Package ‘ri’

February 20, 2015

Type Package

Title ri: R package for performing randomization-based inference for experiments

Version 0.9

Date 2012-05-10

Author Peter M. Aronow <peter.aronow@yale.edu> and Cyrus Samii <cds2083@nyu.edu>

Maintainer Cyrus Samii <cds2083@nyu.edu>

Description This package provides a set of tools for conducting exact or approximate randomization-based inference for experiments of arbitrary design. The primary functionality of the package is in the generation, manipulation and use of permutation matrices implied by given experimental designs. Among other features, the package facilitates estimation of average treatment effects, constant effects variance estimation, randomization inference for significance testing against sharp null hypotheses and visualization of data and results.

License GPL (>= 2)

Repository CRAN

Date/Publication 2012-05-15 06:44:09

NeedsCompilation no

R topics documented:

ri-package .. 2
dispdist .. 3
estate ... 4
estlate .. 6
gendist .. 7
genouts .. 9
genperms .. 10
genperms.custom .. 11
ri-package

ri: R package for performing randomization-based inference for experiments

Description

This package provides a set of tools for conducting exact or approximate randomization-based inference for experiments of arbitrary design. The primary functionality of the package is in the generation, manipulation and use of permutation matrices implied by given experimental designs. Among other features, the package facilitates estimation of average treatment effects, constant effects variance estimation, randomization inference for significance testing against sharp null hypotheses and visualization of data and results.

Details

Package: ri
Type: Package
Version: 0.9
Date: 2012-05-10
License: GPL (>= 2)

This package provides a set of tools for conducting exact or approximate inference for randomized experiments of arbitrary design. The primary functionality of the package is in the generation, manipulation and use of permutation matrices implied by given experimental designs. Among other features, the package facilitates estimation of average treatment effects, constant effects variance estimation and randomization inference for significance testing against sharp null hypotheses.

Author(s)

Peter M. Aronow <peter.aronow@yale.edu> and Cyrus Samii <cds2083@nyu.edu>
Maintainer: Cyrus Samii <cds2083@nyu.edu>

References

dispdist

dispdist
Estimated ATE distribution display, summary and significance testing

Description

Function for displaying, summarizing and producing p-values from the estimated average treatment effect (ATE) distribution

Usage

dispdist(distout, ate, quantiles = c(0.025, 0.975), display.plot = TRUE)

Arguments

- **distout**: randomization distribution of estimated ATEs, as output from gendist().
- **ate**: scalar hypothesized treatment effect for significance testing.
- **quantiles**: vector of quantiles of the randomization distribution to be returned. Default is equal-tailed 95% intervals.
- **display.plot**: logical for displaying a histogram for the randomization distribution with hypothesized treatment effect overlay. Default is TRUE.

Value

- **two.tailed.p.value**: two-tailed p-value: twice the smaller of the two one-tailed p-values, as advocated by Rosenbaum (2002)
- **two.tailed.p.value.abs**: two-tailed p-value: proportion of randomizations yielding absolute estimated ATE greater than or equal to absolute hypothesized ATE
- **greater.p.value**: one-tailed p-value: proportion of randomizations yielding estimated ATE greater than or equal to hypothesized ATE
- **lesser.p.value**: one-tailed p-value: proportion of randomizations yielding estimated ATE less than or equal to hypothesized ATE
- **quantile**: specified quantiles of the randomization distribution
- **sd**: standard deviation of the randomization distribution
- **exp.val**: expected value of the randomization distribution

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>
References

See Also
gendist

Examples

```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
z <- c(1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0)
ccluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4), rep(2,6), rep(3,8))
perms <- genperms(z, blockvar = block, clustvar = clustvar) # all possible permutations
probs <- genprobexact(z, blockvar = block, clustvar = clustvar) # probability of treatment
ate <- estate(y, z, prob = probs) # estimate the ATE

## Conduct Sharp Null Hypothesis Test of Zero Effect for Each Unit

Ys <- genouts(y, z, ate = 0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys, perms, prob = probs) # generate sampling dist. under sharp null
dispdist(distout, ate) # display characteristics of sampling dist. for inference

## Generate Sampling Distribution Around Estimated ATE

Ys <- genouts(y, z, ate = ate) # generate potential outcomes under tau = ATE
distout <- gendist(Ys, perms, prob = probs) # generate sampling dist. under tau = ATE
dispdist(distout, ate) # display characteristics of sampling dist. for inference
```

estate

Estimation of average treatment effects

Description

Function for estimating the average treatment effect (ATE). Permits regression adjustment for covariates, difference estimation (with a pretreatment measure of the outcome variable), inverse probability weighting, and unbiased Horvitz-Thompson estimation.

Usage

```r
estate(Y, Z, X = NULL, Ypre = NULL, prob = NULL, HT = FALSE)
```
Arguments

Y numeric vector of length N, outcome variable
Z binary vector (0 or 1) of length N, treatment indicator
X N-by-k numeric matrix of covariates for regression adjustment
Ypre numeric vector of length N, pretreatment measure of the outcome variable for difference estimation
prob numeric vector within the (0,1) interval of length N, probability of treatment assignment, as outputted by genprob() or genprobexact(). When prob=NULL (the default), assumes uniform probability of assignment to treatment equal to the mean of Z
HT when HT=TRUE, invokes the Horvitz-Thompson (difference-in-totals) estimator. When HT=FALSE, invokes the inverse-probability-weighted regression estimator

Value

a scalar, the estimated average treatment effect

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also

genprob

Examples

```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0)
ccluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))

probs <- genprobexact(Z,blockvar=block, clustvar=cluster) # probability of treatment
ate <- estate(y,Z,prob=probs) # estimate the ATE
```
estlate

Estimation of local average treatment effects under noncompliance

Description

Function for estimating the local average treatment effect (LATE) via variants of Wald/2SLS estimation (taking the ratio of two average treatment effect estimators). Permits regression adjustment for covariates, difference estimation (with a pretreatment measure of the outcome variable), inverse probability weighting and Horvitz-Thompson estimation.

Usage

estlate(Y, D, Z, X = NULL, Ypre = NULL, Dpre = NULL, prob = NULL, HT = FALSE)

Arguments

Y numeric vector of length N, outcome variable
D binary vector (0 or 1) of length N, treatment receipt indicator
Z binary vector (0 or 1) of length N, treatment assignment indicator
X N-by-k numeric matrix of covariates for regression adjustment
Ypre numeric vector of length N, pretreatment measure of the outcome variable for difference estimation
Dpre numeric vector of length N, pretreatment measure of the treatment receipt variable for difference estimation
prob numeric vector within the (0,1) interval of N-length, probability of treatment assignment, as output by genprob() or genprobexact(). When prob=NULL (by default), assumes 0.5 probability of assignment to treatment
HT when HT=TRUE, invokes the Horvitz-Thompson (difference-in-totals) estimator. When HT=FALSE, invokes the inverse-probability-weighted regression estimator

Value

a numeric scalar, the estimated LATE

Note

Takes the ratio of two estate values, the numerator with Y as the outcome variable and Z as the treatment indicator, the denominator with D as the outcome variable and Z as the treatment indicator

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>
References

See Also

estate

Examples

```
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,0,1,1,0,1,1,1,1,0,1,1,0,0)
D <- c(1,0,0,0,0,1,1,0,1,0,0,1,0,1,0,1)

cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))
probs <- genprobexact(Z,block,cluster) # generate probability of assignment
late <- estlate(y,D,Z,prob=probs) # estimate the LATE; estimated LATE = 9
```

gendist

Generates randomization distribution of estimated ATEs

Description

Takes hypothesized potential outcomes, a permutation matrix, and arguments for estate() to produce a randomization distribution of estimated average treatment effects (ATEs).

Usage

```
gendist(Ys, perms, X = NULL, Ypre = NULL, prob = NULL, HT = FALSE)
```

Arguments

- **Ys**: list consisting of two N-length numeric vectors labeled Y0 and Y1, as output by genouts()
- **perms**: N-by-r permutation matrix, as output by genperms or genperms.custom
- **X**: N-by-k numeric matrix of covariates for regression adjustment
- **Ypre**: numeric vector of length N, pretreatment measure of the outcome variable for difference estimation
prob numeric vector within the (0,1) interval of length N, probability of treatment assignment, as output by genprob() or genprobexact(). When prob=NULL (by default), assumes probability of assignment to treatment implied by the permutation matrix

HT when HT=TRUE, invokes the Horvitz-Thompson (difference-in-totals) estimator. When HT=FALSE, invokes the inverse-probability-weighted regression estimator

Value
An r-length vector of estimated ATEs

Author(s)
Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also
estate, genouts, genprob, genperms, genperms.custom

Examples
```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,0,1,1,0,0,1,1,1,0,0,1,1,0,0)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))

perms <- genperms(Z,blockvar=block, clustvar=cluster) # all possible permutations
probs <- genprobexact(Z,blockvar=block, clustvar=cluster) # probability of treatment
ate <- estate(y,Z,prob=probs) # estimate the ATE

## Conduct Sharp Null Hypothesis Test of Zero Effect for Each Unit
Ys <- genouts(y,Z,ate=0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under sharp null
dispdist(distout, ate) # display characteristics of sampling dist. for inference

## Generate Sampling Distribution Around Estimated ATE
Ys <- genouts(y,Z,ate=ate) # generate potential outcomes under tau = ATE
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under tau = ATE
dispdist(distout, ate) # display characteristics of sampling dist. for inference
```
genouts

Generates hypothesized potential outcomes under a constant effects hypothesis

Description

Takes an outcome variable, a treatment assignment, and a hypothesized treatment effect and generates a set of hypothesized potential outcomes

Usage

genouts(Y, Z, ate = 0)

Arguments

Y numeric vector of N-length, outcome variable
Z binary vector (0 or 1) of N-length, treatment indicator
ate numeric scalar, hypothesized treatment effect

Value

list consisting of two N-length numeric vectors labeled Y0 and Y1

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also

estate

Examples

y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
z <- c(1,1,0,0,1,0,1,1,1,1,0,0,1,1,0,0)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))

perms <- genperms(z,blockvar=block, clustvar=cluster) # all possible permutations
probs <- genprobexact(z,blockvar=block, clustvar=cluster) # probability of treatment
ate <- estate(y,z,prob=probs) # estimate the ATE

Conduct Sharp Null Hypothesis Test of Zero Effect for Each Unit
Ys <- genouts(y,Z,ate=0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under sharp null
dispdist(distout, ate) # display characteristics of sampling dist. for inference

Generate Sampling Distribution Around Estimated ATE

Ys <- genouts(y,Z,ate=ate) ## generate potential outcomes under tau = ATE
distout <- gendist(Ys,perms, prob=probs) # generate sampling dist. under tau = ATE
dispdist(distout, ate) ## display characteristics of sampling dist. for inference

genperms

Generates a permutation matrix for blocked, clustered (or simpler) designs

Description

Given complete randomization of clusters (even of length 1) in blocks (even of length N), `genperms()` produces either an exact or approximate permutation matrix. When the number of actual permutations exceeds a user specified value (`maxiter`), the function produces an approximate permutations matrix via repeated randomization.

Usage

`genperms(Z, blockvar = NULL, clustvar = NULL, maxiter = 10000)`

Arguments

- **Z**: binary vector (0 or 1) of N-length, treatment indicator
- **blockvar**: positive integer vector of N-length, with unique values indicating different blocks
- **clustvar**: positive integer vector of N-length, with unique values indicating different clusters
- **maxiter**: maximum number of permutations to be included in the permutation matrix

Value

N-by-r permutation matrix, where r is the smaller of `maxiter` and the true number of permutations

Warning

`genperms` may use large amounts of memory and computational power, and may not be well-suited for large datasets. We recommend starting with `maxiter` set at low values before attempting to create a permutation matrix with a large number of permutations.

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>
References

Examples

```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,9,9)
block <- c(rep(1,4), rep(2,6), rep(3,8))
perms <- genperms(Z, blockvar = block, clustvar = cluster) # all possible permutations
probs <- genprobexact(Z, blockvar = block, clustvar = cluster) # probability of treatment
ate <- estate(y, Z, prob = probs) # estimate the ATE

## Conduct Sharp Null Hypothesis Test of Zero Effect for Each Unit

Ys <- genouts(y, Z, ate = 0) # generate potential outcomes under sharp null of no effect
distout <- gendist(Ys, perms, prob = probs) # generate sampling dist. under sharp null
dispdist(distout, ate) # display characteristics of sampling dist. for inference

## Generate Sampling Distribution Around Estimated ATE

Ys <- genouts(y, Z, ate = ate) # # generate potential outcomes under tau = ATE
distout <- gendist(Ys, perms, prob = probs) # generate sampling dist. under tau = ATE
dispdist(distout, ate) # # display characteristics of sampling dist. for inference
```

genperms.custom

Generates an approximate permutation matrix for an user-supplied randomization function

Description

Generates a permutation matrix by replicating a user-supplied randomization function. Not intended to be used for designs handled by genperms (i.e., complete randomization of clusters within blocks)

Usage

`genperms.custom(numiter = 10000, randfun = randfun.default, ...)`

Arguments

- `numiter` a scalar for the number of replicates, default is 10000
- `randfun` a user supplied function outputting an N-length binary (0 or 1) vector. Default is an internal function.
- `...` other inputs for `randfun`
Value

an N-by-k permutation matrix, where k = numiter

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cys2083@nyu.edu>

References

See Also

genperms

Examples

```r
## Rejected randomization scheme: reject if and only if there is significant imbalance

X <- c(1:200)

randfun <- function() {
  teststat <- -1
  while (teststat < 0) {
    Zri <- sample(c(rep(0,180),rep(1,20))) # imbalanced design
    fstat <- summary(lm(Zri~X))$fstatistic
    teststat <- pf(fstat[1],fstat[2],fstat[3],lower.tail=FALSE) # extract F-test p-value
  }
  return(Zri)
}
perms <- genperms(custom=10000, randfun=randfun) # generate permutations
probs <- genprob(perms) # generate approximate probabilities from permutation matrix

cor(probs, (X-mean(X))^2) # observations with extreme X are less likely to be treated
```

genprob

Estimates probabilities of treatment assignment

Description

Takes a permutation matrix and estimates the probabilities of treatment assignment for each unit

Usage

genprob(perms)

Arguments

perms N-by-k permutation matrix as produced by genperms or genperms.custom.
genprobexact

Details

`genprob` is NOT intended to be used for complete randomization of clusters within blocks – instead, it takes an arbitrary permutation matrix and computes the proportions of random assignments for which each unit is in treatment. For simpler designs, `genpermsexact` should be used.

Value

N-length numeric vector of values within the (0,1) interval, probability of treatment assignment

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also

`genprobexact`

Examples

```r
## Rejected randomization scheme: reject if and only if there is significant imbalance
X <- c(1:200)

randfun <- function() {
  teststat <- -1
  while (teststat < 0) {
    Zri <- sample(c(rep(0,180),rep(1,20))) # imbalanced design
    fstat <- summary(lm(Zri~X))$fstatistic
    teststat <- pf(fstat[1],fstat[2],fstat[3],lower.tail=FALSE) # extract F-test p-value
  }
  return(Zri)
}
perms <- genperms.custom(numiter=10000, randfun=randfun) # generate permutations
probs <- genprob(perms) # generate approximate probabilities from permutation matrix
cor(probs,(X-mean(X))^2) # observations with extreme X are less likely to be treated
```

Description

Function takes a blocking variable and a clustering variable and yields exact probabilities of treatment under complete randomization of clusters within blocks.
Usage

`genprobexact(Z, blockvar = NULL, clustvar = NULL)`

Arguments

- `Z` binary vector (0 or 1) of length N, treatment indicator
- `blockvar` positive integer vector of length N, with unique values indicating different blocks
- `clustvar` positive integer vector of length N, with unique values indicating different clusters

Value

numeric vector with values within the (0,1) interval of length N, probability of treatment assignment

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also

`genprob`

Examples

```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4), rep(2,6), rep(3,8))

probs <- genprobexact(Z, block, cluster) # generate probability of assignment
ate <- estate(y, Z, prob=probs) # estimate the ATE; estimated ATE=2
```

Description

Experimental code to generate endpoints of Rosenbaum (2002)-style confidence intervals through inversion of a constant effects hypothesis. Only conducts inference with the difference in (weighted) means as the test statistic, no covariate adjustment.
Usage

invert.ci(Y, Z, prob, perms, targetp)

Arguments

Y numeric vector of length N, outcome variable
Z binary vector (0 or 1) of length N, treatment indicator
prob numeric vector within the (0,1) interval of length N, probability of treatment assignment, as outputted by genprob() or genprobexact(). When prob=NULL (the default), assumes uniform probability of assignment to treatment equal to the mean of Z
perms N-by-r permutation matrix, as output by genperms or genperms.custom
targetp target p-value for the endpoint of the confidence interval

Value

returns endpoint of the confidence interval with the target p-value associated

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

Examples

y <- c(6,6,2,0,3,1,1,1,2,2,0,1,0)
Z <- c(1,1,0,0,1,1,0,0,1,1,1,1,0)
perms <- genperms(Z) # all possible permutations of assignment to treatment
probs <- genprobexact(Z) # assuming complete randomization
invert.ci(y,Z,perms,0.025),invert.ci(y,Z,perms,0.975)) # 95% CI

Description

Estimates the average treatment effect (ATE) and inferential statistics under constant effects hypotheses. Estimation is without covariate adjustment, via weighted least squares.
omni.ate

Usage

omni.ate(Y, Z, perms, invert = FALSE, quantiles = c(0.025, 0.975))

Arguments

Y numeric vector of length N, outcome variable
Z binary vector (0 or 1) of length N, treatment indicator
perms N-by-r permutation matrix, as output by genperms or genperms.custom
invert logical for generating constant effects confidence intervals through exact test inversion, with the difference-in-means as a test statistic. Default is FALSE.
quantiles vector of quantiles of the randomization distribution to be returned. Quantiles also used to determine endpoints of confidence intervals. Default is equal-tailed 95% intervals.

Details

omni.ate() is a convenience function that implements a number of functions otherwise available in ri. Greater flexibility through use of the individual functions involved.

Value

ate estimated average treatment effect
greater.p.value one-tailed p-value: proportion of randomizations yielding estimated ATE greater than or equal to hypothesized ATE
lesser.p.value one-tailed p-value: proportion of randomizations yielding estimated ATE less than or equal to hypothesized ATE
p.value two-tailed p-value: twice the smaller of the two one-tailed p-values, as advocated by Rosenbaum (2002)
p.value.alt two-tailed p-value: proportion of randomizations yielding absolute estimated ATE greater than or equal to absolute hypothesized ATE
se.null standard error of the randomization distribution assuming a zero treatment effect
conf.int confidence interval approximation under a constant effect hypothesis
se standard error of the randomization distribution assuming a constant treatment effect equal to the estimated ATE
conf.intInv (Optional, if invert=TRUE) confidence interval under an inverted exact test with the difference-in-means as a test statistic

Author(s)

Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>
References

See Also

ri

Examples

```r
y <- c(8,6,2,0,3,1,1,2,2,0,1,0,2,2)
Z <- c(1,1,0,0,1,1,0,0,1,1,1,0,1)
perms <- genperms(Z) # all possible permutations of assignment

omni.ate(y,Z,perms,FALSE)
# omni.ate(y,Z,perms,TRUE) # may take some time to run
```

resresplot

Produces residual-residual (added-variable) plot

Description

Residualizes the outcome variable and the treatment variable with covariates (via inverse probability weighted least squares regression) and plots the relationship. When weights are applied, the graph shows the relative weighting of each observation.

Usage

```r
resresplot(Y, Z, X, prob = NULL, scale = 1)
```

Arguments

- **Y**
 - numeric vector of length N, outcome variable
- **Z**
 - binary vector (0 or 1) of length N, treatment indicator
- **X**
 - N-by-k numeric matrix of covariates for regression adjustment
- **prob**
 - numeric vector within the (0,1) interval of length N, probability of treatment assignment, as outputted by genprob() or genprobexact(). When prob=NULL (the default), assumes uniform probability of assignment to treatment equal to the mean of Z
- **scale**
 - a scalar parameter controlling the size of the plotted points
Value
produces a plot of residualized and weighted values

Author(s)
Peter M. Aronow <peter.aronow@yale.edu>; Cyrus Samii <cds2083@nyu.edu>

References

See Also
`estate`

Examples
```r
y <- c(8,6,2,0,3,1,1,1,2,2,0,1,0,2,2,4,1,1)
Z <- c(1,1,0,1,1,0,0,1,1,1,0,0,1,1,0,0)
X <- c(1:18)
cluster <- c(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9)
block <- c(rep(1,4),rep(2,6),rep(3,8))

probs <- genprobexact(Z,block,cluster) # generate probability of assignment
resresplot(y,Z,X,prob=probs,scale=3) # produce res-res plot
```

Description
Internal function
Index

*Topic **avplot**
 resresplot, 17
*Topic **display**
 disdist, 3
*Topic **estimation**
 estate, 4
 estlate, 6
 omni.ate, 15
*Topic **inverted test**
 invert.ci, 14
*Topic **noncompliance**
 estate, 6
*Topic **permutations**
 genperms, 10
 genperms.custom, 11
*Topic **potential outcomes**
 genouts, 9
*Topic **probability**
 genprob, 12
 genprobexact, 13
*Topic **randomization**
 disdist, 3
 gendist, 4, 7
 genouts, 8, 9
 genperms, 8, 10, 12
 genperms.custom, 8, 11
 genprob, 5, 8, 12, 14
 genprobexact, 13, 13
 invert.ci, 14
 omni.ate, 15
 randfun.default (ri-internal), 18
 resresplot, 17
 ri, 17
 ri (ri-package), 2
 ri-internal, 18
 ri-package, 2

desmatsanitize (ri-internal), 18
 disdist, 3
 estate, 4, 6–9, 18
 estlate, 6