<-matrix(0,nrow=1000,ncol=7)
colnames(sim)<-c("H1","A1","Y1","H2","A2","Y2","IS2")
sim<-as.data.frame(sim)
Randomly generate stage 1 covariates and stage 1 and 2 treatments
sim[,c("H1","A1","A2")]<-2*rbinom(1000,3,1,0.5)-1

Generate stage 2 covariates based on H1 and T1
expi<-exp(0.5*sim$H1+0.5*sim$A1)/(1+exp(0.5*sim$H1+0.5*sim$A1))
sim$H2<-2*rbinom(1000,1,expi)-1

Assume stage 1 outcome Y1 is 0
Generate stage 2 outcome Y2
sim$Y2<-0.5*sim$A2+0.5*sim$A2*sim$A1-0.5*sim$A1+rnorm(1000)

Randomly assign 500 subjects to S2
sim[sample(1000,500),"IS2"]<-1
sim[sim$IS2==0,c("A2","Y2")]<-NA

Define models for both stages
s2Formula<-Y2~H1+A1+A2+A2:H2
s1Formula<-Y1~H1+A1

Fixed Xi as 0.05
qLearn(s2Formula,s1Formula,sim,s2Treat="A2",interact=c("A1","H2"),s2Indicator="IS2",s1Method="Fixed Xi",fixedXi=0.05,bootNum=100)
Index

*Topic \textasciitilde kwd1
 chooseMDoubleBootstrap, 1
 getModel, 3
 qLearn, 5

*Topic \textasciitilde kwd2
 chooseMDoubleBootstrap, 1
 getModel, 3
 qLearn, 5

chooseMDoubleBootstrap, 1, 6

getModel, 3, 6

qLearn, 2–4, 5