Package ‘rms.gof’

February 20, 2015

Type Package
Title Root-mean-square goodness-of-fit test for simple null hypothesis
Version 1.0
Date 2013-01-15
Author Shubhodeep Mukherji <deep.mukherji@utexas.edu>
Maintainer Shubhodeep Mukherji <deep.mukherji@utexas.edu>
Description This package can be used to test any simple null hypothesis using the root-mean-square goodness of fit test. Monte Carlo estimation is used to calculate the associated P-value.
License GPL-3
Repository CRAN
Date/Publication 2013-01-16 08:10:14

R topics documented:

rms.gof-package .. 1
rms.pval ... 2
test.rms ... 3

Index

rms.gof-package Root-mean-square goodness-of-fit test for simple null hypothesis

Description

This package can be used to test any simple null hypothesis using the root-mean-square goodness of fit test. Monte Carlo estimation is used to calculate the associated P-value.

Details
To use this package, the model must be a completely specified discrete probability distribution. The function `rms.pval()` returns the P-value.

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu>
Maintainer: Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers." by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

`rms.pval`

Description

Returns the P-value associated with a root-mean-square test.

Usage

`rms.pval(observed, expected, num_sim= 1000)`

Arguments

- `observed` The observed data
- `expected` The expected data
- `num_sim` Number of Monte-Carlo simulations desired. The default is 1,000 simulations.

Details

This function calls on `test.rms()` to calculate the root-mean-square test statistic before calculating the P-value using Monte-Carlo simulation.
Value

Returns the P-value associated with the root-mean-square test.

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers," by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

test.rms

Examples

#This example is from section 5.1.2 of the referenced text

k <- c(1:128)
#Define model distribution (exp) and observed distribution (obs)
C1 <- 1/sum(1/k)
exp <- C1/k

C2 <- 1/sum(1/k^2)
obs <- C2/k^2

rms.pval(obs,exp,10000)

test.rms

Computing the root-mean-square test statistic

Description

Calculates the root-mean-square test statistic between the observed data and fully-specified model distribution.

Usage

test.rms(observed, expected)

Arguments

<table>
<thead>
<tr>
<th>observed</th>
<th>The observed data</th>
</tr>
</thead>
<tbody>
<tr>
<td>expected</td>
<td>The expected data</td>
</tr>
</tbody>
</table>
Details

Called on by rms.pval().

Author(s)

Shubhodeep Mukherji <deep.mukherji@utexas.edu>

References

"Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers," by Will Perkins, Mark Tygert, and Rachel Ward.

See Also

rms.pval
Index

*Topic package
 rms.gof-package, 1

rms.gof (rms.gof-package), 1
rms.gof-package, 1
rms.pval, 2, 2, 4

test.rms, 3, 3