Package ‘quadrupen’
April 30, 2018

Type Package
Title Sparsity by Worst-Case Quadratic Penalties
Version 0.2-6
Date 2018-04-30
Description Fits classical sparse regression models with
efficient active set algorithms by solving quadratic problems. Also
provides a few methods for model selection purpose (cross-validation,
stability selection).
License GPL (>= 3)
Depends Rcpp, ggplot2, Matrix
Imports reshape2, methods, scales, grid, parallel
Suggests testthat
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Author Julien Chiquet [aut, cre]
Maintainer Julien Chiquet <julien.chiquet@inra.fr>
RoxygenNote 6.0.1
Repository CRAN
Date/Publication 2018-04-30 13:22:16 UTC

R topics documented:

 quadrupen-package .. 2
 bounded.reg ... 4
 crossval ... 7
 cvpen-class ... 9
 elastic.net ... 9
 plot,cvpen-method ... 12
 plot,quadrupen-method 13
 plot,stability.path-method 15
 quadrupen-class .. 16
Description

This package is designed to fit accurately several popular penalized linear regression models using the algorithm proposed in Grandvalet, Chiquet and Ambroise (submitted) by solving quadratic problems with increasing size.

Features

At the moment, two \texttt{R} fitting functions are available:

1. the \texttt{elastic.net} function, which solves a family of linear regression problems penalized by a mixture of ℓ_1 and ℓ_2 norms. It notably includes the LASSO (Tibshirani, 1996), the adaptive-LASSO (Zou, 2006), the Elastic-net (Zou and Hastie, 2006) or the Structured Elastic-net (Slawski et al., 2010). See examples as well as the available \texttt{demo(quad_enet)}.

2. the \texttt{bounded.reg} function, which fits a linear model penalized by a mixture of ℓ_∞ and ℓ_2 norms. It owns the same versatility as the \texttt{elastic.net} function regarding the ℓ_2 norm, yet the ℓ_1-norm is replaced by the infinity norm. Check \texttt{demo(quad_breg)} and examples.

The problem commonly solved for these two functions writes

$$\min_{\beta} \frac{1}{2} (y - X\beta)^T (y - X\beta) + \lambda_1 \|D\beta\|_q + \frac{\lambda_2}{2} \beta^T S\beta,$$

where $q = 1$ for \texttt{elastic.net} and $q = \infty$ for \texttt{bounded.reg}. The diagonal matrix D allows different weights for the first part of the penalty. The structuring matrix S can be used to introduce some prior information regarding the predictors. It is provided via a positive semidefinite matrix.

The \texttt{S4} objects produced by the fitting procedures own the classical methods for linear model in \texttt{R}, as well as methods for plotting, (double) cross-validation and for the stability selection procedure of Meinshausen and Buhlmann (2010).

All the examples of this documentation have been included to the package source, in the 'examples' directory. Some (too few!) routine testing scripts using the \texttt{testthat} package are also present in the 'tests' directory, where we check basic functionalities of the code, especially the reproducibility of the Lasso/Elastic-net solution path with the \texttt{lars}, \texttt{elasticnet} and \texttt{glmnet} packages. We also check the handling of runtime errors or unstabilities.
Algorithm

The general strategy of the algorithm relies on maintaining an active set of variables, starting from a vector of zeros. The underlying optimization problem is solved only on the activated variables, thus handling with small smooth problems with increasing size. Hence, by considering a decreasing grid of values for the penalty λ_1 and fixing λ_2, we may explore the whole path of solutions at a reasonable numerical cost, providing that λ_1 does not end up too small.

For the ℓ_1-based methods (available in the elastic.net function), the size of the underlying problems solved is related to the number of nonzero coefficients in the vector of parameters. With the ℓ_∞-norm, (available in the boundary.reg function), we do not produce sparse estimator. Nevertheless, the size of the systems solved along the path deals with the number of unbounded variables for the current penalty level, which is quite smaller than the number of predictors for a reasonable λ_1. The same kind of proposal was made in Zhao, Rocha and Yu (2009).

Underlying optimization is performed by direct resolution of quadratic sub problems, which is the main purpose of this package. This strategy is thoroughly exposed in Grandvalet, Chiquet and Ambroise (submitted). Still, we also implemented the popular and versatile proximal (FISTA) approaches for routine checks and numerical comparisons. A coordinate descent approach is also included, yet only for the elastic.net fitting procedure.

The default setting uses the quadratic approach that gives its name to the package. It has been optimized to be the method of choice for small and medium scale problems, and produce very accurate solutions. However, the first order methods (coordinate descent and FISTA) can be interesting in situations where the problem is close to singular, in which case the Cholesky decomposition used in the quadratic solver can be computationally unstable. Though it is extremely unlikely for elastic.net – and if so, we encourage the user to send us back any report of such an event --, this happens at times with bounded.reg. Regarding this issue, we let the possibility for the user to run the optimization of the bounded.reg criterion in a (hopefully) ’bulletproof’ mode: using mainly the fast and accurate quadratic approach, it switches to the slower but more robust proximal resolution when unstability is detected.

Technical remarks

Most of the numerical work is done in C++, relying on the RcppArmadillo package. We also provide a (double) cross-validation procedure and functions for stability selection, both using the multi-core capability of the computer, through the parallel package. This feature is not available for Windows user, though. Finally, note that the plot methods enjoy some (still very few) of the capabilities of the ggplot2 package.

We hope to enrich quadrupen with other popular fitting procedures and develop other statistical tools, particularly towards bootstrapping and model selection purpose. Sparse matrix encoding is partially supported at the moment, and will hopefully be thoroughly available in the future, thanks to upcoming updates of the great RcppArmadillo package.

Author(s)

Julien Chiquet <julien.chiquet@genopole.cnrs.com>

References

• Nicolas Meinshausen and Peter Buhlmann. Stability Selection, JRSS(B), 2010.
• Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net, JRSS(B), 2006.
• Robert Tibshirani. Regression Shrinkage and Selection via the Lasso, JRSS(B), 1996.

bounded.reg Fit a linear model with infinity-norm plus ridge-like regularization

Description

Adjust a linear model penalized by a mixture of a (possibly weighted) \(\ell_\infty \)-norm (bounding the magnitude of the parameters) and a (possibly structured) \(\ell_2 \)-norm (ridge-like). The solution path is computed at a grid of values for the infinity-penalty, fixing the amount of \(\ell_2 \) regularization. See details for the criterion optimized.

Usage

\[
\text{bounded.reg}(x, y, \text{lambda1} = \text{NULL}, \text{lambda2} = 0.01, \text{penscale} = \text{rep(1, p)}, \\
\text{struct} = \text{NULL}, \text{intercept} = \text{TRUE}, \text{normalize} = \text{TRUE}, \text{naive} = \text{FALSE}, \\
\text{nlambda1} = \text{ifelse(is.null(lambda1), 100, length(lambda1))}, \\
\text{min.ratio} = \text{ifelse(n <= p, 0.01, 0.001)}, \text{max.feat} = \text{ifelse(lambda2 < 0.01,} \\
\text{min(n, p), min(4 * n, p))}, \text{control} = \text{list()}, \text{checkargs} = \text{TRUE})
\]

Arguments

- \(x \) matrix of features, possibly sparsely encoded (experimental). Do NOT include intercept. When normalized os TRUE, coefficients will then be rescaled to the original scale.
- \(y \) response vector.
- \(\text{lambda1} \) sequence of decreasing \(\ell_\infty \) penalty levels. If NULL (the default), a vector is generated with nlambda1 entries, starting from a guessed level lambda1.max where only the intercept is included, then shrunken to min.ratio*lambda1.max.
- \(\text{lambda2} \) real scalar; tunes the \(\ell_2 \)-penalty in the bounded regression. Default is 0.01. Set to 0 to regularize only by the infinity norm (be careful regarding numerical stability in that case, particularly in the high dimensional setting).
- \(\text{penscale} \) vector with real positive values that weight the infinity norm of each feature. Default set all weights to 1. See details below.
- \(\text{struct} \) matrix structuring the coefficients. Must be at least positive semidefinite (this is checked internally if the checkarg argument is TRUE). The default uses the identity matrix. See details below.
bounded.reg

- **intercept** logical; indicates if an intercept should be included in the model. Default is TRUE.

- **normalize** logical; indicates if variables should be normalized to have unit L2 norm before fitting. Default is TRUE.

- **naive** logical; Compute either 'naive' of 'classic' bounded regression: mimicking the Elastic-net, the vector of parameters is rescaled by a coefficient \((1+\lambda_2)\) when naive equals FALSE. No rescaling otherwise. Default is FALSE.

- **nlambda1** integer that indicates the number of values to put in the \(\lambda_1\) vector. Ignored if \(\lambda_1\) is provided.

- **min.ratio** minimal value of infinity-part of the penalty that will be tried, as a fraction of the maximal \(\lambda_1\) value. A too small value might lead to unstability at the end of the solution path corresponding to small \(\lambda_1\). The default value tries to avoid this, adapting to the \(n < p\) context. Ignored if \(\lambda_1\) is provided.

- **max.feat** integer; limits the number of features ever to enter the model: in our implementation of the bounded regression, it corresponds to the variables which have left the boundary along the path. The algorithm stops if this number is exceeded and \(\lambda_1\) is cut at the corresponding level. Default is \(\min(nrow(x), ncol(x))\) for small \(\lambda_1\) \((<0.01)\) and \(\min(4*nrow(x), ncol(x))\) otherwise. Use with care, as it considerably changes the computation time.

- **control** list of argument controlling low level options of the algorithm –use with care and at your own risk–:
 - **verbose** integer; activate verbose mode –this one is not too much risky!– set to 0 for no output; 1 for warnings only, and 2 for tracing the whole progression. Default is 1. Automatically set to 0 when the method is embedded within cross-validation or stability selection.
 - **timer** logical; use to record the timing of the algorithm. Default is FALSE.
 - **max.iter** the maximal number of iteration used to solve the problem for a given value of \(\lambda_1\). Default is 500.
 - **method** a string for the underlying solver used. Either "quadra" or "fista" are available for bounded regression. Default is "quadra".
 - **threshold** a threshold for convergence. The algorithm stops when the optimality conditions are fulfill up to this threshold. Default is \(1e^{-7}\) for "quadra" and \(1e^{-2}\) for "fista".
 - **bulletproof** logical; indicates if the bulletproof mode should be used while running the "quadra" method. Default is TRUE. See details below.

- **checkargs** logical; should arguments be checked to (hopefully) avoid internal crashes? Default is TRUE. Automatically set to FALSE when calls are made from cross-validation or stability selection procedures.

Value

an object with class quadrupen, see the documentation page quadrupen for details.
Note

The optimized criterion is

$$\hat{\beta}_{\lambda_1, \lambda_2} = \arg\min_{\beta} \frac{1}{2}(y - X\beta)^T(y - X\beta) + \lambda_1 \|D\beta\|_\infty + \frac{\lambda_2}{2} \beta^T S \beta,$$

where D is a diagonal matrix, whose diagonal terms are provided as a vector by the penscale argument. The ℓ_2 structuring matrix S is provided via the struct argument, a positive semidefinite matrix (possibly of class Matrix).

Note that the quadratic algorithm for the bounded regression may become unstable along the path because of singularity of the underlying problem, e.g. when there are too much correlation or when the size of the problem is close to or smaller than the sample size. In such cases, it might be a good idea to switch to the proximal solver, slower yet more robust. This is the strategy adopted by the 'bulletproof' mode, that will send a warning while switching the method to 'fista' and keep on optimising on the remainder of the path. When bulletproof is set to FALSE, the algorithm stops at an early stage of the path of solutions. Hence, users should be careful when manipulating the resulting 'quadrupen' object, as it will not have the size expected regarding the dimension of the lambda1 argument.

Singularity of the system can also be avoided with a larger ℓ_2-regularization, via lambda2, or a "not-too-small" ℓ_∞ regularization, via a larger 'min.ratio' argument.

See Also

See also quadrupen, plot, quadrupen-method and crossval.

Examples

```r
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^c(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Swv <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Swv,Soo,Swv,Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

## Infinity norm without/with an additional l2 regularization term
## and with structuring prior
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- "relevant"
plot(bounded.reg(x,y,lambda2=0, label=labels)) ## a mess
plot(bounded.reg(x,y,lambda2=10, label=labels)) ## good guys are at the boundaries
```
crossval

Cross-validation function for quadrupen fitting methods.

Description

Function that computes K-fold (double) cross-validated error of a quadrupen fit. If no \(\lambda_2 \) is provided, simple cross validation on the \(\lambda_1 \) parameter is performed. If a vector \(\lambda_2 \) is passed as an argument, double cross-validation is performed.

Usage

```r
crossval(x, y, penalty = c("elastic.net", "bounded.reg"), K = 10,
        folds = split(sample(1:nrow(x)), rep(1:K, length = nrow(x))),
        lambda2 = 0.01, verbose = TRUE, mc.cores = detectCores(), ...)
```

Arguments

- **x**: matrix of features, possibly sparsely encoded (experimental). Do NOT include intercept.
- **y**: response vector.
- **penalty**: a string for the fitting procedure used for cross-validation. Either "elastic.net" or "bounded.reg", at the moment. Default is "elastic.net".
- **K**: integer indicating the number of folds. Default is 10.
- **folds**: list of K vectors that describes the folds to use for the cross-validation. By default, the folds are randomly sampled with the specified K. The same folds are used for each values of \(\lambda_2 \).
- **lambda2**: tunes the \(\ell_2 \)-penalty (ridge-like) of the fit. If none is provided, the default scalar value of the corresponding fitting method is used and a simple CV is performed. If a vector of values is given, double cross-validation is performed (both on \(\lambda_1 \) and \(\lambda_2 \), using the same folds for each \(\lambda_2 \)).
- **verbose**: logical; indicates if the progression (the current lambda2) should be displayed. Default is TRUE.
- **mc.cores**: the number of cores to use. The default uses all the cores available.
- **...**: additional parameters to overwrite the defaults of the fitting procedure identified by the 'penalty' argument. See the corresponding documentation (elastic.net or bounded.reg).

Value

An object of class "cvpen" for which a plot method is available.
Note

If the user runs the fitting method with option 'bulletproof' set to FALSE, the algorithm may stop at an early stage of the path. Early stops are handled internally, in order to provide results on the same grid of penalty tuned by λ_1. This is done by means of NA values, so as mean and standard error are consistently evaluated. If, while cross-validating, the procedure experiences too many early stoppings, a warning is sent to the user, in which case you should reconsider the grid of λ_1 used for the cross-validation. If bulletproof is TRUE (the default), there is nothing to worry about, except a possible slow down when any switching to the proximal algorithm is required.

See Also

quadrupen, plot, cvpen-method and cvpen.

Examples

Not run:
Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variable
Sww <- matrix(cor, 10, 10) ## bloc correlation between active variables
Sigma <- bdiag(Soo, Sww, Soo, Sww, Soo) + 0.1
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n), n, 95)) %*% chol(Sigma)
y <- t(x) + x %*% beta + rnorm(n, 0, 10)

Use fewer lambda1 values by overwrting the default parameters
and cross-validate over the sequences lambda1 and lambda2
cv.double <- crossval(x, y, lambda2=10^seq(-2, len=50), nlambda1=50)
Rerun simple cross-validation with the appropriate lambda2
cv.10K <- crossval(x, y, lambda2=slot(cv.double, "lambda2.min"))
Try leave one out also
cv.loo <- crossval(x, y, K=n, lambda2=slot(cv.double, "lambda2.min"))

plot(cv.double)
plot(cv.10K)
plot(cv.loo)

Performance for selection purpose
beta.min.10K <- slot(cv.10K, "beta.min")
beta.min.loo <- slot(cv.loo, "beta.min")
cat("\nFalse positives with the minimal 10-CV choice: ", sum(sign(beta) != sign(beta.min.10K)))
cat("\nFalse positives with the minimal LOO-CV choice: ", sum(sign(beta) != sign(beta.min.loo)))

End(Not run)
cvpen-class

Class "cvpen"

Description

Class of object returned by a cross-validation performed through the crossval method.

Slots

lambda1: vector of λ_1 (ℓ_1 or ℓ_∞ penalty levels) for which each cross-validation has been performed.

lambda2: vector (or scalar) of ℓ_2-penalty levels for which each cross-validation has been performed.

lambda1.min: level of λ_1 that minimizes the error estimated by cross-validation.

lambda1.1se: largest level of λ_1 such as the cross-validated error is within 1 standard error of the minimum.

lambda2.min: level of λ_2 that minimizes the error estimated by cross-validation.

cv.error: a data frame containing the mean cross-validated error and its associated standard error for each values of lambda1 and lambda2.

folds: list of K vectors indicating the folds used for cross-validation.

beta.min: the vector of parameters obtained by fitting the problem on the full data set x and y with lambda1.min and lambda2.min penalties.

beta.1se: the vector of parameters obtained by fitting the problem on the full data set x and y with lambda1.1se and lambda2.min penalties.

The specific plot, cvpen-method method is documented.

See Also

See also plot, cvpen-method and crossval.

elastic.net

Fit a linear model with elastic-net regularization

Description

Adjust a linear model with elastic-net regularization, mixing a (possibly weighted) ℓ_1-norm (LASSO) and a (possibly structured) ℓ_2-norm (ridge-like). The solution path is computed at a grid of values for the ℓ_1-penalty, fixing the amount of ℓ_2 regularization. See details for the criterion optimized.
Usage

```r
elastic.net(x, y, lambda1 = NULL, lambda2 = 0.01, penscale = rep(1, p),
struct = NULL, intercept = TRUE, normalize = TRUE, naive = FALSE,
nlambda1 = ifelse(is.null(lambda1), 100, length(lambda1)),
min.ratio = ifelse(n <= p, 0.01, 1e-04), max.feat = ifelse(lambda2 < 0.01,
min(n, p), min(4 * n, p)), beta0 = NULL, control = list(),
checkargs = TRUE)
```

Arguments

- **x**: matrix of features, possibly sparsely encoded (experimental). Do NOT include intercept. When normalized as `TRUE`, coefficients will then be rescaled to the original scale.
- **y**: response vector.
- **lambda1**: sequence of decreasing ℓ_1-penalty levels. If `NULL` (the default), a vector is generated with `nlambda1` entries, starting from a guessed level `lambda1.max` where only the intercept is included, then shrunken to `min.ratio*lambda1.max`.
- **lambda2**: real scalar; tunes the ℓ_2 penalty in the Elastic-net. Default is 0.01. Set to 0 to recover the Lasso.
- **penscale**: vector with real positive values that weight the ℓ_1-penalty of each feature. Default set all weights to 1.
- **struct**: matrix structuring the coefficients (preferably sparse). Must be at least positive semidefinite (this is checked internally if the `checkarg` argument is `TRUE`). The default uses the identity matrix. See details below.
- **intercept**: logical; indicates if an intercept should be included in the model. Default is `TRUE`.
- **normalize**: logical; indicates if variables should be normalized to have unit L2 norm before fitting. Default is `TRUE`.
- **naive**: logical; Compute either 'naive' of classic elastic-net as defined in Zou and Hastie (2006): the vector of parameters is rescaled by a coefficient $(1+lambda2)$ when `naive` equals `FALSE`. No rescaling otherwise. Default is `FALSE`.
- **nlambda1**: integer that indicates the number of values to put in the `lambda1` vector. Ignored if `lambda1` is provided.
- **min.ratio**: minimal value of ℓ_1-part of the penalty that will be tried, as a fraction of the maximal `lambda1` value. A too small value might lead to unstability at the end of the solution path corresponding to small `lambda1` combined with $\lambda_2 = 0$. The default value tries to avoid this, adapting to the '$n < p'$ context. Ignored if `lambda1` is provided.
- **max.feat**: integer; limits the number of features ever to enter the model; i.e., non-zero coefficients for the Elastic-net: the algorithm stops if this number is exceeded and `lambda1` is cut at the corresponding level. Default is `min(nrow(x), ncol(x))` for small `lambda2 (<0.01)` and `min(4*nrow(x), ncol(x))` otherwise. Use with care, as it considerably changes the computation time.
- **beta0**: a starting point for the vector of parameter. When `NULL` (the default), will be initialized at zero. May save time in some situation.
control

- **verbose**: integer; activate verbose mode – this one is not too much risky! – set to 0 for no output; 1 for warnings only, and 2 for tracing the whole progression. Default is 1. Automatically set to 0 when the method is embedded within cross-validation or stability selection.
- **timer**: logical; use to record the timing of the algorithm. Default is FALSE.
- **max.iter**: the maximal number of iteration used to solve the problem for a given value of lambda1. Default is 500.
- **method**: a string for the underlying solver used. Either "quadra", "pathwise" or "fista". Default is "quadra".
- **threshold**: a threshold for convergence. The algorithm stops when the optimality conditions are fulfill up to this threshold. Default is 1e-7 for "quadra" and 1e-2 for the first order methods.
- **monitor**: indicates if a monitoring of the convergence should be recorded, by computing a lower bound between the current solution and the optimum: when ‘0’ (the default), no monitoring is provided; when ‘1’, the bound derived in Grandvalet et al. is computed; when ‘>1’, the Fenchel duality gap is computed along the algorithm.
- **checkargs**: logical; should arguments be checked to (hopefully) avoid internal crashes? Default is TRUE. Automatically set to FALSE when calls are made from cross-validation or stability selection procedures.

Value

an object with class quadrupen, see the documentation page quadrupen for details.

Note

The optimized criterion is the following:

$$\hat{\beta}_{\lambda_1, \lambda_1} = \arg\min_{\beta} \frac{1}{2} (y - X\beta)^T (y - X\beta) + \lambda_1 \| D\beta \|_1 + \lambda_2 \beta^T S\beta,$$

where D is a diagonal matrix, whose diagonal terms are provided as a vector by the penscale argument. The ℓ_2 structuring matrix S is provided via the struct argument, a positive semidefinite matrix (possibly of class Matrix).

See Also

See also quadrupen, plot, quadrupen-method and crossval.

Examples

```r
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^2(0:(25-1))) ## Toeplitz correlation for irrelevant variables
```
Sww <- matrix(cor, 10, 10) ## block correlation between active variables
Sigma <- bdiag(Soo, Sww, Soo, Sww, Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n), n, 95) * chol(Sigma))
y <- 10 + x %*% beta + rnorm(n, 0, 10)

labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- "relevant"

Comparing the solution path of the LASSO and the Elastic-net
plot(elastic.net(x, y, lambda2 = 0), label = labels) ## a mess
plot(elastic.net(x, y, lambda2 = 10), label = labels) ## a lot better

plot.cvpen-method

Plot method for cross validated error of a quadrupen model

Description

Produce a plot of the cross validated error of a quadrupen model.

Usage

\[\text{S4method} \{\text{plot}\} \{\text{cvpen}\}(x, y, \log\text{-scale}=\text{TRUE}, \text{reverse}=\text{FALSE}, \text{plot}=\text{TRUE}, \text{main}= \text{"Cross-validation error", }...)\]

Arguments

- **x**: output of a `crossval` run (must be of class `cvpen`).
- **y**: used for S4 compatibility.
- **log.scale**: logical; indicates if a log-scale should be used when xvar="lambda". Ignored for 2D cross-validation plot.
- **reverse**: logical; should the X-axis be reversed when xvar=\lambda? Default is FALSE. Ignored for 2D cross-validation plot.
- **plot**: logical; indicates if the graph should be plotted. Default is TRUE.
- **main**: the main title, with a hopefully appropriate default definition.
- **...**: used for S4 compatibility.

Value

a `ggplot2` object which can be plotted via the `print` method.
Examples

```r
## Not run:
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1), c(25,10,25,10))
cor <- 0.75
Soo <- toeplitz(cor*(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,So0) + 0.1
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(9*n),n,9)) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

## Use fewer lambda values by overwriting the default parameters
## and cross-validate over the sequences lambda1 and lambda2
cv.double <- crossval(x,y, lambda2=10^seq(2,-2,1n=50), nlambd1=50)
## Rerun simple cross-validation with the appropriate lambda2
cv.10K <- crossval(x,y, lambda2=slot(cv.double, "lambda2.min"))
## Try leave one out also
cv.1oo <- crossval(x,y, K=n, lambda2=slot(cv.double, "lambda2.min"))

plot(cv.double)
plot(cv.10K)
plot(cv.1oo)

## Performance for selection purpose
beta.min.10K <- slot(cv.10K, "beta.min")
beta.min.1oo <- slot(cv.1oo, "beta.min")

cat("\nFalse positives with the minimal 10-CV choice: ", sum(sign(beta) != sign(beta.min.10K)))
cat("\nFalse positives with the minimal LOO-CV choice: ", sum(sign(beta) != sign(beta.min.1oo)))

## End(Not run)
```

plot.quadrupen-method
Plot method for a quadrupen object

Description

Produce a plot of the solution path of a quadrupen fit.

Usage

```r
\S4method{plot}{quadrupen}(x, y, xvar = "lambda",
  main = paste(slot(x, "penalty")," path", sep=""),
  log.scale = TRUE, standardize=TRUE, reverse=FALSE,
  labels = NULL, plot = TRUE, ...)
```
plot.quadrupen-method

Arguments

- `x`: output of a fitting procedure of the `quadrupen` package (elastic.net or bounded.reg for the moment). Must be of class quadrupen.
- `y`: used for S4 compatibility.
- `xvar`: variable to plot on the X-axis: either "lambda" (λ_1 penalty level) or "fraction" (ℓ_1-norm of the coefficients). Default is set to "lambda".
- `main`: the main title. Default is set to the model name followed by what is on the Y-axis.
- `log.scale`: logical; indicates if a log-scale should be used when `xvar="lambda"`. Default is TRUE.
- `standardize`: logical; standardize the coefficients before plotting (with the norm of the predictor). Default is TRUE.
- `reverse`: logical; should the X-axis be reversed when `xvar="lambda"`? Default is FALSE.
- `labels`: vector indicating the names associated to the plotted variables. When specified, a legend is drawn in order to identify each variable. Only relevant when the number of predictor is small. Remind that the intercept does not count. Default is NULL.
- `plot`: logical; indicates if the graph should be plotted on call. Default is TRUE.

Value

a `ggplot2` object which can be plotted via the `print` method.

See Also

`quadrupen`.

Examples

```r
## Not run:
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

## Plot the Lasso path
plot(elastic.net(x,y, lambda2=0), main="Lasso solution path")
## Plot the Elastic-net path
plot(enet, main = "Elastic-net solution path")
```
Plot the Elastic-net path (fraction on X-axis, unstandardized coefficient)
plot(elastic.net(x, y, lambda=10), standardize=FALSE, xvar="fraction")

Plot the Bounded regression path (fraction on X-axis)
plot(bounded.reg(x, y, lambda=10), xvar="fraction")

End (Not run)

plot.stability.path-method

Plot method for stability.path.

Description

Produce a plot of the stability path obtained by stability selection.

Usage

```r
plot.stability.path(x, y, xvar = "lambda", annot=TRUE,
                     main = paste("Stability path for ", slot(x, "penalty"), ", " , "regularizer", sep=""),
                     log.scale = TRUE, labels = rep("unknown status", p), plot = TRUE,
                     sel.mode = c("rank", "PFER"), cutoff=0.75, PFER=2, nvar=floor(n/log(p)), ...)
```

Arguments

- `x`: output of a stability run (must be of class stability.path).
- `y`: used for S4 compatibility.
- `xvar`: variable to plot on the X-axis: either "lambda" (first penalty level) or "fraction" (fraction of the penalty level applied tune by λ_1). Default is "lambda".
- `annot`: logical; should annotation be made on the graph regarding controlled PFER (only relevant when `sel.mode` equals 'PFER')? Default is TRUE.
- `main`: main title. If none given, a somewhat appropriate title is automatically generated.
- `log.scale`: logical; indicates if a log-scale should be used when `xvar="lambda"`. Default is TRUE.
- `labels`: an optional vector of labels for each variable in the path (e.g., 'relevant'/'irrelevant'). See examples.
- `plot`: logical; indicates if the graph should be plotted. Default is TRUE. If FALSE, only the `ggplot2` object is sent back.
- `sel.mode`: a character string, either 'rank' or 'PFER'. In the first case, the selection is based on the rank of total probabilities by variables along the path: the first `nvar` variables are selected (see below). In the second case, the PFER control is used as described in Meinshausen and Bühlmann's paper. Default is 'rank'.
- `cutoff`: value of the cutoff probability (only relevant when `sel.mode` equals 'PFER').
PFER value of the per-family error rate to control (only relevant when sel.mode equals 'PFER').

nvar number of variables selected (only relevant when sel.mode equals 'rank'. Default is floor(n/log(p)).

... used for S4 compatibility.

Value

a list with a `ggplot2` object which can be plotted via the `print` method, and a vector of selected variables corresponding to method of choice ('rank' or 'PFER')

Examples

```r
## Not run:
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
Soo <- matrix(0.75,25,25) # bloc correlation between zero variables
Sww <- matrix(0.75,10,10) # bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.2
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(n*n),n,95)) #*% chol(Sigma)
y <- 10 + x #*% beta + rnorm(n,0,10)

## Build a vector of label for true nonzeros
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- c("relevant")
labels <- factor(labels, ordered=TRUE, levels=c("relevant","irrelevant"))

## Call to stability selection function, 200 subsampling
stab <- stability(x,y, subsamples=200, lambda2=1, min.ratio=1e-2)

## Build the plot an recover the selected variable
plot(stab, labels=labels)
plot(stab, xvar="fraction", labels=labels, sel.mode="PFER", cutoff=0.75, PFER=2)

## End(Not run)
```

quadrupen-class Class "quadrupen"

Description

Class of object returned by any fitting function of the quadrupen package (elastic.net or bounded.reg).
Slots

coefficients: Matrix (class "dgCMatrix") of coefficients with respect to the original input. The number of rows corresponds the length of lambda1.

active.set: Matrix (class "dgCMatrix", generally sparse) indicating the 'active' variables, in the sense that they activate the constraints. For the elastic.net, it corresponds to the nonzero variables; for the bounded.reg function, it is the set of variables reaching the boundary along the path of solutions.

intercept: logical; indicates if an intercept has been included to the model.

mu: A vector (class "numeric") containing the successive values of the (unpenalized) intercept. Equals to zero if intercept has been set to FALSE.

meanx: Vector (class "numeric") containing the column means of the predictor matrix.

normx: Vector (class "numeric") containing the square root of the sum of squares of each column of the design matrix.

penscale: Vector "numeric" with real positive values that have been used to weight the penalty tuned by \(\lambda_1 \).

penalty: Object of class "character" indicating the method used ("elastic-net" or "bounded regression").

naive: logical; was the naive mode on?

lambda1: Vector (class "numeric") of penalty levels (either \(\ell_1 \) or \(\ell_\infty \)) for which the model has eventually been fitted.

lambda2: Scalar (class "numeric") for the amount of \(\ell_2 \) (ridge-like) penalty.

struct: Object of class "Matrix" used to structure the coefficients in the \(\ell_2 \) penalty.

control: Object of class "list" with low level options used for optimization.

monitoring: List (class "list") which contains various indicators dealing with the optimization process.

residuals: Matrix of residuals, each column corresponding to a value of lambda1.

r.squared: Vector (class "numeric") given the coefficient of determination as a function of lambda1.

fitted: Matrix of fitted values, each column corresponding to a value of lambda1.

Methods

This class comes with the usual predict(object, newx, ...), fitted(object, ...), residuals(object, ...), print(object, ...), show(object) and deviance(object, ...) generic (undocumented) methods.

A specific plotting method is available and documented (plot, quadrupen-method).

See Also

See also plot, quadrupen-method.
Stability selection for a quadrupen fit.

Description

Compute the stability path of a (possibly randomized) fitting procedure as introduced by Meinshausen and Buhlmann (2010).

Usage

```r
stability(x, y, penalty = c("elastic.net", "bounded.reg"), subsamples = 100,
           sample.size = floor(n/2), randomize = TRUE, weakness = 0.5,
           verbose = TRUE, folds = replicate(subsamples, sample(1:nrow(x),
           sample.size), simplify = FALSE), mc.cores = detectCores(), ...)
```

Arguments

- `x`: matrix of features, possibly sparsely encoded (experimental). Do NOT include intercept.
- `y`: response vector.
- `penalty`: a string for the fitting procedure used for cross-validation. Either `elastic.net` or "bounded.reg".
- `subsamples`: integer indicating the number of subsamplings used to estimate the selection probabilities. Default is 100.
- `sample.size`: integer indicating the size of each subsamples. Default is `floor(n/2)`.
- `randomize`: Should a randomized version of the fitting procedure by used? Default is `TRUE`. See details below.
- `weakness`: Coefficient used for randomizing. Default is 0.5. Ignored when `randomized` is `FALSE`. See details below.
- `verbose`: logical; indicates if the progression should be displayed. Default is `TRUE`.
- `folds`: list with subsamples entries with vectors describing the folds to use for the stability procedure. By default, the folds are randomly sampled with the specified subsamples argument.
- `mc.cores`: the number of cores to use. The default uses all the cores available.
- `...`: additional parameters to overwrite the defaults of the fitting procedure. See the corresponding documentation (`elastic.net` or `bounded.reg`)

Value

An object of class `stability.path`.

`stability`
Note

When randomized = TRUE, the penscale argument that weights the penalty tuned by \(\lambda_1 \) is perturbed (divided) for each subsample by a random variable uniformly distributed on \([\alpha, 1]\), where \(\alpha \) is the weakness parameter.

If the user runs the fitting method with option 'bulletproof' set to FALSE, the algorithm may stop at an early stage of the path. Early stops of the underlying fitting function are handled internally, in the following way: we chose to simply skip the results associated with such runs, in order not to bias the stability selection procedure. If it occurs too often, a warning is sent to the user, in which case you should reconsider the grid of \(\lambda_1 \) for stability selection. If bulletproof is TRUE (the default), there is nothing to worry about, except a possible slow down when any switching to the proximal algorithm is required.

References

See Also

stability.path and plot, stability.path-method.

Examples

```r
## Not run:
## Simulating multivariate Gaussian with blockwise correlation
## and piecewise constant vector of parameters
beta <- rep(c(0, 1, 0, -1, 0), c(25, 10, 25, 10, 25))
S0o <- matrix(0.75, 25, 25) ## bloc correlation between zero variables
Sww <- matrix(0.75, 10, 10) ## bloc correlation between active variables
Sigma <- bdiag(S0o, Sww, S0o, Sww, S0o) + 0.2
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n), n, 95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n, 0, 10)

## Build a vector of label for true nonzeros
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- c("relevant")
labels <- factor(labels, ordered=TRUE, levels=c("relevant", "irrelevant"))

## Call to stability selection function, 200 subsampling
stab <- stability(x, y, subsamples=200, lambda2=1, min.ratio=1e-2)
## Recover the selected variables for a given cutoff
## and per-family error rate, without producing any plot
stabpath <- plot(stab, cutoff=0.75, PFR=1, plot=FALSE)

cat("\nFalse positives for the randomized Elastic-net with stability selection: ",
    sum(labels[stabpath$selected] != "relevant"))

## End(Not run)
```
stability.path-class Class "stability.path"

Description

Class of object returned by the stability function, with methods print, show and plot.

Slots

probabilities: a Matrix object containing the estimated probabilities of selection along the path of solutions.
penalty: Object of class "character" indicating the penalizer used.
naive: logical indicating whether rescaling of the coefficients has been performed regarding the ℓ_2-penalty.
lambda1: a vector with the levels of the first penalty.
lambda2: a scalar with the ℓ_2-penalty level.
folds: a list that contains the folds used for each subsample.

See Also

See also plot, stability.path-method, and stability.
Index

*Topic class
 cvpen-class, 9
 quadrupen-class, 16
 stability.path-class, 20

*Topic models,
 bounded.reg, 4
 crossval, 7
 elastic.net, 9
 stability, 18

*Topic regression
 bounded.reg, 4
 crossval, 7
 elastic.net, 9
 stability, 18

bounded.reg, 2, 3, 4, 7, 14, 17, 18

crossval, 6, 7, 9, 11
cvpens, 8
cvpens-class, 9

deviance, quadrupen-method
 (quadrupen-class), 16

elastic.net, 2, 3, 7, 9, 14, 17, 18

fitted, quadrupen-method
 (quadrupen-class), 16

plot, cvpen-method, 12
plot, quadrupen-method, 13
plot, stability.path-method, 15
predict, quadrupen-method
 (quadrupen-class), 16
print, quadrupen-method
 (quadrupen-class), 16
print, stability.path-method
 (stability.path-class), 20

quadrupen, 5, 6, 8, 11, 14
quadrupen (quadrupen-package), 2

quadrupen-class, 16
quadrupen-package, 2

residuals, quadrupen-method
 (quadrupen-class), 16

show, quadrupen-method
 (quadrupen-class), 16
show, stability.path-method
 (stability.path-class), 20
stability, 18, 20
stability.path, 18, 19
stability.path-class, 20