Package ‘rforensicbatwing’

March 21, 2018

Type Package
Title BATWING for Calculating Forensic Trace-Suspect Match Probabilities
Version 1.3.1
Date 2018-03-21
Author Mikkel Meyer Andersen and Ian J. Wilson
Maintainer Mikkel Meyer Andersen <mikl@math.aau.dk>
Description A modified version (with great help from Ian J. Wilson) of Ian J. Wilson's program BATWING for calculating forensic trace-suspect match probabilities.
License GPL
LinkingTo Rcpp
Imports Rcpp (>= 0.12.16)
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-03-21 22:21:24 UTC

R topics documented:

rforensicbatwing-package .. 1
Inference from STR data using coalescent theory 2

Index 6

rforensicbatwing-package

BATWING for calculating forensic trace-suspect match probabilities

Description

A modified version (with great help from Ian J. Wilson) of Ian J. Wilson’s program BATWING for calculating forensic trace-suspect match probabilities.
Inference from STR data using coalescent theory

Details

Please see the documentation of `coalmatchprob` for an usage example.

Author(s)

Mikkel Meyer Andersen and Ian J. Wilson
Maintainer: Mikkel Meyer Andersen <mikl@math.aau.dk>

References

The BATWING manual

See Also

`batwing`, `coalmatchprob`

Description

Estimates the trace-suspect match probability for a lineage haplotype of STR markers using coalescent theory.

Usage

coopmatchprob(database, haplotype,
 reps = 10, burnin = 0, treebetN = 10, Nbetsamp = 10,
 muprior = "constant(0.003)", Nprior = "lognormal(9, 1)", alphaprior = NULL,
 progress = TRUE, trace = FALSE)

batwing(database,
 reps = 10, burnin = 0, treebetN = 10, Nbetsamp = 10,
 muprior = "constant(0.003)", Nprior = "lognormal(9, 1)", alphaprior = NULL,
 progress = TRUE, trace = FALSE)
S3 method for class 'batwing'
print(x, ...)
S3 method for class 'forensicbatwing'
plot(x, ...)
Inference from STR data using coalescent theory

Arguments

- **database**: Reference STR database.
- **haplotype**: Haplotype of the suspect.
- **reps**: Number of output lines.
- **burnin**: Number of reps to take before starting recording data.
- **treebetN**: The number of times that changes to the genealogical tree are attempted before any changes to the hyperparameters are attempted. Thus BATWING outputs are separated by treebetN * Nbetsamp attempted tree updates.
- **Nbetsamp**: The number of times that changes to hyperparameters are attempted between outputs.
- **muprior**: Either a single prior distribution for the mutation rate or a vector of prior distributions (one for each locus). If only one prior is supplied, the same mutation rate is used for all loci. If one prior per locus is supplied, each locus has its own chain of mutation rates.
- **nprior**: Prior distribution of the effective population size.
- **alphaprior**: If NULL, there is no growth (constant population size). If a prior distribution is specified, this gives exponential growth at rate alpha at all times.
- **progress**: Whether to print progress or not.
- **trace**: Whether to print extra trace information or not.
- **x**: A batwing or forensicbatwing object.
- **...**: Not used

Details

Note that the batwing function runs a standard coalescent inference as described in I.J. Wilson (1999, 2003).

Note that, in contrast to the original BATWING program, migration is not supported. Neither is BATWING’s sizemodel=2 (constant-sized population up to a time from where there is exponential growth).

Valid prior distributions:

- **uniform(v1, v2)** uniform on the interval (v1, v2).
- **constant(v1)** constant value v1.
- **normal(v1, v2)** Normal distribution with mean = v1 and sd = v2.
- **lognormal(v1, v2)** If X has this distribution then log(X) has the normal(v1, v2) distribution.
- **gamma(v1, v2)** Gamma distribution with shape v1 and rate v2 giving mode = (v1-1)/v2 and mean = v1/v2.
- **beta(v1, v2)** Beta distribution with shape parameters v1 and v2 giving mean = v1/(v1 + v2) and the variance is (v1*v2)/((v1 + v2)^2 * (v1 + v2 + 1))
Inference from STR data using coalescent theory

Value

coalmatchprob An object of type forensicbatwing and batwing (for now, forensicbatwing just means that there is a p column in the result matrix).

batwing An object of type batwing

batwing-object parameters The parameters used
priors The priors used
result Matrix with information about the iterations (forensic match probability (if coalmatchprob), current value of N, mu’s, tree height T, total branch length L, population growth alpha, and loglikelihoods for times, mutations and priors).

proposals_tree The number of new tree proposals.
accepted_tree The number of new trees accepted.
proposals_hyperparameters The number of new hyperparameters proposals.
accepted_hyperparameters The number of new hyperparameters accepted.

Author(s)

Mikkel Meyer Andersen and Ian Wilson

Source

BATWING at Ian Wilson’s homepage

References

The BATWING manual

Examples

```r
## not run:
database <- matrix(c(1L 1L RL RL 1L SIL SL RI
haplotype <- c(1L 1I
# coalmatchprob:
colmp <- coalmatchprob(database, haplotype,
   reps = 1000, burnin = 0, treebetn = 10, Nbetsamp = 10,
muprior = c("normal(0.003, 0.001)", "normal(0.005, 0.001)"),
Nprior = "lognormal(9, 1)",
alphaprior = NULL,
   progress = TRUE, trace = FALSE)
```

Inference from STR data using coalescent theory

```r
coalmp

murange <- range(c(coalmp$result$mu1L, coalmp$result$mu2))

par(mfrow = c(2, 2))
plot(coalmp)
plot(coalmp$result$N, type = "l", ylab = "N")

plot(coalmp$result$mu1L, type = "l", col = "red", ylim = murange, ylab = "mu")
points(coalmp$result$mu2, type = "l", col = "blue")

hist(coalmp$result$mu1L, col = "#FF000066",
     xlim = murange, ylim = c(0, 250), main = NULL, xlab = "mu")
hist(coalmp$result$mu2, add = TRUE, col = "#0000FF66")
par(mfrow = c(1, 1))

# batwing:
bw <- batwing(database,
   reps = 10000, burnin = 1000, treebetN = 10, Nbetsamp = 10,
   muprior = "normal(0.003, 0.001)",
   Nprior = "lognormal(9, 1)",
   alphaprior = NULL,
   progress = TRUE, trace = FALSE)
bw

## End(Not run)
```
Index

*Topic coalescence
Inference from STR data using coalescent theory, 2

*Topic coalescent
Inference from STR data using coalescent theory, 2

*Topic package
rforensicbatwing-package, 1

batwing, 2
batwing (Inference from STR data using coalescent theory), 2

coalmatchprob, 2
coalmatchprob (Inference from STR data using coalescent theory), 2

Inference from STR data using coalescent theory, 2

plot.forensicbatwing (Inference from STR data using coalescent theory), 2
print.batwing (Inference from STR data using coalescent theory), 2

rforensicbatwing
(rforensicbatwing-package), 1
rforensicbatwing-package, 1