Package ‘rmeta’

February 20, 2015

Version 2.16

Author Thomas Lumley <tlumley@u.washington.edu>

Maintainer Thomas Lumley <tlumley@u.washington.edu>

Description Functions for simple fixed and random effects meta-analysis for two-sample comparisons and cumulative meta-analyses. Draws standard summary plots, funnel plots, and computes summaries and tests for association and heterogeneity

Title Meta-analysis

License GPL-2

Depends grid

Repository CRAN

Date/Publication 2012-10-29 08:59:36

NeedsCompilation no

R topics documented:

catheter .. 2
cochrane .. 3
cummeta .. 4
forestplot .. 5
funnelplot .. 7
meta.colors .. 8
meta.DSL .. 9
meta.MH .. 11
meta.summaries ... 13
metaplot .. 14

Index 17
Meta-analysis of antibacterial catheter coating

Description

Data on the effectiveness of silver sulfadiazine coating on venous catheters for preventing bacterial colonisation of the catheter and bloodstream infection

Usage

data(catheter)

Format

A data.frame with 8 variables giving information about 16 controlled trials of antibacterial-coated venous catheters

Name : Name of principal author
n.trt : number of coated catheters
n.ctrl : number of standard catheters
col.trt : number of coated catheters colonised by bacteria
col.ctrl : number of standard catheters colonised by bacteria
inf.trt : number of coated catheters resulting in bloodstream infection
inf.ctrl : number of standard catheters resulting in bloodstream infection
or : Odds ratio

Source

Examples

library(rmeta)
data(catheter)
a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
 names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
b <- meta.DSL(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
 names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
a
b
summary(a)
summary(b)
Description

Data from randomised trials before 1980 of corticosteroid therapy in premature labour and its effect on neonatal death.

Usage

data(cochrane)

Format

This data frame contains the following columns:

- **name**: Identifier for the study
- **ev.trt**: Number of deaths in the treated group
- **n.trt**: Number in the treated group
- **ev.ctrl**: Number of deaths in the control group
- **n.ctrl**: Number in the control group

Details

This meta-analysis, if done, would likely have resulted in the treatment being widely used a decade earlier than it was, saving many lives. The graph is part of the logo of the Cochrane Collaboration, a group aiming to perform systematic reviews of the entire clinical trial literature.

Source

http://www.cochrane.org

Examples

data(cochrane)
sosteroid <- meta.MH(n.trt, n.ctrl, ev.trt, ev.ctrl,
 names=name, data=cochrane)
plot(steroid, col=meta.colors("RoyalBlue"))
Description

A cumulative meta-analysis plot shows how evidence has accumulated over time. The ith line in the cumulative meta-analysis plot is the summary produced by a meta-analysis of the first i trials.

Usage

cummeta(ntrt, nctrl, ptrt, pctrl, conf.level = 0.95, names = NULL, data = NULL, subset = NULL, na.action = na.fail, method = c("meta.MH", "meta.DSL"), statistic = "OR")
cummeta.summaries(effects, stderrs, conf.level = 0.95, names = NULL, weights = NULL, data = NULL, subset = NULL, na.action = getOption("na.action"), method = c("fixed", "random"), logscale = TRUE)

Arguments

- **ntrt**: Number of subjects in treated/exposed group
- **nctrl**: Number of subjects in control group
- **ptrt**: Number of events in treated/exposed group
- **pctrl**: Number of events in control group
- **effects**: Difference between control and treatment group
- **stderrs**: Standard errors of effects
- **weights**: Study weights (see `meta.summaries`)
- **names**: names or labels for studies
- **data**: data frame to interpret variables
- **subset**: subset of studies to include
- **na.action**: How to handle missing values
- **method**: Which meta-analysis method to use
- **statistic**: "OR" for odds ratio or "RR" for relative risk.
- **logscale**: The effects values are the logarithms of actual effects (for plotting)
- **x, object**: a `meta.cum` object
- **...**: other graphical arguments for `metaplot`
- **conf.level**: Coverage for confidence intervals
- **colors**: see `meta.colors`
- **xlab**: X-axis label
- **summary.line**: Plot a vertical line at the final summary value?
- **summary.conf**: Plot vertical lines at the final confidence interval limits?
- **main, lwd**: graphical parameters
Value

Object of class meta.cum.

See Also

meta.MH, meta.DSL

Examples

data(cochrane)
steroid <- cummeta(n.trt, n.ctrl, ev.trt, ev.ctrl, names=name, data=cochrane, statistic="RR", method="meta.MH")
plot(steroid)
summary(steroid)
data(catheter)
b <- meta.DSL(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
 names=Name, subset=c(13, 6, 5, 3, 12, 4, 11, 1, 8, 10, 2))
d <- cummeta.summaries(b$logs, b$selogs, names=b$names,
 method="random", logscale=TRUE)
plot(d, summary.conf=TRUE)
summary(d)

forestplot

Forest plots

Description

Draw a forest plot together with a table of text.

Usage

forestplot(labeltext, mean, lower, upper, align = NULL, is.summary = FALSE, clip = c(-Inf, Inf), xlab = "", zero = 0, graphwidth = unit(2, "inches"), col = meta.colors(), xlog = FALSE, xticks=NULL, boxsize=NULL,...)

Arguments

labeltext Matrix of strings or NAs for blank spaces
mean Vector of centers of confidence intervals (or NAs for blank space)
lower Vector of lower ends of confidence intervals
upper Vector of upper ends of confidence intervals
align Vector giving alignment (l, r, c) for columns of table
is.summary Vector of logics. Summary lines have bold text and diamond confidence intervals.
clip Vector giving alignment (l, r, c) for columns of table
is.summary Vector of logics. Summary lines have bold text and diamond confidence intervals.
xlab x-axis label
zero x-axis coordinate for zero line
graphwidth Width of confidence interval graph
col See meta.colors
xlog If TRUE, x-axis tick marks are exponentiated
xticks Optional user-specified x-axis tick marks. Specify NULL to use the defaults, numeric(0) to omit the x-axis.
boxsize Override the default box size based on precision
... Not used.

Details

This function is more flexible than metaplot and the plot methods for meta-analysis objects, but requires more work by the user.

In particular, it allows for a table of text, and clips confidence intervals to arrows when they exceed specified limits.

Value

None

See Also

metaplot

Examples

data(cochrane)
steroid <- meta.MH(n.trt, n.ctrl, ev.trt, ev.ctrl,
 names=name, data=cochrane)

tabletext<-cbind(c("","Study",steroid$names,NA,"Summary"),
c("Deaths","(steroid)",cochrane$sev.trt,NA,NA),
c("Deaths","(placebo)", cochrane$sev.ctrl, NA,NA),
c("","OR",format(exp(steroid$logOR),digits=2),NA,format(exp(steroid$logMH),digits=2))

m<- c(NA,NA,steroid$logOR,NA,steroid$logMH)
l<- m+c(NA,NA,steroid$selogOR,NA,steroid$selogMH)*2
u<- m+c(NA,NA,steroid$selogOR,NA,steroid$selogMH)*2
forestplot(tabletext,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE),
 clip=c(log(0.1),log(2.5)), xlog=TRUE,
 col=meta.colors(box="royalblue",line="darkblue", summary="royalblue"))

forestplot(tabletext,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE),
 clip=c(log(0.1),log(2.5)), xlog=TRUE, boxsize=0.75,
 col=meta.colors(box="royalblue",line="darkblue", summary="royalblue"))
funnelplot

Funnel plot for publication bias

Description

Plots the treatment difference for trials against the size of the trial (or other specified variable). Asymmetry in the plot often indicates publication bias. Generic, with methods for meta-analysis objects.

Usage

```r
funnelplot(x, ...)
## Default S3 method:
funnelplot(x, se, size=1/se, summ=NULL,
xlab="Effect", ylab="Size", colors=meta.colors(),
conf.level=0.95, plot.conf=FALSE,
zero=NULL, mirror=FALSE, ...)
```

Arguments

- `x` Treatment difference
- `se` Standard error of `x`
- `size` Variable for the vertical axis
- `summ` Summary treatment difference
- `xlab` X-axis label
- `ylab` Y-axis label
- `colors` List of colors for components of the plot
- `conf.level` For confidence interval plotting
- `plot.conf` Plot confidence intervals instead of just points?
- `zero` Location of a null hypothesis line
- `mirror` Add points reflected around `summ`?
- `...` Further arguments to be passed from or to methods.

Details

With the default value of `size` the plot should appear as a upwards-pointing funnel shape. Publication bias often causes one side of the funnel to be trimmed near the base. The `mirror` plot creates a symmetric funnel by reflecting the plot around the `summ` value. In the presence of publication bias the added points will separate from the real studies.

Value

Used for its side-effect.
meta.colors

Control colours in meta-analysis plot

Description

Wrapper function for specifying colours to meta-analysis plots

Usage

```r
meta.colors(all.elements, box="black", lines="gray", summary="black",
            zero="lightgray", mirror="lightblue", text="black",
            axes="black", background=NA)
```

Arguments

- `all.elements` if present, overrides other arguments
- `box` Colour of sample size box
- `lines` Colour of confidence intervals
- `summary` Colour of summary estimate
- `zero` Colour of null hypothesis line
- `mirror` Colour of reflected points (in `funnelplot`)
- `text` Colour of labels
- `axes` Colour of x-axis and axis labels
- `background` Background colour.

Value

a list of colors
meta.DSL

See Also

plot.meta.MH, plot.meta.DSL, plot.meta.summaries, funnelplot, metaplot

Examples

data(cochrane)
steroid <- meta.MH(n.trt, n.ctrl, ev.trt, ev.ctrl,
 names=name, data=cochrane)

All black, for better photocopying
plot(steroid, col=meta.colors("black"))

distinguish the summary
plot(steroid, colors=meta.colors(summary="forestgreen"))

data(catheter)
e <- meta.DSL(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,
 names=Name, subset=c[13,6,3,12,4,11,1,14,8,10,2])

Truly awful colour scheme to illustrate flexibility
plot(e, colors=meta.colors(summary="green", lines=c("purple", "skyblue"),
 box="red", zero="yellow", text=palette(), background="tomato",
 axes="lightgreen"))

Dark blue background popular for presentations.
plot(e, colors=meta.colors(summary="white", lines="#FFFF0",
 box="#FFFF50", zero="grey90", text="white", background="darkblue",
 axes="grey90"))

Description

Computes the individual odds ratios or relative risks, the summary, the random effects variance, and Woolf’s test for heterogeneity. The print method gives the summary and test for heterogeneity: the summary method also gives all the individual odds ratios and confidence intervals. Studies with zero or infinite odds ratio are omitted, as their variance cannot be calculated sensibly.

The plot method draws a standard meta-analysis plot. The confidence interval for each study is given by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the standard error of the estimate. The summary odds ratio, if requested, is drawn as a diamond with horizontal limits at the confidence limits and width inversely proportional to its standard error.

Usage

meta.DSL(ntrt, nctrl, ptrt, pctrl, conf.level=0.95,
 names=NULL, data=NULL, subset=NULL, na.action=na.fail, statistic="OR")
S3 method for class 'meta.DSL'
summary(object, conf.level=NULL, ...)

S3 method for class 'meta.DSL'
plot(x, summary=TRUE, summlabel="Summary",
 conf.level=NULL, colors=meta.colors(), xlab=NULL,...)

Arguments
- **ntrt**: Number of subjects in treated/exposed group
- **nctrl**: Number of subjects in control group
- **ptrt**: Number of events in treated/exposed group
- **pctrl**: Number of events in control group
- **conf.level**: Coverage for confidence intervals
- **names**: names or labels for studies
- **data**: data frame to interpret variables
- **subset**: subset of studies to include
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `na.fail`.
- **statistic**: "OR" for odds ratio, "RR" for relative risk
- **x,object**: a meta.DSL object
- **summary**: Plot the summary odds ratio?
- **summlabel**: Label for the summary odds ratio
- **colors**: see `meta.colors`
- **xlab**: x-axis label, default is based on statistic
- **...**: further arguments to be passed from or to methods.

Value
An object of class meta.DSL with print, plot, funnelplot and summary methods.

Author(s)
Thomas Lumley

See Also
- `plot.par.meta.MH,funnelplot`

Examples
```
data(catheter)
b <- meta.DSL(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
              names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
b
summary(b)
```
meta.MH

Fixed effects (Mantel-Haenszel) meta-analysis

Description

Computes the individual odds ratio or relative risk, the Mantel-Haenszel summary, and Woolf’s test for heterogeneity. The print method gives the summary and test for heterogeneity; the summary method also gives all the individual odds ratios and confidence intervals.

The plot method draws a standard meta-analysis plot. The confidence interval for each study is given by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the standard error of the estimate. The summary odds ratio, if requested, is drawn as a diamond with horizontal limits at the confidence limits and width inversely proportional to its standard error.

Usage

```r
meta.MH(ntrt, nctrl, ptrt, pctrl, conf.level=0.95,
    names=NULL, data=NULL, subset=NULL, na.action = na.fail, statistic="OR")
```

S3 method for class 'meta.MH'

```r
summary(object, conf.level=NULL, ...) plot(x, summary=TRUE, summlabel="Summary",
    conf.level=NULL, colors=meta.colors(), xlab=NULL, ...)
```

Arguments

- `ntrt`: Number of subjects in treated/exposed group
- `nctrl`: Number of subjects in control group
- `ptrt`: Number of events in treated/exposed group
- `pctrl`: Number of events in control group
- `names`: names or labels for studies
- `data`: data frame to interpret variables
- `subset`: subset of studies to include
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `na.fail`.
- `statistic`: "OR" for odds ratio, "RR" for relative risk
- `x,object`: a meta.MH object

```r
e <- meta.DSL(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,
    names=Name, subset=c(13,6,3,12,4,11,1,14,8,10,2))
e
summary(e)
n#tasteless
plot(e, colors=meta.colors(summary="green",lines="purple",box="orange"))
```
summary: Plot the summary odds ratio?

summlabel: Label for the summary odds ratio

conf.level: Coverage for confidence intervals

colors: see meta.colors

xlab: x-axis label, default is based on statistic

... further arguments to be passed to or from methods.

Value

An object of class meta.MH with print, plot, funnelplot and summary methods.

Note

There are at least two other ways to do a fixed effects meta-analysis of binary data. Peto's method is a computationally simpler approximation to the Mantel-Haenszel approach. It is also possible to weight the individual odds ratios according to their estimated variances. The Mantel-Haenszel method is superior if there are trials with small numbers of events (less than 5 or so in either group).

Author(s)

Thomas Lumley

See Also

plot.par.meta.DSL, funnelplot

Examples

data(catheter)
a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
 names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
a
summary(a)
plot(a)
d <- meta.MH(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,
 names=Name, subset=c(13,6,3,12,4,11,14,8,10,2))
d
summary(d)
plot with par("fg")
plot(d, colors=meta.colors(NULL))
Description

Computes a summary estimate and confidence interval from a collection of treatment effect estimates and standard errors. Allows fixed or random effects, optional quality weights.

Usage

```
meta.summaries(d, se, method=c("fixed", "random"), weights=NULL,
                  logscale=FALSE, names=NULL, data=NULL,
                  conf.level=0.95, subset=NULL, na.action=na.fail)
```

```
# S3 method for class 'meta.summaries'
summary(object, conf.level=NULL,...)
```

```
# S3 method for class 'meta.summaries'
plot(x, summary=TRUE, summlabel="Summary",
      conf.level=NULL, colors=meta.colors(),
      xlab=NULL, logscale=NULL,...)
```

Arguments

d: Effect estimates
se: standard errors for d
method: Standard errors and default weights from fixed or random-effects?
weights: Optional weights (eg quality weights)
logscale: Effect is on a log scale? (for plotting)
names: labels for the separate studies
data: optional data frame to find variables in
conf.level: level for confidence intervals
subset: Which studies to use
na.action: a function which indicates what should happen when the data contain NAs. Defaults to na.fail.
x,object: a meta.summaries object
summary: Plot the summary odds ratio?
summlabel: Label for the summary odds ratio
colors: see meta.colors
xlab: label for the effect estimate axis.
... further arguments to be passed to or from methods.
Details

The summary estimate is a weighted average. If weights are specified they are used, otherwise the reciprocal of the estimated variance is used.

The estimated variance is the square of se for a fixed analysis. For a random analysis a heterogeneity variance is estimated and added.

The variance of a weighted average is a weighted average of the estimated variances using the squares of the weights. This is the square of the summary standard error.

With the default weights these are the standard fixed and random effects calculations.

Value

An object of class meta.summaries, which has print, plot, summary and funnelplot methods.

Author(s)

Thomas Lumley

See Also

meta.DSL, meta.MH, funnelplot, metaplot

Examples

data(catheter)
b <- meta.DSL(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
 names=Name, subset=c(13,6,5,3,12,4,11,1,8,10,2))
d <- meta.summaries(b$dlogs, b$selogs, names=b$names,
 method="random", logscale=TRUE)

metaplot

Meta-analysis plot (forest plot)

Description

Plot confidence intervals with boxes indicating the sample size/precision and optionally a diamond indicating a summary confidence interval. This function is usually called by plot methods for meta-analysis objects.

Usage

metaplot(mn, se, nn=NULL, labels=NULL, conf.level=0.95,
 xlab="Odds ratio", ylab="Study Reference", xlim=NULL,
 summn=NULL, sumse=NULL, sumnn=NULL, summlabel="Summary",
 logeffect=FALSE, lwd=2, boxsize=1,
 zero=as.numeric(logeffect), colors=meta.colors(),
 xaxt="s", logticks=TRUE, ...)
Arguments

- `mn`: point estimates from studies
- `se`: standard errors of `mn`
- `nn`: precision: box areas is proportional to this. \(1/\text{se}^2\) is the default
- `labels`: labels for each interval
- `conf.level`: Confidence level for confidence intervals
- `xlab`: label for the point estimate axis
- `ylab`: label for the axis indexing the different studies
- `xlim`: the range for the x axis.
- `summn`: summary estimate
- `sumse`: standard error of summary estimate
- `sumnn`: precision of summary estimate
- `summlabel`: label for summary estimate
- `logeffect`: TRUE to display on a log scale
- `lwd`: line width
- `boxsize`: Scale factor for box size
- `zero`: "Null" effect value
- `xaxt`: use "n" for no x-axis (to add a customised one)
- `logticks`: if TRUE and logscale, have tick values approximately equally spaced on a log scale.
- `colors`: see `meta.colors`
- `...`: Other graphical parameters

Value

This function is used for its side-effect.

See Also

- `forestplot` for more flexible plots
- `plot.meta.DSL, plot.meta.MH, plot.meta.summaries`

Examples

```r
data(catheter)
a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
             names=Name, subset=c(13,6,5,3,7,12,4,11,8,10,2))
metaplot(a$logOR, a$selogOR, nn=a$selogOR^2, a$names,
        summ=meta$logMH, sumse=a$selogMH, sumnn=a$selogMH^2,
        logeffect=TRUE)
metaplot(a$logOR, a$selogOR, nn=a$selogOR^2, a$names,
        summ=meta$logMH, sumse=a$selogMH, sumnn=a$selogMH^2,
        logeffect=TRUE, logticks=FALSE)
```
angry fruit salad

```r
metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names,
         sumnn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2,
         logeffect=TRUE, colors=meta.colors(box="magenta",
                                           lines="blue", zero="red", summary="orange",
                                           text="forestgreen"))
```
Index

*Topic datasets
 catheter, 2
cochrane, 3
*Topic hplot
 cummeta, 4
 forestplot, 5
 funnelplot, 7
 meta.colors, 8
 meta.DSL, 9
 meta.MH, 11
 meta.summaries, 13
 metaplot, 14
*Topic htest
 cummeta, 4
 meta.DSL, 9
 meta.MH, 11
 meta.summaries, 13

plot.meta.summaries (meta.summaries), 13
print.meta.cum (cummeta), 4
print.meta.DSL (meta.DSL), 9
print.meta.MH (meta.MH), 11
print.meta.summaries (meta.summaries), 13
print.summary.meta.cum (cummeta), 4
print.summary.meta.DSL (meta.DSL), 9
print.summary.meta.MH (meta.MH), 11
print.summary.meta.summaries (meta.summaries), 13
summary.meta.cum (cummeta), 4
summary.meta.DSL (meta.DSL), 9
summary.meta.MH (meta.MH), 11
summary.meta.summaries (meta.summaries), 13

plot.meta.cum (cummeta), 4
plot.meta.DSL (meta.DSL), 9
plot.meta.MH (meta.MH), 11
plot.meta.summaries, 9, 15

na.fail, 10, 11, 13
par, 10, 12
plot, 10, 12

plot.meta.cum (cummeta), 4
plot.meta.DSL, 9, 15
plot.meta.DSL (meta.DSL), 9
plot.meta.MH, 9, 15
plot.meta.MH (meta.MH), 11
plot.meta.summaries, 9, 15