Package ‘rggobi’

August 31, 2016

Version 2.1.21

Title Interface Between R and ‘GGobi’

Author Duncan Temple Lang <duncan@research.bell-labs.com>,
Debby Swayne <dfs@research.att.com>,
Hadley Wickham <h.wickham@gmail.com>,
Michael Lawrence <michafla@gene.com>

Maintainer Hadley Wickham <h.wickham@gmail.com>

Description A command-line interface to 'GGobi', an interactive and dynamic
graphics package. 'Rggobi' complements the graphical user interface of
'GGobi' providing a way to fluidly transition between analysis and
exploration, as well as automating common tasks.

Depends R (>= 2.5.1)
Suggests reshape, nlme
Imports RGtk2, utils
SystemRequirements GGobi
License BSD_3_clause + file LICENSE
LazyData true

URL http://www.ggobi.org/rggobi

Acknowledgments Di Cook, Nicholas Lewin-Koh, Xuejing Chen.

NeedsCompilation yes
Repository CRAN

Date/Publication 2016-08-31 20:47:19

R topics documented:

"colorscheme<-" ... 3
"edges<-.GGobi" ... 3
"edges<-.GGobiData" .. 4
"edges<-.GGobiDisplay" 5
"excluded<-.GGobiData" 6
"glyph_colour<-.GGobiData" ... 6
"glyph_size<-.GGobiData" .. 7
"glyph_type<-.GGobiData" .. 8
"ids<-.GGobiData" ... 8
"shadowed<-.GGobiData" .. 9
"variables<-.GGobiDisplay" ... 10
"[.GGobi" ... 11
"[.GGobiData" ... 12
"[<-.GGobi" ... 13
.check_versions .. 13
close.GGobi ... 14
colorscheme ... 14
connecting_edges .. 15
dataset.GGobiDisplay .. 15
display.GGobiData .. 16
displays.GGobi .. 17
edges ... 18
excluded.GGobiData ... 18
ggobi.default ... 19
ggobi_count ... 20
ggobi_display_get_tour_projection 21
ggobi_display_save_picture ... 22
ggobi_display_set_tour_projection 22
ggobi_get ... 23
ggobi_longitudinal ... 24
ggobi_version ... 25
glyph_colour.GGobiData ... 25
glyph_size.GGobiData .. 26
glyph_type.GGobiData .. 27
ids.GGobiData .. 28
imode ... 28
names.GGobi ... 29
pmode ... 30
selected.GGobiData .. 30
shadowed.GGobiData ... 31
Storm tracks data ... 32
summary.GGobi .. 33
summary.GGobiData .. 33
variables.GGobiDisplay .. 34

Index ... 35
"colorscheme<-"
Set active colour scheme.

Description

Specify the active color scheme in a GGobi instance or the session options.

Usage

"colorscheme<-(x, value)

Arguments

x GGobi object
value colour scheme to make active

Details

This makes a particular color scheme active within a GGobi instance.

Value

The name of the previously active color scheme.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggobi(mtcars)
colorscheme(g) <- "Set1 8"
colorscheme(g) <- 1

"edges<- .GGobi"
Set edges

Description

Create a new edges dataset and add to GGobi

Usage

S3 replacement method for class 'GGobi'
edges(x) <- value
Arguments

x GGobi dataset
value new edges

Details

@arguments GGobi dataset @arguments new edges

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Description

Set edges for a dataset.

Usage

S3 replacement method for class 'GGobiData'
edges(x) <- value

Arguments

x GGobiData
value matrix, data frame, or graph containing of edges. First column should be from edge, second column to edge.

Details

In GGobi, an edge dataset is a special type of dataset that has two additional (hidden) columns which specification source and destination row names. These rownames are compared to the row names of the dataset in the current plot, and if any match, it is possible to specify this dataset as an edge set to the plotted dataset. When this is done, edges will be drawn between points specified by the edge dataset.

To remove edges, set edges to NULL.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

ggobi_longitudinal for creating edges which simulate time series plots
Examples

```r
c <- cor(t(swiss), use="p", method="s")
cc <- sqrt(2*(1-c))
a <- which(lower.tri(cc), arr.ind=TRUE)
src <- row.names(swiss)[a[,2]]
dest <- row.names(swiss)[a[,1]]
weight <- as.vector(as.dist(cc))

gg <- ggobi(swiss)
gg$cor <- as.data.frame(weight)
edges(gg$cor) <- cbind(src, dest)
edges(gg$cor) <- NULL
```

Description

Set edges for a display

Usage

```r
## S3 replacement method for class 'GGobiDisplay'
edges(x) <- value
```

Arguments

- `x` : GGobiDisplay object
- `value` : GGobiData object that contains edges

Details

This sets the dataset that a GGobiDisplay uses to display edges.

Author(s)

Hadley Wickham <h.wickham@gmail.com>
"excluded<-.GGobiData"

Set excluded status

Description

Set the exclusion status of points.

Usage

```r
## S3 replacement method for class 'GGobiData'
excluded(x) <- value
```

Arguments

- `x`: GGobiData
- `value`: logical vector

Details

If a point is excluded it is not drawn.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

- `excluded`

"glyph_colour<-.GGobiData"

Set glyph colour

Description

Set glyph colour

Usage

```r
## S3 replacement method for class 'GGobiData'
glyph_colour(x) <- value
```

Arguments

- `x`: GGobiData
- `value`: vector of new colours
Set glyph size

Usage

```r
## S3 replacement method for class 'GGobiData'
glyph_size(x) <- value
```

Arguments

- `x` : GGobiData
- `value` : vector of new sizes

Details

Glyph size is an integer between 1 and 6.
"glyph_type<-.GGobiData"

Set glyph type

Description

Set glyph type

Usage

S3 replacement method for class 'GGobiData'
glyph_type(x) <- value

Arguments

- x: GGobiData
- value: vector of new types

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

glyph_type

"ids<-.GGobiData" Set row ids

Description

Set row ids from a GGobiData

Usage

S3 replacement method for class 'GGobiData'
ids(x) <- value

Arguments

- x: GGobiData
- value: new values

Author(s)

Hadley Wickham <h.wickham@gmail.com>
See Also

ids

Description

Set the exclusion status of points.

Usage

S3 replacement method for class 'GGobiData'
shadowed(x) <- value

Arguments

x GGobiData
value logical vector

Details

If a point is shadowed it is drawn in a dark gray colour, behind all non-shadowed points. It cannot be selected.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

shadowed
Set display variables

Description

Set display variables with a list of x, y, and z component variable indices.

Usage

```r
## S3 replacement method for class 'GGobiDisplay'
variables(x) <- value
```

Arguments

- `x`: GGobiDisplay object
- `value`: list with X, Y and Z components listing the variable indices to display, either as numeric position or character variable name

Details

There are three types of variables in GGobi displays: x, y, z, which correspond to the labels on the toggle buttons in GGobi. Most plots have a constrained set of possible options. For example, in tours you can only set x variables, and you must have at least three. Or in the rotation plot, you need exactly one x, y, and z variable.

Currently, there is no checking done to ensure that you are sending a sensible set of variables for the given display type. Generally, any invalid choices will be silently ignored.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(mtcars)
d <- display(g[1], "Parallel Coordinates Display")
variables(d)
variables(d) <- list(X=1:8)
variables(d) <- list(X=c("mpg", "cyl"))
variables(d)
```
Description

Conveniently retrieve ggobi dataset.

Usage

```r
## S3 method for class 'GGobi'
x[i, ..., drop=TRUE]
```

Arguments

- `x`: GGobi object
- `i`: name of dataset to retrieve
- `...`: ignored
- `drop`: if TRUE, return vector is possible

Details

It is convenient to be able to refer to and operate on a ggobi dataset as if it were a regular R dataset. This function allows one to get a GGobiData object that represents a particular dataset.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(ChickWeight)
g["cars"] <- mtcars
g[1:2]
g["ChickWeight"]
g["cars"]
g$cars
```
Subsetting for ggobi datasets

Usage

```r
## S3 method for class 'GGobiData'
x[i, j, drop=FALSE]
```

Arguments

- `x`: ggobi dataset
- `i`: rows
- `j`: cols
- `drop`: drop dimensions?

Details

This function allows one to treat a ggobi dataset as if it were a local data.frame. One can extract and assign elements within the dataset. This method works by retrieving the entire dataset into R, and then subsetting with R.

Value

desired subset from data.frame

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(mtcars)
x <- g$mtcars
x[1:5, 1:5]
x[[1]]
x$cyl
```
Description
Add data to ggobi instance.

Usage
S3 replacement method for class 'GGobi'
x[i] <- value

Arguments
- x: ggobi instance
- i: name of data frame
- value: data.frame, or string to path of file to load

Details
This function allows you to add (and eventually) replace GGobiData objects in a GGobi instance.

Author(s)
Hadley Wickham <h.wickham@gmail.com>

Examples
```r
g <- ggobi()
g["a"] <- mtcars
g$b <- mtcars
```

Description
to ensure binary compatibility

Usage
.check_versions()

Author(s)
Hadley Wickham <h.wickham@gmail.com>
close.GGobi Close GGobi instance

Description
Terminates and discards a ggobi instance

Usage
S3 method for class 'GGobi'
close(con, ...)

Arguments
con ggobi object to close
... ignored and for compatability generic function.

Details
This allows the caller to close a ggobi instance and discard the resources it uses. The function closes the display windows and variable panel window associated with this ggobi instance. It also resets the default ggobi instance to be the last one created.

Author(s)
Hadley Wickham <h.wickham@gmail.com>

Examples
```r
g1 <- ggobi(mtcars)  
gR <- ggobi(mtcars)  
close(gR)  
close(ggobi_get())
```

colorscheme Get active colour scheme

Description
Get name of the active colour scheme

Usage
colorscheme(x)
connecting_edges

Arguments

x
GGobi object

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggobi(mtcars)
colorscheme(g)

connecting_edges Get connecting edges

Description

Get actual edges from application of edges dataset to target dataset.

Usage

connecting_edges(x, y)

Arguments

x
target ggobi dataset

y
ggobi dataset containing edges

Author(s)

Hadley Wickham <h.wickham@gmail.com>

dataset.GGobiDisplay Get display dataset

Description

Returns a link to the GGobiData (dataset) object associated with this display.

Usage

S3 method for class 'GGobiDisplay'
dataset(x, .gobi=ggobi(x))
Arguments

x GGoBiDisplay object
gobi ggobi reference

Details

See [.GGoBi for more information on

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggoBi(mtcars)
d <- displays(g)[[1]]
dataset(d)

display.GGoBiData Create a new display

Description

Create a new display for the GGoBiData object.

Usage

S3 method for class 'GGoBiData'
display(x, pmode="Scatterplot Display", vars=list(X=names(x)), embed=FALSE, ...)

Arguments

x GGoBiData object
pmode projection mode to use
vars variables to display, see variables.GGoBiDisplay for details
embed If TRUE, returns widget for use with RGtk2
... ignored

Details

This function allows you to create a new display from a GGoBiData object. You will need to specify
the type of display you want ("Scatterplot Display", "Scatterplot Matrix" and "Parallel Coordinates
Display" are the most common), and which variables the plot should be initialised with. Specifying
more than two variables only makes sense for scatterplot matrices and pcps.

Many of the plots used in GGoBi (eg. the tours and densities plots) are special modes of the scatter-
plot display. You will need to create a new scatterplot display, change the projection mode to what
you want, and then set the variables. Hopefully this will be improved in a future version of rggobi.
displays.GGobi

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

ggobi_display_types for a list of display types

Examples

g <- ggobi(mtcars)
display(g[[1]])
display(g[[1]], vars=list(X=4, Y=5))
display(g[[1]], vars=list(X="drat", Y="hp"))
display(g[[1]], "Parallel Coordinates Display")
Not run:
display(g[[1]], "2D Tour")
display(g[[1]], "2x1D Tour", list(X=c(1,2,3), Y=c(4,5,6)))

End(Not run)
display(g[[1]], "Scatterplot Matrix")

Description

Gets list of displays in the specified GGobi instance

Usage

S3 method for class 'GGobi'
displays(x)

Arguments

x GGobi object

Details

A display basically corresponds to a window in GGobi. A display may contain multiple plots within it. For example, the scatterplot matrix contains \(p \times p \) plots.

Use this function to obtain a reference to a display (they are numbered in the order they are created) so you can change display mode, set variables (\texttt{variables<-GGobiDisplay}), or save a static image to disk.

Author(s)

Hadley Wickham <h.wickham@gmail.com>
See Also

display to create displays

Examples

g <- ggobi(mtcars)
displays(g)
display(g[1])
displays(g)

Description

Get edges for a dataset

Usage

edges(x)

Arguments

x ggobi dataset

Value

A matrix of edge pairs

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Description

Get the exclusion status of points.

Usage

S3 method for class 'GGobiData'
excluded(x)
Arguments

x ggobiDataget

Details

If a point is excluded it is not drawn.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

excluded

New ggobi

Description

Creates a new ggobi instance

Usage

Default S3 method:
ggobi(data, args=character(0), mode=character(0), name = deparse(sys.call()[[2]]), ...)

Arguments

data the name of a file containing the data, or a data frame or matrix containing the values
args a character vector of command-line arguments
mode data format GGobi should expect to read the data from, if reading from a file.
name the name to use in GGobi for the dataset, if one is specified
... ignored

Details

This function creates a new instance of GGobi with or without new data. Use this function whenever you want to create a new GGobi independent of the others—they will not share linked plots. If you want to add another dataset to an existing ggobi, please see `<-.GGobi`

There are currently three basic types of functions that you can use with rggobi:

- Data getting and setting: see `[.GGobi`, and `[.GGobiData`
- "Automatic" brushing: see `glyph_colour, glyph_size, glyph_type, shadowed, excluded`, and the associated setter functions.
• Edge modification: see `edges, edges<-, ggobi_longitudinal`

You will generally spend most of your time working with ggobidata, you retrieve using `$.GGobiData, [.GGobiData, or `[.GGobiData`. Most of the time these will operate like normal R datasets while pointing to the data in GGobi so that all changes are kept in sync. If you need to force a ggobiDaataset to be an R data.frame use `as.data.frame`.

Value

A ggobi object

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
ggobi(ggobi_find_file("data", "flea.csv"))
ggobi(ggobi_find_file("data", "flea.xml"))
ggobi(mtcars)
mtcarsg <- ggobi_get()$mtcars
glyph_colour(mtcarsg)
glyph_colour(mtcarsg) <- ifelse(mtcarsg$cyl < 4, 1, 2)
glyph_size(mtcarsg) <- mtcarsg$cyl
```

ggobi_count

Get number of GGobis

Description

Retrieves the number of ggobi instances within this session

Usage

`ggobi_count()`

Details

One or more ggobi instances can be created within an R session so that one can simultaneously look at different datasets or have different views of the same dataset. This function returns the number of ggobis in existence.

The different ggobi instances are maintained as C level structures. This function accesses a variable that stores how many are in existence when the function is invoked.

Author(s)

Hadley Wickham <h.wickham@gmail.com>
Examples

ggobi_count()

Description

Get the tour projection from a GGobi tour.

Usage

ggobi_display_get_tour_projection(gd)

Arguments

gd GGobiDisplay object running tour

Details

This function retrieves the current projection matrix from a paused tour. (The tour must be paused so that R can run commands).

This can be used to record interesting projections of your data for later analysis.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggobi(mtcars)
d <- displays(g)[[1]]
Not run:
 pmode(d) <- "2D Tour"
ggobi_display_get_tour_projection(d)
variables(d) <- list(X=names(mtcars))
ggobi_display_get_tour_projection(d)
MASS::eqscplot(as.matrix(mtcars) %*% ggobi_display_get_tour_projection(d))

End(Not run)
ggobi_display_save_picture

Save picture of plot (and window) to disk

Description
This allows you to make a static copy of a GGobiDisplay.

Usage

```r
ggobi_display_save_picture(display=displays(ggobi_get())[[1]],
path="ggobi_display.png", filetype="png", plot.only = FALSE)
```

Arguments
- `display`: GGobiDisplay to save
- `path`: path to save to
- `filetype`: type of file to save
- `plot.only`: if TRUE, save only plot, otherwise save surrounding GUI elements as well

Details
If you want to make publication quality graphics, you should probably use the DescribeDisplay plugin and package. This will recreate a GGobiDisplay in R, and so can produce high-quality vector (eg. pdf) output. See http://www.ggobi.org/describe-display for more information.

Author(s)
Hadley Wickham <h.wickham@gmail.com>

ggobi_display_set_tour_projection

Set tour projection

Description
Set the tour projection from a GGobi tour.

Usage

```r
ggobi_display_set_tour_projection(gd, value)
```

Arguments
- `gd`: GGobiDisplay object running tour
- `value`: tour projection
ggobi_get

Details

If you know the projection you would like to see in the tour, you can use this function to set it. The example illustrates setting the projection to show the first two principle components.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(mtcars)
d <- displays(g)[[1]]
# Not run:
pmode(d) <- "2D Tour"
variables(d) <- list(X=names(mtcars))
ggobi_display_get_tour_projection(d)
pc <- princomp(as.matrix(mtcars))$loadings[,1:2]
ggobi_display_set_tour_projection(d, pc)
```

ggobi_get

Get GGobi

Description

Returns a ggobi reference

Usage

```r
ggobi_get(id = ggobi_count(), drop=TRUE)
```

Arguments

- `id` numeric vector indicating which ggobi instances to retrieve. Use default if none specified
- `drop` drop if possible?

Details

This allows one to get a list of all the ggobi instances currently in existence in the R session. Also, one can fetch particular instances.

Author(s)

Hadley Wickham <h.wickham@gmail.com>
ggobi_longitudinal

Create longitudinal dataset.

Description

Instantiate new ggobi with a longitudinal data set.

Usage

ggobi_longitudinal(data, time=1:rows, id=rep(1, rows), g = NULL)

Arguments

data data frame

time time variable

id id variable

 g ggobi instance, if you don’t want to create a new one

Details

This function allows you to load longitudinal data in to GGobi and display it as a line plot. This is achieved by creating edges between adjacent time points, for a given id variable.

For best viewing, we recommend that you turn the show points off in the options menu. When brushing, you may also want to use categorical brushing on the id variable, so that the entire series is selected for an observation.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

data(Oxboys, package="nlme")
ggobi_longitudinal(Oxboys, Occasion, Subject)
ggobi_longitudinal(stormtracks, seasday, id)
ggobi_longitudinal(data.frame(x=1:100, y=sin(1:100)))
ggobi_version

Description
GGobi version information

Usage
ggobi_version()

Details
Return an object that describes the version of the ggobi library being used. This allows code to execute conditionally on certain version numbers, etc.

Value
date the release date of the ggobi library
version a vector of 3 integers containing the major, minor and patch-level numbers.
versionstring a string version of the major, minor and patch-level numbers.

Author(s)
Hadley Wickham <h.wickham@gmail.com>

Examples
ggobi_version()

glyph_colour.GGobiData

Description
Get glyph colour

Usage
S3 method for class 'GGobiData'
glyph_colour(x)

Arguments
x GGobiData
Description

Get glyph size

Usage

```r
## S3 method for class 'GGobiData'
glyph_size(x)
```

Arguments

- `x` GGobiData

Details

Glyph size is an integer between 1 and 6.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

- `glyph_size`
glyph_type.GGobiData

Description

Get glyph type.

Usage

```r
## S3 method for class 'GGobiData'
glyph_type(x)
```

Arguments

- `x` GGobiData

Details

Glyph type refers to the shape of the glyph, one of:

- a filled circle
- an empty circle
- a filled square
- an empty square
- a single pixel
- a plus sign
- a cross

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

- `glyph_type<-`
Description

Retrive row ids from a GGobiData

Usage

```r
## S3 method for class 'GGobiData'
ids(x)
```

Arguments

- `x` : GGobiData

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

`ids<-`

imode

<table>
<thead>
<tr>
<th>Description</th>
<th>Interaction mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions to get and set interaction mode</td>
<td></td>
</tr>
</tbody>
</table>

Usage

```r
imode(x)
```

Arguments

- `x` : GGobiDisplay object

Details

In GGobi, the interaction mode determines the how you interact with a plot: brushing, identify etc. Each projection mode also has a default interaction mode that allows you to select variables and control other parameters of the display.

You can see the list of available interaction modes using the `imodes` function. This accepts either a GGobiDisplay, or the name of the display type.
names.GGobi

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggobi(mtcars)
d <- displays(g)[[1]]
imode(d)
imodes(d)
imode(d) <- "Brush"

Description

Get dataset names

Usage

S3 method for class 'GGobi'
names(x)

Arguments

x ggobi instance

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

g <- ggobi(mtcars)
names(g)
pmode

Description

Functions to get and set projection mode

Usage

`pmode(x)`

Arguments

- `x` : GGobiDisplay object

Details

In GGobi, the projection mode determines the type of plot that is displayed. For example, a 1D ASH plot, or a 2D tour.

You can see the list of available projection modes using the `pmodes` function. This accepts either a GGobiDisplay, or the name of the display type.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(mtcars)
d <- displays(g)[[1]]
pmode(d)
pmodes(d)
pmode(d) <- "1D Plot"
```


selected.GGobiData

Description

Returns logical vector indicating if each point is under the brush

Usage

```r
## S3 method for class 'GGobiData'
selected(x)
```
shadowed.GGobiData

Arguments

x GGobiData logical vector

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Description

Get the exclusion status of points.

Usage

S3 method for class 'GGobiData'
shadowed(x)

Arguments

x ggobiDataget

Details

If a point is shadowed it is drawn in a dark gray colour, behind all non-shadowed points. It cannot be selected.

Author(s)

Hadley Wickham <h.wickham@gmail.com>

See Also

shadowed<-
Description

The data consist of tropical cyclone tracks through the Atlantic Ocean, Caribbean Sea and Gulf of Mexico from 1995 to 2005. Only “named” storms, those which reached tropical storm status or stronger, are included.

The data originated from the National Hurricane Center’s archive of Tropical Cyclone Reports (http://www.nhc.noaa.gov/pastall.shtml). From the NHC, the reports “contain comprehensive information on each tropical cyclone, including synoptic history, meteorological statistics, casualties and damages, and the post-analysis best track (six-hourly positions and intensities).”

This dataset is taken from the post-analysis best track information, which are presented in tabular form in the Tropical Cyclone Reports and came in a variety of electronic formats (PDF, HTML and Microsoft Word documents). The best track tables were then copied to text files and parsed into the comma-separated format in which they currently reside.

The variables are as follows:

- Name: Storm Name
- Year: Year of report
- Month: Month of report
- Day: Day of report (day of the month)
- Hour: Hour of report (0, 6, 12 or 18 in UTC time)
- Latitude: Latitude of the storm’s center (degrees North)
- Longitude: Longitude of the storm’s center (degrees West)
- Pressure: Air pressure at the storm’s center (millibars)
- Wind: Storm’s maximum sustained wind speed (knots or nautical miles per hour)
- Type: Storm classification (Tropical Depression, Tropical Storm, Hurricane, Extratropical)
- SeasDay: Day of the hurricane season (days since June 1)

The Tropical Cyclone Reports had a variety of storm type designations and there appeared to be no consistent naming convention for cyclones that were not hurricanes, tropical depressions, or tropical storms. Many of these designations have been combined into the "Extratropical" category in this dataset.

This data was put together by Jon Hobbs, a PhD student at Iowa State. Thanks Jon!

Usage

data(stormtracks)

Format

A data frame with 5519 rows and 24 variables
summary.GGobi

GGobi summary

Description

Get a description of the global state of the GGobi session.

Usage

```r
## S3 method for class 'GGobi'
summary(object, ...)
```

Arguments

- `object` ggobi object
- `...` ignored

Author(s)

Hadley Wickham <h.wickham@gmail.com>

Examples

```r
g <- ggobi(mtcars)
summary(g)
```

summary.GGobiData

Summarise GGobiData.

Description

Summarise a GGobiData with dimensions, mode and variable names.

Usage

```r
## S3 method for class 'GGobiData'
summary(object, ...)
```

Arguments

- `object` GGobiData
- `...` ignored

Author(s)

Hadley Wickham <h.wickham@gmail.com>
variables.GGobiDisplay

Get display variables

Description
List the variables used in a given display

Usage
```r
## S3 method for class 'GGobiDisplay'
variables(x)
```

Arguments
- `x`: GGobiDisplay object

Details
There are three types of variables in GGobi displays: X, Y, Z, which correspond to the labels on the toggle buttons in GGobi. Most plots have a constrained set of possible options. For example, in tours you can only set X variables, and you must have at least three. Or in the rotation plot, you need exactly one X, Y, and Z variable. You can figure out what these conditions are by using the toggle buttons in GGobi.

Author(s)
Hadley Wickham <h.wickham@gmail.com>

See Also
- `variables<-.GGobiDisplay` for examples
Index

*Topic attribute
 summary.GGobiData, 33
*Topic color
colorscheme, 14
*Topic datasets
 Storm tracks data, 32
*Topic dynamic
close.GGobi, 14
display.GGobiData, 16
displays.GGobi, 17
excluded.GGobiData, 18
ggobi.default, 19
ggobi_count, 20
ggobi_display_get_tour_projection, 21
ggobi_display_set_tour_projection, 22
ggobi.get, 23
ggobi_longitudinal, 24
ggobi_version, 25
glyph_colour.GGobiData, 25
glyph_size.GGobiData, 26
glyph_type.GGobiData, 27
imode, 28
names.GGobi, 29
pmode, 30
selected.GGobiData, 30
shadowed.GGobiData, 31
summary.GGobi, 33
variables.GGobiDisplay, 34
*Topic hplot
ggobi_display_save_picture, 22
*Topic manip
 connecting_edges, 15
dataset.GGobiDisplay, 15
 edges, 18
 ids.GGobiData, 28
.check_versions, 13
[.GGobi, 16, 19
 [.GGobiData, 19, 20
 [[.GGobiData, 20
 $.GGobiData, 20
 as.data.frame, 20
close.GGobi, 14
colorscheme, 14
 connecting_edges, 15
dataset.GGobiDisplay, 15
display, 18
display.GGobiData, 16
displays.GGobi, 17
 edges, 18, 20
 excluded, 6, 19
 excluded.GGobiData, 18
 ggobi (ggobi.default), 19
 ggobi.default, 19
 ggobi_count, 20
 ggobi_display_get_tour_projection, 21
 ggobi_display_save_picture, 22
 ggobi_display_set_tour_projection, 22
 ggobi_display_types, 17
 ggobi.get, 23
 ggobi_longitudinal, 4, 20, 24
 ggobi_version, 25
glyph_color (glyph_colour.GGobiData), 25
glyph_colour, 7, 19
 glyph_colour (glyph_colour.GGobiData), 25
glyph_colour.GGobiData, 25
glyph_size, 7, 19
 glyph_size (glyph_size.GGobiData), 26
glyph_size.GGobiData, 26
glyph_type, 8, 19
glyph_type (glyph_type.GGobiData), 27
glyph_type.GGobiData, 27

35
ids, 9
ids(ids.GGobiData), 28
ids.GGobiData, 28
imode, 28
imode <- (imode), 28
imodes, 28

names.GGobi, 29

pmode, 30
pmode <- (pmode), 30
pmodes, 30

rggobi (ggobi.default), 19

selected(selected.GGobiData), 30
selected.GGobiData, 30
shadowed, 9, 19
shadowed(shadowed.GGobiData), 31
shadowed.GGobiData, 31
Storm tracks data, 32
stormtracks (Storm tracks data), 32
summary.GGobi, 33
summary.GGobiData, 33

variables.GGobiDisplay, 36, 34