Package ‘robustX’

February 2, 2017

Type Package
Title 'eXtra'/'eXperimental' Functionality for Robust Statistics
Version 1.2-2
Date 2017-02-02
Author Werner Stahel, Martin Maechler and potentially others
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Description Robustness -- 'eXperimental', 'eXtraneous', or 'eXtraordinary'
 Functionality for Robust Statistics. In other words, methods which are not
 yet well established, often related to methods in package 'robustbase'.
Imports grDevices, graphics, stats, utils, robustbase (>= 0.92-3)
Suggests MASS, lattice
Enhances ICS
License GPL (>= 2)
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2017-02-02 12:41:49

R topics documented:

 robustX-package .. 2
 BACON ... 3
 covNNC .. 5
 L1median ... 6
 mvBACON ... 8
 Qrot .. 10
 rbwheel ... 11
 reclas ... 13

Index 16
Description

The package robustX aims to be a collection of R functionality for robust statistics of methods and ideas that are considered as proposals, experimental, for experiences or just too much specialized to be part of the “Robust Basics” package robustbase.

Details

Package: robustX
Date: 2008-12-17, was the first, R-forge only
Version: 1.2-0
Depends: robustbase
License: GPL (>= 2)

Index:

Qrot Rotation Matrix to Specific Direction
rbwheel Multivariate Barrow Wheel Distribution
Random Vectors
L1median Compute the Multivariate L1-Median
BACON BACON for Regression or Multivariate Covariance Estimation
mvBACON BACON: Blocked Adaptive
Computationally-Efficient Outlier Nominators

Author(s)

Werner Stahel, Martin Maechler and potentially others

Maintainer: Martin Maechler

See Also

Package robustbase which it complements and on which it depends; further package robust and the whole CRAN task view on robust statistics, http://cran.R-project.org/web/views/Robust.html

Examples

pairs(rbwheel(100, 4))
Description

BACON, short for 'Blocked Adaptive Computationally-Efficient Outlier Nominators', is a somewhat robust algorithm (set), with an implementation for regression or multivariate covariance estimation.

BACON() applies the multivariate (covariance estimation) algorithm, using mvBACON(x) in any case, and when y is not NULL adds a regression iteration phase, using the auxiliary .lmBACON() function.

Usage

BACON(x, y = NULL, intercept = TRUE,
 m = min(collect * p, n * 0.5),
 init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
 man.sel, init.fraction = 0, collect = 4,
 alpha = 0.95, maxsteps = 100, verbose = TRUE)

Auxiliary function:
.lmBACON(x, y, intercept = TRUE,
 init.dis, init.fraction = 0, collect = 4,
 alpha = 0.95, maxsteps = 100, verbose = TRUE)

Arguments

x a multivariate matrix of dimension [n x p] considered as containing no missing values.

y the response (n vector) in the case of regression, or NULL for the multivariate case.

intercept logical indicating if an intercept has to be used for the regression.

m integer in 1:n specifying the size of the initial basic subset; used only when init.sel is not "manual"; see mvBACON.

init.sel character string, specifying the initial selection mode; see mvBACON.

man.sel only when init.sel == "manual", the indices of observations determining the initial basic subset (and m <= length(man.sel)).

init.dis the distances of the x matrix used for the initial subset determined by mvBACON.

init.fraction if this parameter is > 0 then the tedious steps of selecting the initial subset are skipped and an initial subset of size n * init.fraction is chosen (with smallest dis)

collect numeric factor chosen by the user to define the size of the initial subset (p * collect)

alpha significance level.

maxsteps the maximal number of iteration steps (to prevent infinite loops)

verbose logical indicating if messages are printed which trace progress of the algorithm.
Details

init.sel: the initial selection mode; implemented modes are: "Mah" -> based on Mahalanobis distance (default) "dis" -> based on the distances from the medians "ran" -> based on a random selection "man" -> based on manual selection in this case the vector 'man.sel' which contains the indices of the selected observations must be given. "Mah" and "dis" are proposed by Hadi while "ran" and "man" were implemented in order to study the behaviour of BACON.

Value

basically a list with components

subset the observation indices (in 1:n) denoting the subset of "good" observations.

tis

Author(s)

Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1; 25.05.2001; modified six times till 17.6.2001.

Port to R, testing etc, by Martin Maechler.

References

See Also

mvBACON, the multivariate version of the BACON algorithm.

Examples

data(starsCYG, package = "robustbase")
Plot simple data and fitted lines
plot(starsCYG)
lmST <- lm(log.light ~ log.Te, data = starsCYG)
(B.ST <- with(starsCYG, BACON(x = log.Te, y = log.light)))
require(robustbase)
(RlmST <- lmrob(log.light ~ log.Te, data = starsCYG))
abline(lmST, col = "red")
abline(RlmST, col = "blue")
covNCC

Description

covNCC() estimates robust covariance/dispersion matrices by the nearest neighbor variance estimation (NNVE) or (rather) “Nearest Neighbor Cleaning” (NNC) method of Wang and Raftery (2002, *JASA*).

Usage

covNCC(X, k = min(12, n - 1), pnoise = 0.05, emconv = 0.001, bound = 1.5, extension = TRUE, devsm = 0.01)

Arguments

- **x**
 - matrix in which each row represents an observation or point and each column represents a variable.
- **k**
 - desired number of nearest neighbors (default is 12)
- **pnoise**
 - percent of added noise
- **emconv**
 - convergence tolerance for EM
- **bound**
 - value used to identify surges in variance caused by outliers wrongly included as signal points (bound = 1.5 means a 50 percent increase)
- **extension**
 - whether or not to continue after reaching the last chi-square distance. The default is to continue, which is indicated by setting extension = TRUE.
- **devsm**
 - when extension = TRUE, the algorithm stops if the relative difference in variance is less than devsm. (default is 0.01)

Value

A list with components

- **cov**
 - covariance matrix
- **mu**
 - mean vector
- **postprob**
 - posterior probability
- **classification**
 - classification (0=noise otherwise 1) obtained by rounding postprob
- **innc**
 - list of initial nearest neighbor cleaning results (components are the covariance, mean, posterior probability and classification)

Note

Terms of use: GPL version 2 or newer.

MM: Even though covNCC() is backed by a serious scientific publication, I cannot recommend its use at all.
Author(s)
Naisyin Wang <nwang@stat.tamu.edu> and Adrian Raftery <raftery@stat.washington.edu> with contributions from Chris Fraley <fraley@stat.washington.edu>.

covNNC(), then named cov.nnve(), used to be (the only function) in CRAN package <covRobust> (2003), which was archived in 2012.

Martin Maechler allowed ncol() \[Q \]
, sped up the original code, by reducing the amount of scaling; further, the accuracy was increased (using internal q.d0k()). The original version is available, unexported as robustX:::covNNC1.

References

See Also

cov.mcd from package MASS; covMcd, and covOGK from package robustbase.

The whole package rrcov.

Examples

data(iris)
covNNC(iris[,5])

data(hbk, package="robustbase")
hbk.x <- data.matrix(hbk[,1:3])
covNNC(hbk.x)

L1median
Compute the Multivariate L1-Median

Description

Compute the multivariate \(L_1 \)-median \(m \), i.e., the minimizer of

\[
\sum_{i=1}^{n} \|x_i - m\|,
\]

where \(\|u\| = \sqrt{\sum_{j=1}^{p} u_j^2} \).

As a convex problem, there's always a global minimizer, computable not by a closed formula but rather an iterative search. As the (partial) first derivatives of the objective function is undefined at the data points, the minimization is not entirely trivial.
L1median

Usage

L1median(X, m.init = colMedians(X), weights = NULL,
method = c("nlm", "HoCrJo", "VardiZhang", optimMethods, nlminbMethods),
pscale = apply(abs(centr(X, m.init)), 2, mean, trim = 0.40),
tol = 1e-08, maxit = 200, trace = FALSE,
zero.tol = 1e-15, ...)

Arguments

X numeric matrix of dimension \(n \times p \), say.
m.init starting value for \(m \); typically and by default the coordinatewise median.
weights optional numeric vector of non-negative weights; currently only implemented for method "VardiZhang".
method character string specifying the computational method, i.e., the algorithm to be used (can be abbreviated).
pscale numeric \(p \)-vector of positive numbers, the coordinate-wise scale (typical size of \(\delta m_j \)), where \(m \) is the problem's solution.
tol positive number specifying the (relative) convergence tolerance.
maxit positive integer specifying the maximal number of iterations (before the iterations are stopped prematurely if necessary).
trace an integer specifying the tracing level of the iterations; \(0 \) does no tracing
zero.tol for method "VardiZhang", a small positive number specifying the tolerance for determining that the iteration is 'exactly' at a data point (which is a singularity).
... optional arguments to \texttt{nlm()} or the control (list) arguments of \texttt{optim()}, or \texttt{nlminb()}, respectively.

Details

Currently, we have to refer to the "References" below.

Value

currently the result depends strongly on the method used.
FIXME. This will change considerably.

Author(s)

Martin Maechler. Method "HoCrJo" is mostly based on Kristel Joossens' \texttt{R} function, implementing Hossjer and Croux (1995).

References

See Also

median, covMcd

CRAN package pcaPP added more L1 median methods, re-implementing our R versions in C++, see Fritz et al.(2012) and e.g., l1median_NLM().

Examples

data(stackloss)
L1median(stackloss)
L1median(stackloss, method = "HoCrJo")

m <- eval(formals(L1median)$method); allMeths <- m[m != "Brent"]
L1m <- sapply(allMeths, function(meth) L1median(stackloss, method = meth))

--> with a warning for L-BFGS-B
str(L1m)
pm <- sapply(L1m, function(.) if(is.numeric(.)).else.$par)
t(pm) # SANN differs a bit; same objective ?

mvBACON

BACON: Blocked Adaptive Computationally-Efficient Outlier Nominators

Description

This function performs an outlier identification algorithm to the data in the x array [n x p] and y vector [n] following the lines described by Hadi et al. for their BACON outlier procedure.

Usage

mvBACON(x, collect = 4, m = min(collect * p, n * 0.5), alpha = 0.95,
init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
man.sel, maxsteps = 100, allowSingular = FALSE, verbose = TRUE)

Arguments

- **x** numeric matrix (of dimension [n x p]), not supposed to contain missing values.
- **collect** a multiplication factor, when init.sel is not "manual", to define m, the size of the initial basic subset, as m <- min(p * collect, n/2).
- **m** integer in 1:n specifying the size of the initial basic subset; used only when init.sel is not "manual".
- **alpha** significance level for the \(\chi^2 \) cutoff, used to define the next iterations basic subset.
init.sel character string, specifying the initial selection mode; implemented modes are:
 "Mahalanobis" based on Mahalanobis distances (default)
 "dUniMedian" based on the distances from the univariate medians
 "random" based on a random selection
 "manual" based on manual selection; in this case, a vector man.sel containing
 the indices of the selected observations must be specified.

man.sel only when init.sel == "manual", the indices of observations determining the
 initial basic subset (and m <- length(man.sel)).

maxsteps maximal number of iteration steps.

allowSingular logical indicating a solution should be sought also when no matrix of rank p is
 found.

verbose logical indicating if messages are printed which trace progress of the algorithm.

Value
 a list with components
 subset logical vector of length n where the i-th entry is true iff the i-th observation is
 part of the final selection.
 dis numeric vector of length n with the (Mahalanobis) distances.
 cov $p \times p$ matrix, the corresponding robust estimate of covariance.

Author(s)
 Ueli Oetliker, Swiss Federal Statistical Office, for S-plus 5.1. Port to R, testing etc, by Martin
 Maechler

References
 Efficient Outlier Nominators; Computational Statistics and Data Analysis 34, 279–298.

See Also
 covMcd for a high-breakdown (but more computer intensive) method; BACON for a “generalization”,
 notably to regression.

Examples
 require(robustbase) # for example data and covMcd():
 ## simple 2D example :
 plot(starsCYG, main = "starsCYG data (n=47)"
B.st <- mvBACON(starsCYG)
pal <- colors()[c(1,2,3,1)]
points(starsCYG[!B.st$subset,], pch = 4, col = 2, cex = 1.5)
stopifnot(identical(which(!B.st$subset), c(7L, 9L, 11L, 14L, 20L, 30L, 34L)))
 ## finds the clear outliers (and 3 "borderline")

'coleman' from pkg 'robustbase'
coleman.x <- data.matrix(coleman[, 1:6])
Cc <- covMcd(coleman.x) # truly robust
summary(Cc) # -> 6 outliers (1,3,10,12,17,18)
Cb1 <- mvBACON(coleman.x) #-> subset is all TRUE hmm??
Cb2 <- mvBACON(coleman.x, init.sel = "dUniMedian")
stopifnot(all.equal(Cb1, Cb2))
Cb.r <- lapply(1:20, function(i) { set.seed(i)
 mvBACON(coleman.x, init.sel="random", verbose=FALSE) })
rm <- names(Cb.r[[1]]); rm <- rm[rm != "steps"]
all(eqC <- sapply(Cb.r[-1], function(CC) all.equal(CC[nm], Cb.r[[1]][nm])))) # TRUE
--> BACON always breaks down, i.e., does not see the outliers here
breaks down even when manually starting with all the non-outliers:
Cb.man <- mvBACON(coleman.x, init.sel = "manual",
 man.sel = setdiff(1:20, c(1,3,10,12,17,18)))
which(! Cb.man$subset) # the outliers according to mvBACON: _none_

Qrot

Rotation Matrix to Specific Direction

Description

Construct the \(p \times p \) rotation matrix that rotates the unit vector \((1,0,...,0)\), i.e., the \(x_1 \)-axis, onto \((1,1,1,...,1)/\sqrt{p}\), or more generally to \(u/\|u\| \) \((u := \text{unit.image})\).

Usage

\[
\text{Qrot}(p, \text{transpose} = \text{FALSE}, \text{unit.image} = \text{rep}(1, p))
\]

Arguments

- **p**

 integer; the dimension (of the vectors involved).

- **transpose**

 logical indicating if the transposed matrix is to returned.

- **unit.image**

 numeric vector of length \(p \) onto which the unit vector should be rotated; defaults to "the diagonal" \(\propto (1,1,1,...,1) \).

Details

The qr decomposition is used for a Gram-Schmitt basis orthogonalization.

Value

\(p \times p \) orthogonal matrix which rotates \((1,0,...,0)\) onto a vector proportional to unit.image.
rbwheel

Author(s)
Martin Maechler

See Also
qr, matrix (and vector) multiplication, \%

Examples
Q <- qrot(6)
zapsmall(crossprod(Q)) # 6 x 6 unity \iff Q'Q = I \iff Q orthogonal

if(require("MASS")) {
 Qt <- qrot(6, transpose = TRUE)
 stopifnot(all.equal(Qt, t(Q)))
 fractions(Qt ^ 2) \iff 1/6 1/30 etc, in an almost lower-triangular matrix
}

rbwheel

Multivariate Barrow Wheel Distribution Random Vectors

Description
Generate \(p \)-dimensional random vectors according to Stahel’s Barrow Wheel Distribution.

Usage
rbwheel(n, p, frac = 1/p, sig1 = 0.05, sig2 = 1/10,
 rGood = rnorm,
 rOut = function(n) sqrt(rchisq(n, p - 1)) * sign(runif(n, -1, 1)),
 U1 = rep(1, p),
 scaleAfter = TRUE, scaleBefore = FALSE, spherezize = FALSE,
 fullResult = FALSE)

Arguments
n integer, specifying the sample size.
p integer, specifying the dimension (aka number of variables).
frac numeric, the proportion of outliers. The default, \(1/p \), corresponds to the (asymptotic) breakdown point of M-estimators.
sig1 thickness of the “wheel”, \(\sigma (\text{good}[1]) \), a non-negative numeric.
sig2 thickness of the “axis” (compared to 1).
rGood function; the generator for “good” observations.
rOut function, generating the outlier observations.
U1 p-vector to which \((1, 0, \ldots, 0)\) is rotated.
scaleAfter logical indicating if the matrix is re-scaled after rotation (via `scale()`). Default TRUE; note that this used to be false by default in the first public version.

scaleBefore logical indicating if the matrix is re-scaled before rotation (via `scale()`).

spherize logical indicating if the matrix is to be “spherized”, i.e., rotated and scaled to have empirical covariance I_p. This means that the principal components are used (before rotation).

fullResult logical indicating if in addition to the $n \times p$ matrix, some intermediate quantities are returned as well.

Details

Value

By default (when `fullResult` is FALSE), an $n \times p$ matrix of n sample vectors of the p dimensional barrow wheel distribution, with an attribute, `n1` specifying the exact number of “good” observations, $n1 \approx (1 - f) \cdot n$, $f = \frac{1}{n}$.

If `fullResult` is TRUE, a list with components

- `X` the $n \times p$ matrix of above, $X = X0 \%\% A$, where $A \leftarrow Qrot(p, u = U1)$, and $X0$ is the corresponding matrix before rotation, see below.

- `X0`

- `A` the $p \times p$ rotation matrix, see above.

- `n1` the number of “good” observations, see above.

- `n2` the number of “outlying” observations, $n2 = n - n1$.

Author(s)

Werner Stahel and Martin Maechler

References

http://stat.ethz.ch/people/maechler/robustness

Examples

```r
set.seed(17)
rX8 <- rbwheel(100, 8, fullResult = TRUE, scaleAfter=FALSE)
with(rX8, stopifnot(all.equal(X, X0 %*% A, tol = 1e-15),
                 all.equal(X0, X %*% t(A), tol = 1e-15)))
#---> here, don't need to keep X0 (nor A, since that is Qrot(p))

## for n = 100, you don't see "it", but may guess .. :
n <- 100
pairs(r <- rbwheel(n,6))
```
reclas

Recursive Robust Median-like Location and Scale

Description

Calculate an estimate of location, asymptotically equivalent to the median, and an estimate of scale equal to the MEAN absolute deviation. Both done recursively.

Usage

reclas(y, b = 0.2, mfn = function(n) 0.1 * n^(-0.25), nstart = 30, m0 = median(y0), scon=NULL, updateScale = is.null(scon))
Arguments

- **y**: numeric vector of i.i.d. data whose location and scale parameters are to be estimated.
- **b**: numeric tuning parameter (default value equal to that used by Holst, 1987).
- **mfn**: a function of the index of the data which must be positive and and tend to 0 as the index tends to infinity. The default function is that used by Holst, 1987.
- **nstart**: number of starting values: Starting values for the algorithm are formed from the first nstart values of y. The default value is that used in Cameron and Turner, 1993.
- **m0**: value for the initial approximate median; by default, the median of the first nstart observations.
- **scon**: value for the scale parameter s, a function or NULL. When NULL, as by default, the scale is initialized to the mean of the absolute differences between the first nstart y values and m0. If scon is a function, the initial scale is set to scon(y0, m0), where y0 is the vector of the first nstart y values. Note that scon also determines the default for updateScale.
- **updateScale**: a logical indicating if the scale, initialized from scon should be updated in each iteration. Otherwise, the the scale is held constant throughout and the algorithm becomes equivalent to the algorithm of Holst.

Value

An S3 “object” of class "reclas"; simply a list with entries

- **locn**: the successive recursive estimates of location. The first nstart - 1 of these are NA.
- **scale**: the successive recursive estimates of scale if updateScale is true; otherwise the constant value used for the scale.
- **updateScale**: the same as the function argument.
- **call**: the function call, i.e., match.call.

There is a plot method for "reclas", see the examples.

Author(s)

<r.turner@auckland.ac.nz> http://www.stat.auckland.ac.nz/~rolf

Extensions by Martin Maechler (scon as function; updateScale, plot()).

References

Examples

set.seed(42)
y <- rt(10000, df = 1.5) # not quite Gaussian ...
z1 <- reclas(y)
z3 <- reclas(y, scon = 1) # correct fixed scale
z4 <- reclas(y, scon = 100) # wrong fixed scale
z2 <- reclas(y, # a more robust initial scale:
 scon = function(y0, m0) robustbase::Qn(y0 - m0),
 updateScale = TRUE) # still updated

Visualizing -- using the plot() method for "reclas":
M <- median(y); yl <- c(-1,1)* 0.5
OP <- par(mfrow=c(2,2), mar=.1+c(3,3,1,1), mgp=c(1.5, .6, 0))
plot(z1, M=M, ylim=yl)
plot(z2, M=M, ylim=yl)
plot(z3, M=M, ylim=yl)
plot(z4, M=M, ylim=yl)
par(OP)
Index

*Topic **array**
 Qrot, 10

*Topic **distribution**
 rbwheel, 11

*Topic **multivariate**
 covNNC, 5
 L1median, 6
 mvBACON, 8

*Topic **package**
 robustX-package, 2

*Topic **regression**
 BACON, 3

*Topic **robust**
 BACON, 3
 covNNC, 5
 L1median, 6
 mvBACON, 8
 rbwheel, 11
 reclas, 13

*Topic **univar**
 reclas, 13
 .lmBACON (BACON), 3
 %*, 11

 BACON, 3, 9
 class, 14
 cov.mcd, 6
 cov.nnve (covNNC), 5
 covMcd, 6, 8, 9
 covNNC, 5
 covOGK, 6

 function, 14

 L1median, 6
 l1median_NLM, 8
 list, 4

 match.call, 14
 matrix, 7

 median, 8, 14
 mvBACON, 3, 4, 8

 nlm, 7
 nlminb, 7
 nlminbMethods (L1median), 6

 optim, 7
 optimMethods (L1median), 6

 plot, 14
 plot.reclas (reclas), 13

 qr, 10, 11
 Qrot, 10, 12

 rbwheel, 11
 reclas, 13
 robustX (robustX-package), 2
 robustX-package, 2

 scale, 12