Package ‘robustDA’

February 20, 2015

Type Package
Title Robust Mixture Discriminant Analysis
Version 1.1
Date 2014-09-26
Author Charles Bouveyron & Stephane Girard
Maintainer Charles Bouveyron <charles.bouveyron@parisdescartes.fr>
Depends MASS, mclust, Rsolnp
Description Robust mixture discriminant analysis (RMDA, Bouveyron & Girard, 2009) allows to build a robust supervised classifier from learning data with label noise. The idea of the proposed method is to confront an unsupervised modeling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-01-14 01:22:47

R topics documented:

 robustDA-package .. 2
 predict.rmda ... 3
 rmda ... 5

Index 8
Description

Robust mixture discriminant analysis (RMDA, Bouveyron & Girard, 2009) allows to build a robust supervised classifier from learning data with label noise. The idea of the proposed method is to confront an unsupervised modeling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>robustDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2014-09-26</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Charles Bouveyron & Stéphane Girard
Maintainer: Charles Bouveyron <charles.bouveyron@parisdescartes.fr>

References

Examples

```r
set.seed(12345)

## Simulated data
N = 600
n = N/4
S1 = S2 = S3 = S4 = 2*diag(2)
m1 = 1.5*c(-4,0)
m4 = 1.5*c(0,-4)
m3 = 1.5*c(0,4)
m2 = 1.5*c(4,0)
Z.data = rbind(mvrnorm(n,m1,S1),mvrnorm(n,m2,S2),
               mvrnorm(n,m3,S3),mvrnorm(n,m4,S4))
Z.cls = c(rep(1,n),rep(1,n),rep(2,n),rep(2,n))```
C Split in training and test sets
ind = sample(1:N,N)
X.data = Z.data[ind[1:(3*N/4)],]
X.cls = Z.cls[ind[1:(3*N/4)]]
Y.data = Z.data[ind[(3*N/4+1):N],]
Y.cls = Z.cls[ind[(3*N/4+1):N]]

## Adding noise label
cls = X.cls
nois = rbinom(length(cls),1,0.3)
lbl = cls
lbl[cls==1 & nois] = 2
lbl[cls==2 & nois] = 1

# Plot
par(mfrow=c(2,2))
plot(X.data,col=X.cls,pch=(1:19)[X.cls],
     main='Learning set with actual labels',xlab='',ylab='')
plot(X.data,col=lbl,pch=(1:19)[lbl],
     main='Learning set with noisy labels',xlab='',ylab='')

## Classification with LDA
c.lda = lda(X.data,lbl)
res.lda <- predict(c.lda,Y.data)$class

## Classification with MDA
c.mda = MclustDA(X.data,lbl,G=2)
res.mda <- predict(c.mda,Y.data)$cl
plot(Y.data,col=res.mda,pch=(1:19)[res.mda],
     main='Classification of test set with MDA',xlab='',ylab='')

## Classification with RMDA
c.rmda <- rmda(X.data,lbl,K=4,model='VEV')
res.rmda <- predict(c.rmda,Y.data)
plot(Y.data,col=res.rmda$cls,pch=(1:19)[res.rmda$cls],
     main='Classification of test set with RMDA',xlab='',ylab='')

## Classification results
cat("* Correct classification rates on test data:\n")
cat("\tLDA: \t",sum(res.lda == Y.cls) / length(Y.cls),"\n")
cat("\tMDA: \t",sum(res.mda == Y.cls) / length(Y.cls),"\n")
cat("\tRMDA: \t",sum(res.rmda$cls == Y.cls) / length(Y.cls),"\n")
**Description**

The prediction method for 'rmda' class objects which allows to predict the labels for test observations.

**Usage**

```r
S3 method for class 'rmda'
predict(object, X, ...)
```

**Arguments**

- `object` a supervised classifier generated by the rmda function (a 'rmda' object).
- `X` the test data.
- `...` additional options for internal functions.

**Value**

A list with:
- `cls`: the predicted class labels,
- `P`: the posterior probabilities that observations belong to the classes.

**Author(s)**

Charles Bouveyron & Stéphane Girard

**References**


**Examples**

```r
set.seed(12345)

Simulated data
N = 600
n = N/4
S1 = S2 = S3 = S4 = 2*diag(2)
m1 = 1.5*c(-4,0)
m4 = 1.5*c(0,-4)
m3 = 1.5*c(0,4)
m2 = 1.5*c(4,0)
Z.data = rbind(mvrnorm(n,m1,S1),mvrnorm(n,m2,S2),
 mvrnorm(n,m3,S3),mvrnorm(n,m4,S4))
Z.cls = c(rep(1,n),rep(1,n),rep(2,n),rep(2,n))

Split in training and test sets
ind = sample(1:N,N)
X.data = Z.data[ind[1:(3*N/4)],]
```
Robust Mixture Discriminant Analysis

Description

Robust mixture discriminant analysis (RMDA, Bouveyron & Girard, 2009) allows to build a robust supervised classifier from learning data with label noise. The idea of the proposed method is to confront an unsupervised modeling of the data with the supervised information carried by the labels of the learning data in order to detect inconsistencies. The method is able afterward to build a robust classifier taking into account the detected inconsistencies into the labels.
Usage

\texttt{rmda(X, cls, K = 4, model = "VEV")}

Arguments

- **X**: the data.
- **cls**: the known labels.
- **K**: the total number of groups which are assumed to exist within the known classes.
- **model**: the model name (according to the Mclust nomenclature).

Value

An object of class "rmda" with:
- **K**: the total number of groups,
- **prms**: all model parameters as returned by Mclust,
- **R**: the posterior probabilities that the fitted groups belong to the known classes.

Author(s)

Charles Bouveyron & Stéphane Girard

References


Examples

```r
set.seed(12345)

Simulated data
N = 600
n = N/4
S1 = S2 = S3 = S4 = 2*diag(2)
m1 = 1.5*c(-4,0)
m4 = 1.5*c(0,-4)
m3 = 1.5*c(0,4)
m2 = 1.5*c(4,0)
Z.data = rbind(mvrnorm(n,m1,S1),mvrnorm(n,m2,S2),
 mvrnorm(n,m3,S3),mvrnorm(n,m4,S4))
Z.cls = c(rep(1,n),rep(1,n),rep(2,n),rep(2,n))

Split in training and test sets
ind = sample(1:N,N)
X.data = Z.data[ind[1:(3*N/4)],]
X.cls = Z.cls[ind[1:(3*N/4)]]
Y.data = Z.data[ind[(3*N/4+1):N],]
Y.cls = Z.cls[ind[(3*N/4+1):N]]

Adding noise label
cls = X.cls
```
nois = rbinom(length(cls), 1, 0.3)
lbl = cls
lbl[cls==1 & nois] = 2
lbl[cls==2 & nois] = 1

# Plot
par(mfrow=c(2,2))
plot(X.data, col=X.cls, pch=(18:19)[X.cls],
    main='Learning set with actual labels', xlab='', ylab='')
plot(X.data, col=lbl, pch=(18:19)[lbl],
    main='Learning set with noisy labels', xlab='', ylab='')

## Classification with LDA
c.lda = lda(X.data, lbl)
res.lda <- predict(c.lda, Y.data)$class

## Classification with MDA
c.mda = MclustDA(X.data, lbl, G=2)
res.mda <- predict(c.mda, Y.data)$cl
plot(Y.data, col=res.mda, pch=(18:19)[res.mda],
    main='Classification of test set with MDA', xlab='', ylab='')

## Classification with RMDA
c.rmda <- rmda(X.data, lbl, K=4, model='VEV')
res.rmda <- predict(c.rmda, Y.data)
plot(Y.data, col=res.rmda$cls, pch=(18:19)[res.rmda$cls],
    main='Classification of test set with RMDA', xlab='', ylab='')

## Classification results
cat("* Correct classification rates on test data:
")
cat("tLDA:
", sum(res.lda == Y.cls) / length(Y.cls), "\n")
cat("tMDA:
", sum(res.mda == Y.cls) / length(Y.cls), "\n")
cat("tRMDA:
", sum(res.rmda$cls == Y.cls) / length(Y.cls), "\n")
Index

*Topic **discriminant analysis**
  predict.rmda, 3
  rmda, 5

*Topic **label noise**
  predict.rmda, 3
  rmda, 5

*Topic **package**
  robustDA-package, 2

predict.rmda, 3
rmda, 5
robustDA (robustDA-package), 2
robustDA-package, 2