Package ‘robustfa’

February 20, 2015

Type Package
Title An Object Oriented Solution for Robust Factor Analysis
Version 1.0-5
Date 2013-11-09
Author Ying-Ying Zhang (Robert)
Maintainer Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>
Description An object oriented solution for robust factor analysis. In the solution, new S4 classes `Fa`, `FaClassic`, `FaRobust`, `FaCov`, `SummaryFa` are created.
License GPL (>= 2)
Depends rrcov, R (>= 2.15.0)
Imports methods, stats4, stats
Suggests grid, lattice, cluster, mclust, MASS, ellipse
Repository CRAN
NeedsCompilation no
Date/Publication 2013-11-12 15:02:31

\textbf{R topics documented:}

- robustfa-package .. 2
- computeScores ... 3
- compute_cov_cor .. 4
- detail ... 5
- Fa-class ... 6
- FaClassic .. 9
- FaClassic-class ... 10
- FaCov ... 12
- FaCov-class ... 13
- factorScorePca ... 15
- factorScorePfa ... 17
- FaRobust-class .. 19
- fsOrder .. 21
Description

An object oriented solution for robust factor analysis. In the solution, new S4 classes "Fa", "FaClassic", "FaRobust", "FaCov", "SummaryFa" are created.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>robustfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0-5</td>
</tr>
<tr>
<td>Date</td>
<td>2013-11-09</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>Depends</td>
<td>methods</td>
</tr>
</tbody>
</table>

The most important functions are: FaClassic, FaCov, factorScorePca, factorScorePfa

Author(s)

Ying-Ying Zhang (Robert)

Maintainer: Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>
References

Examples

library("robustfa")

computeScores Compute Factor Scores

Description

Compute factor scores on the result of factor analysis method, the method is one of "mle", "pca", and "pfa".

Usage

computeScores(out, x = data, covmat = covmat, cor = cor, scoresMethod = scoresMethod)

Arguments

out The result of factorScorePca(), factorScorePfa(), or factanal(). It is a list.

x A numeric matrix.

covmat A list with components: cov, center, and n.obs.

cor A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).

scoresMethod Type of scores to produce, if any. The default is "none", "regression" gives Thompson's scores, "Bartlett" gives Bartlett's weighted least-squares scores.

Value

The output is a list. Except for the components of out, it also has components:

scoringCoef The scoring coefficients.

scores The matrix of scores.

meanF The sample mean of the scores.

corF The sample correlation matrix of the scores.

eigenvalues The eigenvalues of the running matrix.

covariance The covariance matrix.

correlation The correlation matrix.

usedMatrix The used matrix (running matrix) to compute scoringCoef etc..

reducedCorrelation NULL. The reduced correlation matrix, reducedCorrelation is calculated in factorScorePfa.R.

scoringCoef = F = meanF = corF = NULL if scoresMethod = "none".
Author(s)
Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

Examples
```r
data("stock611")
stock604 = stock611[-c(92, 2, 337, 338, 379, 539, 79), ]
data = as.matrix(stock604[, 3:12])

factors = 2
cor = TRUE
scoresMethod = "regression"
covx = Cov(data)
covmat = list(cov = get Cov(covx), center = get Center(covx), n.obs = covx@n.obs)
out = factanal(factors = factors, covmat = covmat)
out = computeScores(out, x = data, covmat = covmat, cor = cor, scoresMethod = scoresMethod)
out
```

compute_cov_cor

Compute the Robust Covariance and Correlation Matrix of A Numeric Matrix

Description
Compute the robust covariance and correlation matrix of a numeric matrix. The function is used to check whether $S_r \neq S_r_{\tilde{\text{tilda}}}$ and $R_r = R_r_{\tilde{\text{tilda}}}$?

Usage
```r
compute_cov_cor(x, control)
```

Arguments
- **x**: A numeric matrix or an object that can be coerced to a numeric matrix.
- **control**: A control object (S4) for one of the available control classes, e.g. CovControlMcd-class, CovControlOgk-class, CovControlSest-class, etc., containing estimation options. The class of this object defines which estimator will be used. Alternatively a character string can be specified which names the estimator - one of auto, sde, mcd, ogk, m, mve, sfast, surreal, bisquare, rocke. If "auto" is specified or the argument is missing, the function will select the estimator.
Value

A list with the following components:

- \(S_r \) The robust covariance matrix of \(\text{cov}_x \).
- \(S_{r, \text{tilde}} \) The robust covariance matrix of \(\text{cov}_{\text{scale}}_x \).
- \(R_r \) The robust correlation matrix of \(\text{cov}_x \).
- \(R_{r, \text{tilde}} \) The robust correlation matrix of \(\text{cov}_{\text{scale}}_x \).

\[
\text{cov}_x = \text{CovRobust}(x = x, \ \text{control} = \text{control}) \quad \text{cov}_{\text{scale}}_x = \text{CovRobust}(x = \text{scale}(x), \ \text{control} = \text{control})
\]

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

Examples

```r
data("hbk")
hbk.x = hbk[,1:3]

compute_cov_cor(x = hbk.x, control = "mcd")
```

detail

Show Details of an Object

Description

Show details of an object.

Usage

detail(x)

Arguments

- \(x \) Any R object to be tested.
Fa-class

Value
A list with components:

- `x` The argument `x`.
- `isS4` Logical, indicates whether `x` is an S4 object.
- `isObject` Logical, indicates whether `x` is an object, i.e., with a class attribute.
- `class` The class of `x`.
- `attributes` The attributes of `x`. Usually `result$attributes` is also a list.

Author(s)
Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also
`isS4`, `isObject`, `class`, `attributes`

Examples
```r
data(stock611)
detail(stock611)

facovRegGk <- FaCov(x = scale(stock611[, 3:12]), factors = 3, cov.control = CovControlGk(), scoresMethod = "regression"); facovRegGk
detail(facovRegGk)
```

Fa-class

Class "Fa"

Description
Class "Fa" is a virtual base class for all classical and robust FA classes. "Fa" serves as a base class for deriving all other classes representing the results of the classical and robust Factor Analysis methods.

Objects from the Class
A virtual Class: No objects may be created from it.
Fa-class

Slots

call: Object of class "language" an unevaluated function call.

converged: Object of class "logical" a logical character indicates whether the iterations converged.

loadings: Object of class "matrix" the matrix of variable loadings.

communality: Object of class "vector" the communality.

uniquenesses: Object of class "vector" the uniquenesses computed.

cor: Object of class "logical" A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).

covariance: Object of class "matrix" The robust/classical covariance matrix.

correlation: Object of class "matrix" The robust/classical correlation matrix.

usedMatrix: Object of class "matrix" The used matrix (running matrix). It may be the covariance or correlation matrix according to the value of cor.

reducedCorrelation: Object of class "matrix" The last reduced correlation matrix. reduced-Correlation is only calculated in factorScorePfa.R.

criteria: Object of class "numeric". The results of the optimization: the value of the negative log-likelihood and information on the iterations used.

factors: Object of class "numeric" the number of factors.

dof: Object of class "numeric". The number of degrees of freedom of the factor analysis model.

method: Object of class "character". The method: one of "mle", "pca", and "pfa".

scores: Object of class "matrix". If requested, a matrix of scores.

scoresMethod: Object of class "character". The scores method: one of "none", "regression", and "Bartlett".

scoringCoef: Object of class "matrix" the matrix of scoring coefficients.

meanF: Object of class "vector" the column means of scores.

corF: Object of class "matrix" the correlation matrix of the scores.

STATISTIC: Object of class "numeric". The significance-test statistic, if it can be computed.

PVAL: Object of class "numeric". The significance-test P value, if it can be computed.

n.obs: Object of class "numeric". The number of observations.

center: Object of class "vector". The center of the data.

eigenvalues: Object of class "vector" the eigenvalues.

cov.control: Object of class "UCovControl". Record the cov control method.

Methods

getCenter signature(obj = "Fa"): center of the data

getEigenvalues signature(obj = "Fa"): the eigenvalues of the covariance/correlation matrix

getFa signature(obj = "Fa"): returns an S3 list of class fa for compatibility with the function factanal(). Thus the standard screeplot() can be used.

getLoadings signature(obj = "Fa"): returns the matrix loadings
getQuan signature(obj = "Fa"): returns the number of observations used in the computation, i.e., n.obs

gScores signature(obj = "Fa"): if requested, a matrix of scores.
gSdev signature(obj = "Fa"): returns the standard deviations of the factor analysis, i.e., the square roots of the eigenvalues of the covariance/correlation matrix

plot signature(x = "Fa", y = "missing"): produces a scatterplot of the factor scores (if which = "factorScore") or shows the eigenvalues plot (if which = "screeplot")

predict signature(object = "Fa"): calculates prediction using the results in object. The new-data argument is an optional data frame or matrix in which to look for variables with which to predict. If newdata is omitted, the scores are used.

print signature(x = "Fa"): prints the results. obj = print(obj) = show(obj)

show signature(object = "Fa"): prints the results. obj = print(obj) = show(obj)

summary signature(object = "Fa"): produce result summaries of an object of class "Fa".

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class

Examples

showClass("Fa")
FaClassic

Classical Factor Analysis

Description

Performs a classical factor analysis and returns the results as an object of class "FaClassic" (a.k.a. constructor).

Usage

```
FaClassic(x, ...)  
## S3 method for class 'formula'
FaClassic(formula, data = NULL, factors = 2, cor = FALSE, method = "mle",
          scoresMethod = "none", ...)
## Default S3 method:
FaClassic(x, factors = 2, cor = FALSE, method = c("mle", "pca", "pfa"),
          scoresMethod = c("none", "regression", "Bartlett"), ...)
```

Arguments

- `x`: A formula or a numeric matrix or an object that can be coerced to a numeric matrix.
- `...`: Arguments passed to or from other methods.
- `formula`: A formula with no response variable, referring only to numeric variables.
- `data`: An optional data frame (or similar: see `model.frame`) containing the variables in the formula.
- `factors`: The number of factors to be fitted.
- `cor`: A logical value indicating whether the calculation should use the covariance matrix (`cor = FALSE`) or the correlation matrix (`cor = TRUE`).
- `method`: The method of factor analysis, one of "mle" (the default), "pca", and "pfa".
- `scoresMethod`: Type of scores to produce, if any. The default is "none". "regression" gives Thompson's scores, "Bartlett" gives Bartlett's weighted least-squares scores.

Value

An S4 object of class `FaClassic-class` which is a subclass of the virtual class `Fa-class`.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class

Examples

data("hbk")
hbk.x = hbk[,1:3]

faClassicPcaReg uses the default method
faClassicPcaReg = FaClassic(x = hbk.x, factors = 2, method= "pca", scoresMethod= "regression"); faClassicPcaReg
summary(faClassicPcaReg)

faClassicForPcaReg uses the formula interface
faClassicForPcaReg = FaClassic(~., data=as.data.frame(hbk.x), factors = 2, method= "pca", scoresMethod= "regression"); faClassicForPcaReg
summary(faClassicForPcaReg)

FaClassic-class
Class "FaClassic"

Description

Contains the results of a classical Factor Analysis

Objects from the Class

Objects can be created by calls of the form new("FaClassic", ...). But the usual way of creating FaClassic objects is a call to the function FaClassic which serves as a constructor.

Slots

call: Object of class "language" an unevaluated function call
converged: Object of class "logical" a logical character indicates whether the iterations converged
loadings: Object of class "matrix" the matrix of variable loadings
uniquenesses: Object of class "vector" the uniquenesses computed
covariance: Object of class "matrix" the covariance matrix
correlation: Object of class "matrix" the correlation matrix
usedMatrix: Object of class "matrix" the used matrix (running matrix)
criteria: Object of class "numeric". The results of the optimization: the value of the negative log-likelihood and information on the iterations used.
factors: Object of class "numeric" the number of factors
dof: Object of class "numeric". The number of degrees of freedom of the factor analysis model.

method: Object of class "character". The method: one of "mle", "pca", and "pfa".

scores: Object of class "matrix". If requested, a matrix of scores.

scoresMethod: Object of class "character". The scores method: one of "none", "regression", and "Bartlett".

STATISTIC: Object of class "numeric". The significance-test statistic, if it can be computed.

PVAL: Object of class "numeric". The significance-test P value, if it can be computed.

n.obs: Object of class "numeric". The number of observations if available.

center: Object of class "vector". The center of the data.

eigenvalues: Object of class "vector" the eigenvalues

cov.control: Object of class "UCovControl". Record the cov control method.

Extends

Class "Fa", directly.

Methods

No methods defined with class "FaClassic" in the signature.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class

Examples

showClass("FaClassic")
FaCov

Robust Factor Analysis

Description

Robust factor analysis are obtained by replacing the classical covariance matrix by a robust covariance estimator. This can be one of the available estimators in rrcov, i.e., MCD, OGK, M, S, SDE, or MVE estimator.

Usage

FaCov(x, ...)
S3 method for class 'formula'
FaCov(formula, data = NULL, factors = 2, cor = FALSE, method = "mle",
scoresMethod = "none", ...)
Default S3 method:
FaCov(x, factors = 2, cor = FALSE, cov.control = CovControlMcd(),
method = c("mle", "pca", "pfa"),
scoresMethod = c("none", "regression", "Bartlett"), ...)

Arguments

x
A formula or a numeric matrix or an object that can be coerced to a numeric matrix.

...
Arguments passed to or from other methods.

formula
A formula with no response variable, referring only to numeric variables.

data
An optional data frame (or similar: see model.frame) containing the variables in the formula.

factors
The number of factors to be fitted.

cor
A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).

method
The method of factor analysis, one of "mle" (the default), "pca", and "pfa".

scoresMethod
Type of scores to produce, if any. The default is "none". "regression" gives Thompson’s scores, "Bartlett" gives Bartlett’s weighted least-squares scores.

cov.control
Specifies which covariance estimator to use by providing a CovControl-class object. The default is CovControlMcd-class which will indirectly call CovMcd. If cov.control=NULL is specified, the classical estimates will be used by calling CovClassic.

Details

FaCov, serving as a constructor for objects of class FaCov-class is a generic function with "formula" and "default" methods.
Value

An S4 object of class FaCov-class which is a subclass of the virtual class Fa-class.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class

Examples

data("hbk")
hbk.x = hbk[,1:3]

faCovPcaRegMcd is obtained from FaCov.default
##
faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca",
scoresMethod = "regression", cov.control = CovControlMcd()); faCovPcaRegMcd

In fact, it is equivalent to use FaCov.formula
faCovForPcaRegMcd = faCovPcaRegMcd
##
faCovForPcaRegMcd = FaCov(~., data = as.data.frame(hbk.x),
factors = 2, method = "pca", scoresMethod = "regression",
cov.control = CovControlMcd()); faCovForPcaRegMcd

FaCov-class

Class "FaCov"

Description

Robust FA based on a robust covariance matrix. Robust FA are obtained by replacing the classical covariance matrix by a robust covariance estimator. This can be one of the available in rrcov estimators, i.e., MCD, OGK, M, S, SDE, or MVE estimator.

Objects from the Class

Objects can be created by calls of the form new("FaCov", ...). But the usual way of creating FaCov objects is a call to the function FaCov which serves as a constructor.
Slots

call: Object of class "language" an unevaluated function call
converged: Object of class "logical" a logical character indicates whether the iterations converged
loadings: Object of class "matrix" the matrix of variable loadings
uniquenesses: Object of class "vector" the uniquenesses computed
covariance: Object of class "matrix" the covariance matrix
correlation: Object of class "matrix" the correlation matrix
usedMatrix: Object of class "matrix" the used matrix (running matrix)
criteria: Object of class "Unumeric". The results of the optimization: the value of the negative
log-likelihood and information on the iterations used.
factors: Object of class "numeric" the number of factors
dof: Object of class "Unumeric". The number of degrees of freedom of the factor analysis model.
method: Object of class "character". The method: one of "mle", "pca", and "pfa".
scores: Object of class "Umatrix". If requested, a matrix of scores.
scoresMethod: Object of class "character". The scores method: one of "none", "regression", and "Bartlett".
STATISTIC: Object of class "Unumeric". The significance-test statistic, if it can be computed.
PVAL: Object of class "Unumeric". The significance-test P value, if it can be computed.
n.obs: Object of class "Unumeric". The number of observations if available.
center: Object of class "Uvector". The center of the data.
eigenvalues: Object of class "vector" the eigenvalues
cov.control: Object of class "UCovControl". Record the cov control method.

Extends

Class "FaRobust", directly. Class "Fa", by class "FaRobust", distance 2.

Methods

No methods defined with class "FaCov" in the signature.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class
factorScorePca

Examples

showClass("FaCov")

def factorScorePca:
 # Factor Analysis by Principal Component Analysis (PCA)
 # Description
 # Perform principal component factor analysis on a covariance matrix or data matrix.
 # Usage
 # factorScorePca(x, factors = 2, covmat = NULL, cor = FALSE,
 # rotation = c("varimax", "none"),
 # scoresMethod = c("none", "regression", "Bartlett")

 Arguments

 x A numeric matrix or an object that can be coerced to a numeric matrix.
 factors The number of factors to be fitted.
 covmat A covariance matrix, or a covariance list as returned by cov.wt. Of course, correlation matrices are covariance matrices.
 cor A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).
 rotation character. "none" or "varimax": it will be called with first argument the loadings matrix, and should return a list with component loadings giving the rotated loadings, or just the rotated loadings.
 scoresMethod Type of scores to produce, if any. The default is "none", "regression" gives Thompson's scores, "Bartlett" gives Bartlett's weighted least-squares scores.

 Details

 Other feasible usages are:
 factorScorePca(factors, covmat)
 factorScorePca(x, factors, rotation, scoresMethod)

 If x is missing, then the following components of the result will be NULL: scores, ScoringCoef, meanF, corF, and n.obs.
factorScorePca

Value

An object of class "factorScorePca" with components:

call The matched call.
loadings A matrix of loadings, one column for each factor. This is of class "loadings" if rotation = "varimax": see loadings for its print method; It is a plain matrix if rotation = "none".
communality The common variance.
uniquenesses The uniquenesses/specific variance computed.
covariance The robust/classical covariance matrix.
correlation The robust/classical correlation matrix.
usedMatrix The used matrix (running matrix). It may be the covariance or correlation matrix according to the value of cor.
reducedCorrelation NULL. The reduced correlation matrix, reducedCorrelation is calculated in factorScorePfa.R.
factors The argument factors.
method The method: always "pca".
scores If requested, a matrix of scores. NULL if x is missing.
scoringCoef The scoring coefficients. NULL if x is missing.
meanF The sample mean of the scores. NULL if x is missing.
corF The sample correlation matrix of the scores. NULL if x is missing.
scoresMethod The argument scoresMethod.
n.obs The number of observations if available. NULL if x is missing.
center The center of the data.
eigenvalues The eigenvalues of the usedMatrix.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

factorScorePfa, factanal
factorScorePfa

Factor Analysis by Principal Factor Analysis (PFA)

Examples

```
data(stock611)
R611=cor(stock611[,3:12]); R611
```

```r
## covmat is a matrix
fsPca1=factorScorePca(factors = 3, covmat = R611); fsPca1
```

```r
## covmat is a list
covx <- Cov(stock611[,3:12])
covmat <- list(cov=getCov(covx), center=getCenter(covx), n.obs=getcov@n.obs)
fsPca2=factorScorePca(factors = 3, covmat = covmat); fsPca2
```

```r
## fsPca3 contains scores etc.
fsPca3=factorScorePca(x = stock611[,3:12], factors = 2, cor = TRUE, rotation = "varimax", scoresMethod = "regression"); fsPca3
```

Description

Perform principal factor factor analysis on a covariance matrix or data matrix.

Usage

```r
factorScorePfa(x, factors = 2, covmat = NULL, cor = FALSE,
rotation = c("varimax", "none"),
scoresMethod = c("none", "regression", "Bartlett"))
```

Arguments

- **x** A numeric matrix or an object that can be coerced to a numeric matrix.
- **factors** The number of factors to be fitted.
- **covmat** A covariance matrix, or a covariance list as returned by `cov.wt`. Of course, correlation matrices are covariance matrices.
- **cor** A logical value indicating whether the calculation should use the covariance matrix (cor = FALSE) or the correlation matrix (cor = TRUE).
- **rotation** character. "none" or "varimax": it will be called with first argument the loadings matrix, and should return a list with component `loadings` giving the rotated loadings, or just the rotated loadings.
- **scoresMethod** Type of scores to produce, if any. The default is "none", "regression" gives Thompson’s scores, "Bartlett" gives Bartlett’s weighted least-squares scores.
Details

Other feasible usages are:

`factorScorePfa(factors, covmat)`

`factorScorePfa(x, factors, rotation, scoresMethod)`

If `x` is missing, then the following components of the result will be NULL: `scores`, `ScoringCoef`, `meanF`, `corF`, and `n.obs`.

Value

An object of class "factorScorePfa" with components:

`call` The matched call.

`loadings` A matrix of loadings, one column for each factor. This is of class "loadings" if `rotation = "varimax"`: see `loadings` for its print method; It is a plain matrix if `rotation = "none"`.

`communality` The common variance.

`uniquenesses` The uniquenesses/specific variance computed.

`covariance` The robust/classical covariance matrix.

`correlation` The robust/classical correlation matrix.

`usedMatrix` The used matrix (running matrix). It may be the covariance or correlation matrix according to the value of `cor`.

`reducedCorrelation` The last reduced correlation matrix.

`factors` The argument `factors`.

`method` The method: always "pfa".

`scores` If requested, a matrix of scores. NULL if `x` is missing.

`scoringCoef` The scoring coefficients. NULL if `x` is missing.

`meanF` The sample mean of the scores. NULL if `x` is missing.

`corF` The sample correlation matrix of the scores. NULL if `x` is missing.

`scoresMethod` The argument `scoresMethod`.

`n.obs` The number of observations if available. NULL if `x` is missing.

`center` The center of the data.

`eigenvalues` The eigenvalues of the `usedMatrix`.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

FaRobust-class

Description

Class "FaRobust" is a virtual base class for all robust FA classes. Currently the only available robust FA class is "FaCov". The class "FaRobust" serves as a base class for deriving all other classes representing the results of the robust Factor Analysis methods.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

- **call**: Object of class "language" an unevaluated function call
- **converged**: Object of class "logical" a logical character indicates whether the iterations converged
- **loadings**: Object of class "matrix" the matrix of variable loadings
- **uniquenesses**: Object of class "vector" the uniquenesses computed
- **covariance**: Object of class "matrix" the covariance matrix
- **correlation**: Object of class "matrix" the correlation matrix
- **usedMatrix**: Object of class "matrix" the used matrix (running matrix)

See Also

`factorScorePca`, `factanal`

Examples

```r
data(stock611)
R611 = cor(stock611[,3:12]); R611

## covmat is a matrix
cova1 = factorScorePfa(factors = 3, covmat = R611); cova1

## covmat is a list
covx = Cov(stock611[,3:12])
covmat = list(cov = getCov(covx), center = getCenter(covx), n.obs = covx@n.obs)
cova2 = factorScorePfa(factors = 3, cor = TRUE, covmat = covmat); cova2

## fsPfa3 contains scores etc.
cova3 = factorScorePfa(x = stock611[,3:12], factors = 2,
cor = TRUE, rotation = "varimax", scoresMethod = "regression"); cova3
```
criteria: Object of class "numeric". The results of the optimization: the value of the negative log-likelihood and information on the iterations used.
factors: Object of class "numeric" the number of factors
dof: Object of class "numeric". The number of degrees of freedom of the factor analysis model.
method: Object of class "character". The method: one of "mle", "pca", and "pfa".
scores: Object of class "numeric". If requested, a matrix of scores.
scoresMethod: Object of class "character". The scores method: one of "none", "regression", and "Bartlett".
STATISTIC: Object of class "numeric". The significance-test statistic, if it can be computed.
PVAL: Object of class "numeric". The significance-test P value, if it can be computed.
n.obs: Object of class "numeric". The number of observations if available.
center: Object of class "numeric". The center of the data.
eigenvalues: Object of class "numeric" the eigenvalues
cov.control: Object of class "numeric". Record the cov control method.

Extends

Class "Fa", directly.

Methods

No methods defined with class "FaRobust" in the signature.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

FaClassic-class, FaCov-class, FaRobust-class, Fa-class

Examples

showClass("FaRobust")
fsOrder

Compute the Ordered Factor Scores

Description

Compute the ordered factor scores according to the first/second/third... column of the original factor scores.

Usage

```r
fsOrder(factorScores)
```

Arguments

- `factorScores` The original factor scores.

Value

A list with `m` (the number of factors) components:

- `[[1]]` The ordered factor scores with a decreasing first column.
- `[[2]]` The ordered factor scores with a decreasing second column.
- `...`
- `[[m]]` The ordered factor scores with a decreasing `m`-th column.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

`order`

Examples

```r
data(stock611)
R611=cor(stock611[,3:12]); R611

## FS.pca contains scores etc.
fsPca=factorScorePca(x = stock611[,3:12], factors = 2, cor = TRUE,
rotation = "varimax", scoresMethod = "regression"); fsPca

orderedFS=fsOrder(fsPca$scores); orderedFS
```
getCenter-methods

Description

Accessor method to the Center slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the Center slot of an object of class "Fa" and its subclasses

getEigenvalues-methods

Description

Accessor method to the Eigenvalues slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the Eigenvalues slot of an object of class "Fa" and its subclasses

getFa-methods

Description

Accessor method to some slots of an object of class "Fa" and its subclasses. Return a list of class "fa".

Methods

signature(obj = "Fa") Accessor method to some slots of an object of class "Fa" and its subclasses. Return a list of class "fa".
getLoadings-methods

Access Loadings slot

Description

Accessor method to the Loadings slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the Loadings slot of an object of class "Fa" and its subclasses

getQuan-methods

Access n.obs slot

Description

Accessor method to the n.obs slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the n.obs slot of an object of class "Fa" and its subclasses

getScores-methods

Access Scores slot

Description

Accessor method to the Scores slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the Scores slot of an object of class "Fa" and its subclasses
getSdev-methods
Access Standard Deviation slot

Description

Accessor method to the Standard Deviation slot of an object of class "Fa" and its subclasses.

Methods

signature(obj = "Fa") Accessor method to the Standard Deviation slot of an object of class "Fa" and its subclasses

myFaPrint
Show/Print/Display an Object

Description

Show/print/display an object, including the Call, Standard deviations, Loadings, and Rotated variables (if print.x = TRUE).

Usage

myFaPrint(object, print.x=FALSE)

Arguments

object an object of class "Fa" or of a class derived from "Fa".
print.x Logical. If print.x = TRUE, then print the rotated variables (scores).

Value

An invisible argument object.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

Fa-class
myplotDD

Examples

data("hbk")
hbk.x = hbk[,1:3]

faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca",
 scoresMethod = "regression", cov.control = CovControlMcd())

object=show(object)=print(object)=myFaPrint(object)
faCovPcaRegMcd is an object of class "Fa"
faCovPcaRegMcd
show(faCovPcaRegMcd)
print(faCovPcaRegMcd)
myFaPrint(faCovPcaRegMcd)

myplotDD Distance-Distance Plot

Description

"myplotDD" is a revised version of ".myddplot" in "plot-utils.R" in the package "rrcov". In "myplotDD", id.n and ind are printed out.

Usage

myplotDD(x, cutoff, id.n)

Arguments

x An S4 object of class "CovRobust".
cutoff The cutoff value used. If missing, cutoff <- sqrt(qchisq(0.975, p)) by default.
id.n Number of observations to identify by a label. If not supplied, the number of observations with robust distance larger than cutoff is used.

Details

Distance-Distance Plot: Plot the vector y=rd (robust distances) against x=md (mahalanobis distances). Identify by a label the id.n observations with largest rd. If id.n is not supplied, calculate it as the number of observations larger than cutoff. Use cutoff to draw a horizontal and a vertical line. Draw also a dotted line with a slope 1.

"myplotDD(x)" is equivalent to "plot(x, which="dd")", which: indicate what kind of plot. If which = "dd", then a distance-distance Plot.
Value

A distance-distance plot is shown. Return a list with components:

cutoff
The cutoff value used. If missing, cutoff <- sqrt(qchisq(0.975, p)) by default.

id.n
Number of observations to identify by a label. If not supplied, the number of observations with robust distance larger than cutoff is used.

sort.y
A list containing the sorted values of y (the robust distance)

ind
The indices of the largest id.n observations whose robust distances are larger than cutoff.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

plot, qchisq, CovClassic, getDistance

Examples

data(stock611)
covMcd=CovRobust(x=scale(stock611[,3:12]), control="mcd"); covMcd

"myplotDD" shows id.n and ind.
Note: id.n and ind change each time due to covMcd changes each time!
However, the ind of largest robust distances do not change.
result = myplotDD(x=covMcd); result

"myplotDD" is equivalent to "plot(x=covMcd, which="dd")".
plot(x=covMcd, which="dd")
Usage

```r
## S4 method for signature 'fa'
plot(x, which=c("factorScore", "screeplot"), choices=1:2)
```

Arguments

- `x`: an object of class "Fa" or of a class derived from "Fa"
- `which`: indicate what kind of plot. If `which = "factorScore"`, then a scatterplot of the factor scores is produced; if `which = "screeplot"`, shows the eigenvalues and is helpful to select the number of factors.
- `choices`: an integer vector indicate which columns of the factor scores to plot

Details

The feasible usages are: `plot(x, which="factorScore", choices=1:2)` and `plot(x, which="screeplot")`

Methods

- `signature(x = "Fa", y = "missing")` generic functions - see `plot`

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

Examples

```r
data("hbk")
hbk.x = hbk[,1:3]

faClassicPcaReg = FaClassic(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression"); faClassicPcaReg
summary(faClassicPcaReg)

plot(faClassicPcaReg, which = "factorScore", choices = 1:2)
plot(faClassicPcaReg, which = "screeplot")
```
predict-methods

Calculates prediction

Description

Calculates prediction using the results in object. The newdata argument is an optional data frame or matrix in which to look for variables with which to predict. If newdata is omitted, the scores are used.

Usage

`predict(object, ...)`

Arguments

- `object`: an object of class "Fa" or of a class derived from "Fa"
- `...`: additional arguments, e.g., newdata: an optional data frame or matrix in which to look for variables with which to predict. If newdata is not missing, newdata should be scaled before "predict".

Methods

`signature(object = "Fa")` generic functions - see `show`, `print`, `summary`, `predict`, `plot`, `getCenter`, `getEigenvalues`, `getFa`, `getLoadings`, `getQuan`, `getScores`, `getSdev`

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

Examples

data("hbk")
hbk.x = hbk[,1:3]

faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca", scoresMethod = "regression", cov.control = CovControlMcd()); faCovPcaRegMcd

If missing newdata, the scores are used
predict(faCovPcaRegMcd)

If not missing newdata, newdata should be scaled first.
##
newdata = hbk.x[1,]
cor = FALSE # the default
newdata = {
 if (cor == TRUE)
 # standardized transformation
 scale(newdata, center = faCovPcaRegMcd@center,
 scale = sqrt(diag(faCovPcaRegMcd@covariance)))
 else # cor == FALSE
 # centralized transformation
 scale(newdata, center = faCovPcaRegMcd@center, scale = FALSE)
}

##
Now, prediction = predict(faCovPcaRegMcd)[1,] = faCovPcaRegMcd@scores[1,]
##
prediction = predict(faCovPcaRegMcd, newdata = newdata)
prediction

print-methods Show/Print/Display an Object

Description

Show/print/display an object, including the Call, Standard deviations, Loadings.

Usage

print(x, ...)

Arguments

x an object of class "Fa" or of a class derived from "Fa".
... additional arguments, e.g., print.x=TRUE

Value

An invisible argument x.

Methods

x = "Fa" generic functions - see show, print, summary, predict, plot, getCenter, getEigenvalues, getFa, getLoadings, getQuan, getScores, getSdev

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

show-methods

See Also

Fa-class, SummaryFa-class

Examples

```r
data("hbk")
hbk.x = hbk[, 1:3]

faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca",
scoresMethod = "regression", cov.control = CovControlMcd())

## object = show(object) = print(object) = myFaPrint(object)
## faCovPcaRegMcd is an object of class "Fa"
faCovPcaRegMcd
show(faCovPcaRegMcd)
print(faCovPcaRegMcd)
myFaPrint(faCovPcaRegMcd)
```

show-methods Show/Print/Display an Object

Description

Show/print/display an object, including the Call, Standard deviations, Loadings.

Usage

show(object)

Arguments

object an object of class "SummaryFa", "Fa", or of a class derived from "Fa".

Value

An invisible argument object.

Methods

object = "Fa" generic functions - see show, print, summary, predict, plot, getCenter, getEigenvalues, getFa, getLoadings, getQuan, getScores, getSdev

object = "SummaryFa" generic functions - see show

Author(s)

Ying-Ying Zhang (Robert) <robertzhangying@qq.com>
References

See Also

Fa-class, SummaryFa-class

Examples

data('hbk')
hbk.x = hbk[,1:3]

faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = 'pca',
 scoresMethod = 'regression', cov.control = CovControlMcd())

object=show(object)=print(object)=myFaPrint(object)
faCovPcaRegMcd is an object of class 'Fa'
faCovPcaRegMcd
show(faCovPcaRegMcd)
print(faCovPcaRegMcd)
myFaPrint(faCovPcaRegMcd)

stock611

The Stocks Data - Year 2001

Description

This data set consists of 611 observations with 12 variables.

Usage

data(stock611)

Format

A data frame with 611 observations on the following 12 variables.

code a numeric vector
name a numeric vector: the Chinese stocks name is replaced by integer, it can be found by its code.
x1 a numeric vector: main business income (China Yuan)
x2 a numeric vector: main business profit (China Yuan)
x3 a numeric vector: total profit (China Yuan)
x4 a numeric vector: net profit (China Yuan)
x5 a numeric vector: earnings per share (EPS) (China Yuan)
x6 a numeric vector: net assets per share (China Yuan)
x7 a numeric vector: net return on assets (%)
x8 a numeric vector: total return on assets (%)
x9 a numeric vector: total assets (China Yuan)
x10 a numeric vector: equity

Details

The data set is from Chinese stock market in the year 2001. It was used in Wang X. M. (2009) to illustrate the factor analysis methods.

Source

Note: In Wang X. M.’s homepage, he provided a link to download materials related to his book (including the data set stock611): http://bb.shufe.edu.cn/bbcswbdav/institution/

Examples

data(stock611)
str(stock611)
plot(stock611)

summary-methods Summary an Object

Description

Produce result summaries of an object of class "Fa".

Usage

summary(object, ...)

Arguments

object an object of class "Fa" or of a class derived from "Fa".

... additional arguments, e.g., print.x=TRUE.

Methods

signature(object = "Fa") Summary an object of class "Fa".

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>
SummaryFa-class

References

Examples

data("hbk")
hbk.x = hbk[,1:3]

faCovPcaRegMcd = FaCov(x = hbk.x, factors = 2, method = "pca",
scoresMethod = "regression", cov.control = CovControlMcd()); faCovPcaRegMcd

faCovPcaRegMcd
summary(faCovPcaRegMcd)

Description

Summary of "Fa" objects. The "Fa" object plus some additional summary information.

Objects from the Class

Objects can be created by calls of the form new("SummaryFa", ...). But most often by invoking 'summary' on an "Fa" object. They contain values meant for printing by 'show'.

Slots

faobj: Object of class "Fa"
importance: Object of class "matrix". Matrix with additional information: importance of components.

Methods

show signature(object = "SummaryFa"): display the object

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

See Also

Fa-class
Unumeric-class

Examples

showClass("SummaryFa")

<table>
<thead>
<tr>
<th>Unumeric-class</th>
<th>Class "Unumeric"</th>
</tr>
</thead>
</table>

Description

Define class unions for optional slots, e.g., for definition of slots which will be computed on demand.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "Unumeric" in the signature.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>

References

<table>
<thead>
<tr>
<th>Ulogical-class</th>
<th>Class "Ulogical"</th>
</tr>
</thead>
</table>

Description

Define class unions for optional slots, e.g., for definition of slots which will be computed on demand.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "Ulogical" in the signature.

Author(s)

Ying-Ying Zhang (Robert) <robertzhangyying@qq.com>
References

Index

*Topic **classes**
 Fa-class, 6
 FaClassic-class, 10
 FaCov-class, 13
 FaRobust-class, 19
 SummaryFa-class, 33
 UnLogical-class, 34
 UnNumeric-class, 34

*Topic **datasets**
 stock611, 31

*Topic **methods**
 getCenter-methods, 22
 getEigenvalues-methods, 22
 getFa-methods, 22
 getLoadings-methods, 23
 getQuan-methods, 23
 getScores-methods, 23
 getSdev-methods, 24
 plot-methods, 26
 predict-methods, 28
 print-methods, 29
 show-methods, 30
 summary-methods, 32

*Topic **package**
 robustfa-package, 2

*Topic **robust**
 compute_cov_cor, 4
 computeScores, 3
detail, 5
 FaClassic, 9
 FaCov, 12
 factorScorePca, 15
 factorScorePfa, 17
 fsOrder, 21
 myFaPrint, 24
 myplotDD, 25

 attributes, 6
class, 6

 compute_cov_cor, 4
 computeScores, 3
cov.wt, 15, 17
 CovClassic, 12, 26
 CovMcd, 12
detail, 5
 Fa, 11, 14, 20
 Fa-class, 6
 FaClassic, 2, 9
 FaClassic-class, 10
 FaCov, 2, 12
 FaCov-class, 13
 factanal, 16, 19
 factorScorePca, 2, 15, 19
 factorScorePfa, 2, 16, 17
 FaRobust, 14
 FaRobust-class, 19
 fsOrder, 21

 getCenter, Fa-method
 (getCenter-methods), 22
 getCenter-methods, 22
 getDistance, 26
 getEigenvalues, Fa-method
 (getEigenvalues-methods), 22
 getEigenvalues-methods, 22
 getFa (getFa-methods), 22
 getFa, Fa-method (getFa-methods), 22
 getFa-methods, 22
 getLoadings, Fa-method
 (getLoadings-methods), 23
 getLoadings-methods, 23
 getQuan, Fa-method (getQuan-methods), 23
 getQuan-methods, 23
 getScores, Fa-method
 (getScores-methods), 23
 getScores-methods, 23
 getSdev, Fa-method (getSdev-methods), 24
INDEX

getSdev-methods, 24

is.object, 6

iss4, 6

loadings, 16, 18

model.frame, 9, 12

myFaPrint, 24

myplotDD, 25

order, 21

plot, 26

plot (myplotDD), 25

plot, Fa, missing-method (plot-methods), 26

plot, Fa-method (plot-methods), 26

plot-methods, 26

predict (predict-methods), 28

predict, Fa-method (predict-methods), 28

predict-methods, 28

print (print-methods), 29

print, Fa-method (print-methods), 29

print-methods, 29

qchisq, 26

robustfa (robustfa-package), 2

robustfa-package, 2

show (show-methods), 30

show, Fa-method (show-methods), 30

show, SummaryFa-method (show-methods), 30

show-methods, 30

stock611, 31

summary (summary-methods), 32

summary, Fa-method (summary-methods), 32

summary-methods, 32

SummaryFa-class, 33

Ulogical-class, 34

Unumeric-class, 34